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Abstract
Regeneration is regulated not only by chemical signals but also by physical processes, such as bio-

electric gradients. How these may change in the absence of the normal gravitational and geo-

magnetic fields is largely unknown. Planarian flatworms were moved to the International Space

Station for 5 weeks, immediately after removing their heads and tails. A control group in spring

water remained on Earth. No manipulation of the planaria occurred while they were in orbit, and

space-exposed worms were returned to our laboratory for analysis. One animal out of 15 regen-

erated into a double-headed phenotype—normally an extremely rare event. Remarkably, ampu-

tating this double-headed worm again, in plain water, resulted again in the double-headed pheno-

type.Moreover, evenwhen tested 20months after return to Earth, the space-exposedworms dis-

played significant quantitative differences in behavior andmicrobiome composition. These obser-

vationsmay have implications for human and animal space travelers, but could also elucidate how

microgravity and hypomagnetic environments could be used to trigger desired morphological,

neurological, physiological, and bacteriomic changes for various regenerative and bioengineering

applications.
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1 INTRODUCTION

Planarian flatworms are known for their mastery of regeneration

(Reddien&SanchezAlvarado, 2004; SanchezAlvarado, 2003; Sheiman

&Kreshchenko, 2015). These bilaterians have the ability to completely

recapitulate all bodyparts, including complex organs, fromsmall pieces

of the body, with high morphological and proportional fidelity (Hill &

Petersen, 2015) in a vast variety of perturbations (Morgan, 1898). The

complex organs include a full, centralized brain (Pagán, 2014; Sarnat,

1985) and central nervous system (Cebria, 2008) which has the ability

to produce a continuous brain wave pattern (Aoki, Wake, Sasaki, &

Agata, 2009) and complex behaviors (Corning, 1964; Inoue, Hoshino,

Yamashita, Shimoyama, & Agata, 2015) with impressively variable
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sensory capabilities as inputs (Asano, Nakamura, Ishida, Azuma, &

Shinozawa, 1998; Brown, 1962a, 1966; Brown & Park, 1964; Brown,

Dustman, & Beck, 1966; Carpenter, Morita, & Best, 1974; Hyman,

1951; MacRae, 1967). Planaria exhibit complex learning, curiosity,

and problem-solving abilities (Best & Rubenstein, 1962; Corning &

Freed, 1968; McConnell, 1965; Pagán, 2014; Wells, 1967). More-

over, they are able to repair and remodel three major polarity axes,

dorsal/ventral, anterior/posterior, and medial/lateral, with outstand-

ing accuracy (Gentile, Cebria, & Bartscherer, 2011; Gurley, Rink, &

Alvarado, 2008; Kato, Orii, Watanabe, & Agata, 2001; Lange & Steele,

1978; Molina, Saló, & Cebrià, 2007; Orii & Watanabe, 2007; Owlarn

& Bartscherer, 2016; Reddien, Bermange, Kicza, & Alvarado, 2007).

These complex regenerative abilities are attractive for human
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regeneration research especially because planaria have more

genomic similarities to vertebrates than do Drosophila melanogaster or

Caenorhabditis elegans (Sánchez Alvarado, Newmark, Robb, & Juste,

2002). All of thesepropertiesmakeplanaria a primemodel for research

in diverse areas of biomedicine, from stem cell biology to drug addic-

tion (Rawls, Cavallo, Capasso, Ding, & Raffa, 2008a; Rawls, Gerber,

Ding, Roth, & Raffa, 2008b; Rowlands & Pagan, 2008; Sacavage et al.,

2008).

