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Abstract

The estimation of substitution and recombination rates can provide important insights into the molecular evolution of
protein-coding sequences. Here, we present a new computational framework, called “CodABC,” to jointly estimate
recombination, substitution and synonymous and nonsynonymous rates from coding data. CodABC uses approximate
Bayesian computation with and without regression adjustment and implements a variety of codon models, intracodon
recombination, and longitudinal sampling. CodABC can provide accurate joint parameter estimates from recombining
coding sequences, often outperforming maximum-likelihood methods based on more approximate models. In addition,
CodABC allows for the inclusion of several nuisance parameters such as those representing codon frequencies, transition
matrices, heterogeneity across sites or invariable sites. CodABC is freely available from http://code.google.com/p/codabc/,
includes a GUI, extensive documentation and ready-to-use examples, and can run in parallel on multicore machines.
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Understanding adaptation is one of the central questions
in evolutionary biology (e.g., Nielsen 2005; Barrick et al.
2009; Jones et al. 2012). At the molecular level, the estima-
tion of nonsynonymous/synonymous rate ratio (!) has
played a fundamental role in the identification of loci
and codon sites under selective pressure (i.e., Yang and
Nielsen 2000; Perez-Losada et al. 2009; Yang et al. 2009).
However, the estimation from real data of this parameter is
not trivial, and other evolutionary processes such as re-
combination can introduce a bias (Anisimova et al. 2003;
Shriner et al. 2003; Arenas and Posada 2010). As a conse-
quence, there is a need for methods of inference that can
allow for different evolutionary scenarios in which multiple
parameters are jointly estimated. Indeed, for such complex
models it can be impossible to derive analytical formulae,
or the likelihood function may be computationally too
expensive to evaluate. In such cases, an approximate
Bayesian computation (ABC) approach (Beaumont 2010;
Csillery et al. 2010) can provide a reasonable solution. We
have recently proposed an ABC strategy for the joint esti-
mation of recombination, nonsynonymous/synonymous
rate ratios, and substitution rates that outperforms other
methods based on maximum likelihood and that is quite
robust to model misspecification (Lopes et al. 2014). Here,
we present a user-friendly computational tool that imple-
ments this methodology, called “CodABC.” In contrast to
other ABC tools, CodABC allows for the analysis of coding

data while jointly considering multiple parameters and
complex codon substitution models. As with any ABC
method, CodABC uses summary statistics designed to
extract evolutionary information from coding data.
Moreover, CodABC is able to perform ABC under both
multiple rejection and regression strategies.

New Approaches: CodABC
An analysis with CodABC consists of three main steps:
Simulation of coding data, computation of summary statistics
and joint estimation of recombination, !, and codon substi-
tution rates.

1) The simulation of coding data is performed with the
coalescent simulator CoalEvol (Arenas and Posada
2014), which implements different evolutionary scenar-
ios with recombination (including intracodon break-
points), haploid/diploid data and longitudinal
sampling. Coding sequences are evolved along the sim-
ulated genealogies under the GY94 codon model
(Goldman and Yang 1994), combined with any typical
4� 4 nucleotide substitution model (e.g., Pond and
Muse 2005; Anisimova and Kosiol 2009), accommodat-
ing rate variation among sites and a proportion of
invariable sites (Yang 1994). This simulation can be pa-
rameterized according to user-specified prior distribu-
tions (see Arenas and Posada 2014).
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2) A total of 26 summary statistics are computed to encap-
sulate the information in the observed and simulated
data. These summary statistics consist of three fast re-
combination tests (pairwise homoplasy index [Bruen
et al. 2006], neighbor similarity score [Jakobsen and
Easteal 1996], and maximum chi-squared [Maynard
Smith 1992]); the mean, standard deviation, skewness
and kurtosis of diversity and heterozygosity at codon
and amino acids levels, the number of segregating sites
at nucleotide, codon and amino acid levels, and a series
of summary statistics that simultaneously consider diver-
sity at the codon and amino acid levels. We have previ-
ously shown that this set of summary statistics is able to
extract a substantial amount of the evolutionary infor-
mation of interest from coding alignments (Lopes et al.
2014).

3) In the last step, CodABC estimates the three parameters
of interest using the abc R package (Csillery et al. 2012): 1)
Scaled recombination rate �= 4Nrl, where N is the effec-
tive population size, r is the recombination rate per nu-
cleotide, and l is the number of nucleotides in the
alignment; 2) nonsynonymous/synonymous rate ratio
!; and 3) scaled codon substitution rate � = 4 NmL,
where m is the substitution rate per codon and L is the
number of codons in the alignment. Note that other
parameters that are used for simulating data during
the ABC procedure are treated as nuisance parame-
ters—sampled according to a prior distribution but
not estimated—such as codon frequencies, substitution
rates among nucleotides, rate variation among sites or
proportion of invariable sites, which allow distinct evo-
lutionary scenarios to be explored. The estimation step
can be carried out under a rejection or a weighted mul-
tiple linear regression approach (Beaumont et al. 2002;
Blum and François 2010; Csillery et al. 2010).

The user of CodABC can specify the number of simulations
to consider, the tolerance level, different transformations of
the data (none, log, or logit), corrections for heteroscedasti-
city, and the subset of the summary statistics that will be used
for the estimation. Detailed recommendations are described
in the software documentation, but see also CodABC
Validation section. In general, we found that 50,000 simula-
tions can be a good starting point, but different data sets may
require a larger number of simulations depending on the
amount of information (e.g., small data sets may require
more simulations).