Patterning during regeneration, development, and cancer suppres-

sion is subject to the influence of physical forces including electric

fields, magnetic fields, electromagnetic fields (Chernet & Levin, 2013;

Funk & Monsees, 2006; Funk, Monsees, & Ozkucur, 2009), as well as

other biophysical inputs (reviewed by Adams, 2008; Adams & Levin,

2013; Levin, 2014b; Lobikin, Chernet, Lobo, & Levin, 2012; Mustard &

Levin, 2014; Stewart, Rojas-Munoz, & Izpisua Belmonte, 2007). In pla-

naria specifically, electric forces have been known to alter patterning

information for decades (Bonaventure, 1957; Hyman, 1932; Lange &

Steele, 1978; Marsh & Beams, 1952). More recently, bioelectric physi-

ology has been implicated in the regulation of the cell cycle (Barghouth,

Thiruvalluvan, & Oviedo, 2015), polarity (Beane, Morokuma, Adams,

& Levin, 2011), and morphology (Beane, Morokuma, Lemire, & Levin,

2013; Emmons-Bell et al., 2015) in the planarian as well. It is proba-

ble that physical forces, both internal and external, are modulated by

the physical force of Earth’s gravity, which probably influenced theway

that the regenerative and developmental abilities of living organisms

have evolved on Earth (Bizzarri & Cucina, 2014).

On Earth, biological systems are also subject to the naturally vary-

ing geomagnetic field (GMF) (Dubrov, 1978). This variation in geo-

magnetic disturbance has been shown to impact not only animal

behavior (Beischer, 1971; Zamoshchina et al., 2012), but also medi-

cally relevant phenomena such as ciliary motion (Sandoze, Svanidze,

& Didimova, 1995), stem cell function (Mo, Liu, Bartlett, & He, 2014),

cardiovascular regulation (Cornelissen et al., 2001; Feigin et al., 2014;

Gmitrov & Gmitrova, 2004; Stoupel, 2006; Stoupel et al., 2014), the

autonomic nervous system (Baevsky, Petrov, & Chernikova, 1998),

memory (Wang, Xu, Li, Li, & Jiang, 2003; Xiao, Wang, Xu, Jiang, &

Li, 2009; Zhang et al., 2004), and the interactions between neurons

(Shibib, Brock, & Gosztony, 1987). Magnetic field reversals may even

have placed selective pressures on organisms that have contributed

to subsequent extinction (Hays, 1971; Plotnick, 1980) andmorpholog-

ical change (Harrison & Funnel, 1964), and planaria have specifically

been shown to be sensitive to weak magnetic fields (Brown, 1962b,

1966). These observations have been tested in recent decades by gen-

erating a near null or hypogeomagnetic field in order to understand

the role of the Earth’s natural magnetic field in numerous biological

processes (Krylov, Bolotovskaya, & Osipova, 2013; Krylov et al., 2014;

Zaporozhan, Nasibullin, Hozhenko, & Shapranov, 2002). The effects of

exposure to a null magnetic field have included changes in immune

response (Dorofteiu, Morariu, Marina, & Zirbo, 1995), axonal myelina-

tion (Shibib et al., 1987), and tubulin assembly (Wang, Wang, Xiao, Liu,

& He, 2008), as well as developmental patterning (Asashima, Shimada,

& Pfeiffer, 1991;Mo, Liu, Cooper, &He, 2012). The physiologicalmech-

anisms contributing to the influence of the GMF on biological events

are currently unknown.

Biological systems also operate under the physical constraint of the

Earth’s gravity (Bizzarri, Cucina, Palombo, & Masiello, 2014). There-

fore, an emergent question in recent years has concerned the behav-

ior, cellular and otherwise, of organisms in microgravity conditions. It

has since become clear that system level changes occur in micrograv-

ity fields (Crawford-Young, 2003). More specifically, microgravity has

been shown to affect cell morphology (Crawford-Young, 2003; Testa

et al., 2014), cytoskeletal organization (Masiello et al., 2014), early

development (reviewed by Ogneva, 2015; see also Dournon, 2003),

the likelihood of the open state of ion channels (Goldermann & Hanke,

2001), gene expression profiles (Pardo et al., 2005), differentiation

(Pisanu et al., 2014), and apoptosis (Monici et al., 2006). Microgravity,

inmost cases so far, has been shown to be an inhibitor of tissue growth

and regeneration in mammalian tissues (Blaber et al., 2014b). Micro-

gravity research, on top of revealing how cells behave in response to

altered physical forces, has also led to the development of innovative

techniques. As an example, it has been found that 3D cultured cells

allow for an unrestricted growth environment which is promising for

the future of cell culture application to human medicine (Grimm et al.,

2014; Souza et al., 2010).

Microbes are also impacted by space conditions. Classically, it

was concluded that cells smaller than 10 𝜇M, including bacteria,

would be affected very minimally by weightlessness (Pollard, 1965);

however, more recently, experiments observing microorganisms in

space-like environments have suggested otherwise (Horneck, Klaus,

& Mancinelli, 2010). Moreover, microgravity conditions have been

shown to increase bacterial growth kinetics, biofilm formation, and

stress resistance (Kim, Matin, & Rhee, 2014; Rosenzweig et al., 2010).

Microbes continue to maintain their adaptability in the changing envi-

ronment and have been shown to change their secondary metabolite

production, gene expression, and virulent capability (Leys, Hendrickx,

De Boever, Baatout, & Mergeay, 2004; Nickerson et al., 2000, 2003).

Although it still remains to be determined what physical factors are

contributing to these changes (such as whether they are due to micro-

gravity or fluid dynamics), it is clear that spaceflight can reshapemicro-

bial communities and what they produce. Aside from the clear biolog-

ical implications, this also poses questions regarding manned space-

flight and protection from microorganisms that may be encountered

while away from Earth.

If space travel environments can change cellular behavior and phys-

iology, it is imperative to begin to understand how they can impact

regeneration.Much of the previouswork studying the impact of space-

flight on regeneration has been done in urodeles, in particular inves-

tigating limb and lens regeneration (Grigoryan, Mitashov, & Anton,

2002; Mitashov, Brushlinskaya, Grigoryan, Tuchkova, & Anton, 1996).

Newts undergoing limb regeneration have shown increased regener-

ative rates on biosatellites as well as increased proliferation in limb

blastemas in a synchronous manner. Lenses also showed increased

regenerative ability. After landing, there was a two-fold increase in

the number of proliferative cells within the region that provides

the cells for lens regeneration as well as other parts of the eye.

Upon further investigation replicating these experiments in micro-

gravity conditions on Earth, it was suggested that these effects occur

due to weightlessness (Blaber, Sato, & Almeida, 2014a; Grigoryan,
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F IGURE 1 Pre-launch preparation and logistics. For logistics on Earth, live worm samples were secured inside the battery powered refrigerated
shipping container iQ2 fromMicro Q Technologies (Scottsdale, AZ, U.S.A.), and FedEx Space Solutions (Memphis, TN, U.S.A.) was utilized for rapid
shipment of the iQ2 container. (A) iQ2, the proprietary battery operated precision-temperature-controlled shipping container. (B), (C) iQ2 inside
the protective shipping exterior. (D) Manual worm amputation at Kennedy Space Center prior to launch. (E), (F) 50 mL conical tubes (blue caps)
containing livewormswere sealed, then secured in 3D-printed custom retainers (yellow and purple), and placed inside the BRIC-100VC containers
(red) provided by NASA. (G) SpX-5 SpaceX Dragon Spacecraft on top of the Falcon 9 rocket at Cape Canaveral SLC-40 launch pad. (H) SpX-5 liftoff
on 10 January 2015, at 09:47UTC. (I) SpX-5 SpaceXDragon Spacecraft in orbit prior to berthingwith the ISS on 12 January 2015. Images reprinted
with permission fromMicroQ Technologies (A) and of SpaceX (G–I)

Anton, & Mitashov, 1998). Conversely, tail regeneration experiments

did not find this same advancement in regenerative ability; however,

changes in the pigmentation of tail blastemas in spaceflight animals

were observed (Grinfeld, Foulquier,Mitashov, Bruchlinskaia, &Duprat,

1996). In Schmidtea mediterranea planaria, one study using simulated

microgravity observed lethality while hypergravity led to decreased

proliferation rates (Adell, Salo, van Loon, & Auletta, 2014). In con-

trast, another study found no distinguishing effects on Girardia tigrina

(Gorgiladze, 2008). We used the species Dugesia japonica, not previ-

ously explored in space travel, with a range of analysis methods, to

examine the effects of spaceflight conditions.