Conveniently, CodABC includes a user-friendly GUI for an
easy parameterization of the whole estimation procedure.
Because the simulation of coding data is commonly much
slower than the simulation of nucleotide or amino acid data,
CodABC can run the simulations and the computation of the
summary statistics in parallel on multicore machines, allowing
for a significant reduction of the computation time (see
below). CodABC is a pipeline written in Java, C, Perl, and R,
freely available from http://code.google.com/p/codabc/. The
package includes executables, source code, detailed docu-
mentation, and example input files.

FIG. 1. Accuracy of CodABC using simulated data. For each combina-
tion of �, �, and !, we present the corresponding estimates for � (top),
! (middle), and � (down). Dashed lines indicate the true value. Points
present the mode of the prior distributions and error bars indicate the
95% CI.
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CodABC Validation
We have previously shown that ABC can generate more ac-
curate estimates than maximum-likelihood methods under a
number of scenarios (Lopes et al. 2014). Here, and in order to
benchmark and validate the specific CodABC implementa-
tion, we carried a new simulation study. We simulated coding
sequences under different values of � (10 and 30), ! (0.5 and
1.5) and � (100 and 200), for alignments of 15 sequences with
300 codons, assuming a fixed effective population size of 1,000
individuals, and a GY94 codon model (Goldman and Yang
1994) with a transition/transversion rate ratio of 0.5. For every
combination of parameters (2� 2� 2 = 8 combinations), we
simulated 100 alignments. For each data set, we used CodABC
to obtain estimates of �, !, �, with a total of 50,000
simulations parameterized under the following wide prior
distributions: �= Uniform(0,50), � = Uniform(0,300), and
!= Uniform(0,2), which encompass values that are com-
monly observed in real data (e.g., Stumpf and McVean
2003; Carvajal-Rodriguez et al. 2006; Perez-Losada et al.
2009). ABC estimates were obtained assuming an acceptance
rate of 0.2%, giving 100 points, adjusted with a weighted
multiple linear regression on logit-transformed values, as in
Lopes et al. (2014). The parameter estimates obtained were
generally accurate and in good agreement with previous tests
(Lopes et al. 2014), validating the CodABC implementation
(fig. 1).

In order to provide an idea of typical running times, we also
reanalyzed with CodABC three HIV-1 data sets, including two
already studied in Lopes et al. (2014). HIV-1 is particularly
interesting to analyze due to the very high recombination
and substitution rates (Mansky and Temin 1995; Robertson
et al. 1995), and its evolution under strong selective pressures
promoted by the immune system and antiretroviral therapy
(e.g., Poon et al. 2007). The first data set included 22
sequences and 288 codons—intrapatient dynamics under
antiretroviral therapy—(Malet et al. 2009), the second

included 20 sequences and 298 codons—gp41 sequences of
type 1 subtype C from India—(Agnihotri et al. 2006), and the
third data set is the biggest and included 55 sequences and
483 codons—a genetic characterization of a new circulating
recombinant form in China—(Zeng et al. 2012). We ran a
total of 50,000 simulations under the same prior distributions
used for the analysis of the simulated data above. The analyses
of these data sets took 7 days for the smallest data set and 30
days for the biggest on a single core, but the running times
were drastically reduced when using four (43 and 188 h for
the smallest and biggest data sets, respectively) or eight cores
(22 and 99 h for the smallest and biggest data sets, respec-
tively) (Intel Xeon CPU 2.33 GHz) (fig. 2). As expected, bigger
data sets, with more and longer sequences, lead to longer
computer times and thus we recommend running them in
parallel on multicore machines. Indeed, we note that high
recombination rates in the simulation prior might result in
large ancestral recombination graphs that imply larger simu-
lation times (Arenas and Posada 2012).

Discussion
We have introduced a new ABC tool for the estimation of
nonsynonymous/synonymous rate ratio, recombination
and codon substitution rates from coding sequence align-
ments. Key aspects of CodABC are the implementation of
coalescent simulations under a variety of models of evo-
lution, the consideration of flexible prior distributions and
the joint estimation of different evolutionary parameters.
Many of these features are commonly unavailable in other
analytical methods (e.g., those based on maximum-
likelihood approaches [see Li and Stephens 2003; Wilson
and McVean 2006]). We have shown that with a reason-
able computational effort CodABC can be quite accurate,
often more than maximum-likelihood methods based on
more approximate models (Lopes et al. 2014).
Nevertheless, some care should be taken when specifying
the ABC procedure, for example the number of

FIG. 2. CodABC computing times. The simulated data contain 15 sequences with 900 nucleotides. The first real data set contains 22 sequences with 864
nucleotides. The second real data set contains 20 sequences with 894 nucleotides. The third real data set is the biggest and contains 55 sequences with
1,449 nucleotides. Prior distributions: �: U(0,50), �: U(0,300), and !: U(0,2). The analyses were run on an Intel Xeon CPU 2.33 GHz with 24 cores.
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simulations or the acceptance rate. We recommend the
use of the GUI to define the entire analysis, as this tool
checks for potential setting errors. As a starting point, we
recommend to perform 50,000 simulations and to con-
sider an acceptance rate not lower than 0.2% for simulated
data for which we know the model of evolution, and as
much as 500,000 simulations and an acceptance rate of at
least 1,000 data sets for real data. The prior distributions
should be carefully defined, making sure that the values of
the parameters are biologically reasonable, and that the
value of the summary statistics for the simulated data and
the data set under study are similar. It is also important to
obtain a good coverage of the space of the parameters
through extensive simulations. Repeating the analysis
with an increasing number of simulations, and different
acceptance rates, can help in identifying the number of
simulations required for obtaining reliable estimates in a
particular analysis.
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