Our study sought to determine how spaceflight and the condi-

tions on the International Space Station (ISS) would affect planarian

regeneration (Fig. 1). What effects would microgravity and micro-

geomagnetic fields produce, andmight these effects bepersistent after

return to Earth? We used a panel of behavioral, microbiological, and

morphological assays to understandhow the total experience of space-

flight (including the stresses of take-off and landing, as well as the

weightless and 0 GMF conditions on the ISS itself) would affect this

complex regenerative model system. This project was also designed to

establish protocols for performing planarian research in space so as

to determine proper transfer logistics and conditions for future mis-

sions.Ashumans transition towardsbecominga space-faring species, it

is important that we deduce the impact of spaceflight on regenerative

health for the sake of medicine and future space laboratory research.

2 RESULTS

Advances in regenerative medicine require an understanding of the

remarkable mechanisms by which some organisms repair damage to

their bodies. How these processes change when an organism is in

outer space, in the absence of the normal gravitational and geomag-

netic fields, is largely unknown. We undertook a series of experi-

ments to understand the effects on organisms that spent an extended

period of time in space. Planaria were either pre-amputated or left

as whole for spontaneous fission, and sealed into 50%/50% air/water

tubes on Earth (Table 1). An identical set of worms were launched into

space, spending over amonth at the ISS undermicrogravity andmicro-

geomagnetic force before returning to Earth.We evaluated these sam-

ples upon return, as well as after 20months of maintenance in our lab-

oratory; the latter time period was chosen as an optimal compromise
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TABLE 1 Initial number of worms per 50 mL tube, either whole or
as amputated fragments

Tube number Worm sample Number of samples

1 Head (H) 15

2 Pharynx (P) 15

3 Tail (T) 15

4 Whole (W4) 4

5 Whole (W5) 5

6 Whole (W6) 6

7 Whole (W8) 8

8 Whole (W10) 10

between timely reporting of results so that they can contribute to the

work of other groups and the ability to demonstrate truly long-term

consequencs of space travel.

2.1 Water shock

Immediately upon return to Earth, worms from each sample tubewere

transferred to a Petri dish containing fresh Poland Spring water to

identify any phenotypic changes under the microscope (Fig. 2). The

size of the worms did not differ appreciably between the two groups,

within the normal variation of the length ofD. japonicaworms (data not

shown). Surprisingly, only the sample containing 10 whole worms that

had been launched into space showed immediate unusual behavior

when introduced into fresh Poland Spring water: they curled up ven-

trally and were somewhat paralyzed and immobile (Fig. 3, and Videos

S1 and S2). There was no sign of immediate blistering of the worm’s

epidermis,whichgenerally indicates acute toxicity. This shock-likephe-

notype lasted for an hour; the worms then gradually started to flat-

ten out on the surface, slowly regaining movement, and after 2 h they

all returned to normal behavior and morphology. This indicates that

the sample of 10 whole worms that had been launched into space in

a single sealed tube modified their biological state to accommodate

the environmental change; when reintroduced into fresh water, the

environmental change back to standard living conditions resulted in

severe shock because of their altered metabolic state. Water shock

was not seen in the later established ‘temperature-matched’ Earth-

only control worms.

2.2 Fission in space

Whole worms sent into space were found to have fissioned sponta-

neously, but control whole worms on Earth had not (Table 2). Fis-

sion was not observed in either space-exposed or Earth-only worm

fragments that had beenmanually amputated prior to launch (Table 3).

It must be noted, however, that the control worms on Earth were kept

F IGURE 2 Flatworm amputation and space-exposed and Earth-bound worm sample schematics. (A) Approximately a third of the anterior part
of the worm was cut off to create the head (H) fragment; then the posterior half was cut in half to create the pharynx (P) and tail (T) fragments,
respectively. A total of 15 flatwormswere cut and collected into three separate 50mL conical tubes per fragment. (B) An identical number of worm
samples, both whole and amputated fragments, were either sent into space or left on Earth for 32 days. (C) Immediately upon return to Earth,
both space-exposed and Earth-only control worms from each sample tube were transferred to a Petri dish containing fresh Poland Spring water
individually to identify any phenotypic changes
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F IGURE 3 Water shock. (A), (B) Control worms left on Earth. (A) Representation of Earth-only control worms, with full extension and rapid
movement. (B) Close-up image of representative Earth-only controlworm. (C), (D)Worms from space. (C) Representation of space-exposedworms,
in a state of water shock (ventrally curled and no movement). (D) Close-up image of representative stocked space-exposed worm (See also Videos
S1 and S2.)

TABLE 2 Number of whole worms before and after 1 month in a
sealed tube, either while traveling to space and back or left on Earth.
Wormswhich have traveled to space have shown spontaneous fission-
ing, while Earth-only control samples have not. This is considered to be
due to the slightly higher temperature the worms in space were main-
tained in during themission

Start n 4 5 6 8 10

Earth 4 5 6 8 10

Space 7 7 10 14 13

Space/Earth 1.75× 1.4× 1.67× 1.75× 1.3×

TABLE 3 Number of manually amputated worm fragments before
and after 1 month in a sealed tube, either while traveling to space and
back or left on Earth. There is no difference in the resulting number of
worms, indicating that no spontaneous fissioning has occurred during
the mission. Note that pharynx fragments left on Earth did not survive
the duration of themission for an unknown reason

Fragment (n) Head (15) Pharynx (15) Tail (15)

Earth 15 (−) 15

Space 15 15 15

at 20˚C at all times, while theworms in space unavoidably experienced

somewhat higher temperatures at some time periods (Fig. S1). For this

reason, the observed difference in spontaneous fission rate must be

interpreted with caution.

2.3 Water composition

Samples of thewater inwhich the space-exposedwormsand theEarth-

onlyworms had been livingwere frozen and stored at−20˚C.Although
thewater temperatureof theworms in spacewas recorded throughout

themission, the informationwas not relayed in real time toEarth. After

obtaining the space-exposed worm water temperature information, a

newset of ‘temperature-matched’ Earth-only controlwormswerekept

in the same isolated conditions as before, with the temperature manu-

ally adjusted to follow the same profile and time course that the space-

exposedworms experienced.

Liquid chromatography–mass spectrometry (LC-MS) analysis of the

water samples revealed that both samples contained a large number

of small organic molecules/metabolites. Whereas the total ion chro-

matograms of the two samples in the negative ion mode were similar

(Fig. S2B), the total ion chromatograms of the two samples in the posi-

tive ionmodewere quite different (Fig. S2A).

Our analysis of the unique ions observed in the space-exposed

worm water sample using the positive ion mode of LC-MS indi-

cate that many of them correspond to long-chain fatty acids or

mono-hydroxylated/di-hydroxylated long-chain fatty acids. For

example, a peak with an accurate m/z of 274.2730 is consis-

tent with [M+NH4]
+ of C16H32O2, which could be one or more

skeletal isomers of hexadecanoic acid (e.g., CH3(CH2)14COOH or

CH3(CH2)7CH[(CH2)5CH3]CO2H). Another peak, with an accurate

m/z of 290.2680, is consistent with [M+NH4]
+ of C16H32O3, which

could be one or more regioisomers of hydroxyhexadecanoic acid

[e.g., CH3(CH2)13CH(OH)CO2H or HO(CH2)15CO2H], the peak
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TABLE 4 Eleven proteins identified usingmass spectrometry that were present in thewater that housed the space-exposedworms, but not the
Earth-only worms

Accession number of
DNA sequence in
D. japonica

Number of unique
peptides found inmass
spectrum

SmedGD ID of
S. mediterranea
homolog

Percent identity:
D. japonica and
S. mediterranea Function in S. mediterranea

comp145442_c0_seq1 10 SMU15038343 73.13 Putative C. elegans protein
MUA-3 isoform 3
(fibrillin homolog)

comp128998_c0_seq1 3 SMU15000643 82.12 Putative cathepsin C

comp127150_c0_seq1 3 SMU15003136 86.87 Putativemyosin heavy
chain

comp131819_c0_seq1 2 SMU15000136 78.94 Putative pyrophosphatase
phosphodiesterase
family member

comp141188_c2_seq3 2 SMU15033813 68.08 Unknown function

comp145670_c2_seq3 2 SMU15005691 43.61 Putative protease serine 12
neurotrypsinmotopsin

comp146596_c0_seq1 2 SMU15025275 93.36 Putative 14-3-3 protein

comp141858_c0_seq6 2 SMU15002375 97.52 Putative tubulin beta

comp135193_c0_seq1 2 SMU15002770 91.96 Putative
phosphoenolpyruvate
carboxykinase

comp86205_c0_seq1 2 SMU15039048 100.00 Putative protein CMD-1
(calmodulin)

comp142073_c0_seq1 2 SMU15038409 53.64 Unknown function

that has an accurate m/z of 334.2943 is consistent with [M+NH4]
+

of C18H36O4, which could be one or more regioisomers of dihy-

droxyoctadecanoic acid [e.g., CH3(CH2)14CH(OH)CH(OH)CO2H or

CH3CH2CH(OH)CH(OH)(CH2)13CO2H], and the peak that has an

accurate m/z of 374.3617 is consistent with [M+NH4]
+ of C22H44O3,

which could be one or more regioisomers of hydroxydocosanoic acid

[e.g., CH3(CH2)19CH(OH)CO2H or HO(CH2)21CO2H].

Our analysis of the unique ions from the space-exposed worm

water sample that were observed in negative ion mode indicates

that molecules with long hydrocarbon chains were observed as well.

For example, a peak with an accurate m/z of 285.2072 is consistent

with [M−H+]− of C16H30O4, which could be hexadecanedioic acid

[HO2C(CH2)14CO2H], and a peak with an accuratem/z of 285.2072 is

consistent with [M−H+]− of C19H37NO4, which could be dodecanoyl-

carnitine, octanoylcarnitine n-butyl ester, or N-palmitoyl serine, all of

which have long hydrocarbon chains.

LC-MS/MS analysis revealed that the water samples contained sev-

eral proteins. The list of identified proteins in the space-exposed pla-

naria water sample was filtered for reagents used in the trypsin diges-

tion step, known contaminants (e.g., human keratin), and proteins that

were also identified (i.e., the presence of at least one peptide in the

mass spectrum) in the ground control sample. The remaining proteins

were further filtered so that every protein on the list was identified via

two ormore unique peptides in themass spectrum (Table S1).

Of the 11 proteins remaining on the list, we identified orthologs

in S. mediterranea for nine of them (Table 4): we identified a homolog

of fibrillin, a putative cathepsin C homolog, a putative myosin heavy

chain homolog, a putative pyrophosphatase phosphodiesterase fam-

ily member, a putative protease serine 12 neurotrypsin motopsin, a

putative 14-3-3 protein, a putative tubulin beta homolog, a putative

phosphoenolpyruvate carboxykinase, and a homolog of calmodulin.

We conclude that exposure to space induces distinct differences in

metabolism and/or secretion, which are detectable in the chemical

composition of the animals’ milieu.

2.4 Post-space proliferation of theworm population

Worms that returned from space, together with the control worms

on Earth, were then maintained separately in the laboratory under

the same conditions, being fed organic calf liver paste every week for

two additional months. After that time period, both populations were

counted.We observed that the number of worms in the container that

had gone to space was slightly less than the number of worms that

remained on Earth (Fig. S3, Table S2). Likewise, in the worm fragments

amputated prior to launch, thewormpopulation exposed to space then

grewmore slowly than the Earth-only controls.

2.5 Regenerativemispatterning

The most striking morphological change was observed with one of the

15 pharynx fragments from space which had been manually ampu-

tated on Earth prior to the launch. Figure 4 shows the unusual ‘double-

headed’ phenotype,which is extremely rarewithin a control population

by spontaneous fissioning or even with manual amputation of a con-

trol worm. Although the sample number is low, the spontaneous occur-

rence of such a rare phenotype itself should be considered highly sig-

nificant: in our own laboratory, we have not observed any spontaneous

occurrences of double-headedness in >18 person-years of maintain-

ing a colony ofD. japonica.We estimate about 15,000 control worms in

the last 5 years, without a single double-headed animal arising from an
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F IGURE 4 Double-headed worm from space. (A) Schematic image of the original pharynx fragment, which traveled to space. (B) After return
from space, one out of 15 pharynx fragments has regenerated into an extremely rare double-headed worm. (C), (D) Close-up images of each of the
two regenerated heads

untreated control fragment. Given this background, the Z score calcu-

lator for two population proportions gives a Z score of 31.6238 and a

p value of<0.01 against chance.

We next amputated this specific double-headed space-exposed

wormbymaking two decapitating cuts to remove both heads. Remark-

ably, the head-less middle fragment regenerated into a double-headed

phenotype (Fig. 5), demonstrating that the major body-plan modifica-

tion that occurred in this animal is stable and persists for at least two

roundsof cutting and subsequent regeneration after exposure to space

travel. Given the long-term alterations observed in these animals, we

next askedwhether twoother aspects of their organismal physiology—

behavior and microbiome composition—might also be permanently

altered.

2.6 Behavioral alterations

The behavior of space-exposed and Earth-only animals was tested in

an automated assay 20 months after return to Earth. Individuals from

each group were placed in individual arenas, illuminated half with red

light (beyond the planarian visual spectrum) andhalfwith blue light, for

18 h with lighting conditions reversing hourly (Fig. 6A, B). Movement

rates for each individual were recorded across the trial using motion

tracking cameras and background subtraction algorithms. There was

no significant difference in the overall rate of motion between treat-

ments (data not shown). We then scored the percentage of time each

worm (of six, from control and space-exposed groups) spent in the dark

half of a Petri dish versus the blue light-emitting diode (LED) illumi-

nated half. The controls spent 95.5% of their time in the dark, as is

normal for this negatively phototaxic species. In contrast, the worms

that had experienced space travel spent only 70.5% of their time in the

dark. While the difference in the two groups’ means was not statisti-

cally significant due to the small sample size (t test, p = 0.17), the vari-

ancewas significantly different (F test, p< 0.001) between treatments:

Figure 6C shows that the space-exposed worms exhibited a much

less uniform (i.e., more variable) preference for light levels (see also

Table 5).

2.7 Culture-based assessment of planarian

microbiome

Various genera of Proteobacteria (Herminiimonas, Pseudomonas,

and an unknown bacterium in the family Comamonadaceae) and

Bacteroidetes (Chryseobacterium, Variovorax, and Pedobacter) were the

main bacterial morphotypes detected with culture-based approaches

(Fig. 7; Table 6). There was a significant difference in the composition

of the culture-based microbiome profiles between Earth-only and

space-exposed worms (one-way PERMANOVA F = 12.29, p < 0.001).

The number of Chryseobacterium colonies significantly increased

in space-exposed worms, and Variovorax, Herminiimonas, and the

unknown Comamonadaceae decreased in space-exposed worms

(t test, p< 0.01).We conclude that exposure to the conditions of space

travel can alter bacterial community composition of D. japonica, and

indeed does so in amanner that is still altered years afterward.

Taken together, our data reveal that exposure to space has very-

long-lasting effects in thismodel organism,which includephysiological,

behavioral, morphological, andmicrobiological changes.

3 DISCUSSION

Our study examined how the regenerative and physiological proper-

ties of planaria changed during a space mission. Conditions associated

with space are impossible to fully replicate on Earth, and yet must

be explored due to the inevitability of the presence of humans and

other organisms in space. We analyzed morphological, behavioral,
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F IGURE 5 Amputation of double-headed worm from space results in double-headed morphology. (A) Schematics of amputation of the double-
headed space worm. (B) Double-headed space worm before amputation at the dotted line; note that this photograph is the same as the image that
appears in Figure 4B. (C) Double-headed worm immediately after amputation of both heads. (D) Amputated double-headed worm after 2 weeks
of regeneration. Note that, while the two head fragments regenerated into two single-headed worms like a normal worm, the head-less fragment
regenerated into a double-headedworm. (E), (F) Close-up images of each of the two regenerated heads of the re-amputated double-headedworm

bacteriological, and biochemical endpoints, finding not only a number

of differences immediately after return to Earth, but also ones that

persisted for 20 months. These are the first data exploiting a unique

opportunity—exposing a highly tractable regenerative model system

to space travel—which our laboratory will build on in future trips to

the ISS.

This experiment faced a number of unavoidable limitations, some of

which will be addressed in future missions. Maintaining the tempera-

ture of control worms on Earth exactly the same as those samples that

traveled to space during the entire spacemissionwasmore challenging

than anticipated. Futuremissionswill achievemore consistent temper-

ature control for the experimental samples, aswell as provide real-time

data back toEarthwhich canbeused to alter the temperature of Earth-

only controls in real time. The biggest unknown is likely to be stress

associated with liftoff and splashdown, which cannot be easily repli-

cated on Earth; future experiments will mimic this by applying similar

mechanical disturbances of the Earth-only control organisms. Thus, we

do not individually implicatemicrogravity, vibration of liftoff, or 0GMF

in the effects we describe—the differences between space-exposed

and Earth-bound controls are consequences of the entire process of

delivery to, and return from, a space environment. It should be noted,

however, that this is not simply a confounder: since any actual space

travel will by necessity include all of these aspects, the effects must be

studied as a real component of space travel which living systems will

experience. Given the results reported from recent work (Adell et al.,

2014) using much longer exposures to g forces of similar magnitude to

that experienced by our samples during liftoff (∼3g) and landing (∼7g),
we do not think it likely that our results are due to the brief periods of

higher gravity that our planaria experienced. Futureworkwill explicitly

dissociatemechanistically the individual effects of the various stresses

from themicrogravity andmicro-geomagnetic force exposure per se.

The biggest factor reducing our ability to identify significant new

regenerative phenotypes is probably the fact that worms were only

put into space after being cut on Earth. We reduced the time between
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F IGURE 6 Space-exposed worms demonstrate more variable photophobic behavior than Earth-only worms. (A) Earth-only and space-exposed
planaria were placed individually in an automated behavior device which recorded animal location, speed, and response to light. (B) Overhead
illumination is provided by LEDs which illuminate half the arena with red light (invisible to planaria) and half with blue light. (C) Space-exposed
worms demonstrated significant variability in their photo-aversive behavior compared to Earth-only worms (F test, p < 0.001). N = 6 for both
treatments. Error bars indicate ± 1 SD. In dot plots in (C), the lateral positioning of the dots, within each of the two groups, is only to enable the
separate data points to be distinguished from each other evenwhen they occupy the same horizontal coordinate

amputation and liftoff to the smallest delay compatible with the liftoff

process, but it was not feasible to eliminate it completely due to the

numerous logistics that have to take place before takeoff. Ideally, a

forthcoming experiment will involve cutting them while in space; this

experiment is important as many of the key steps of regeneration (and

cellular decision-making with respect to head−tail commitment of the

blastema) occur very soon after cutting. In order for us to undertake

this particular experiment, we will need to identify an astronaut resid-

ing on the ISS who is willing to assist us and is able to manually manip-

ulate and cut thewormswith a scalpel inmicrogravity. Futuremissions

will also record ambient GMF values as a function of time throughout

the experiment.

The finding of a single double-headed worm in a population of 15

worms, which we have not observed in >18 person-years of maintain-

ing a colony of D. japonica, was exciting, even though it represents an

N=1observation. Evenmore remarkable is the persistence of the phe-

notype, which recurred following a second and third round of amputa-

tion of the worm in normal conditions on Earth, in plain water, reveal-

ing a stable change to the organism’s regenerative anatomy. It should

be mentioned that recurrence of a two-head phenotype in water-only

regenerationhasbeenpreviously reported (Levin, 2014a;Oviedoet al.,

2010); thus, while the reprogramming to a two-head statewas induced

by space travel, its persistence across rounds of regenerations may be

a general feature of such stable heteromorphoses (however induced)

and not specifically due to space conditions.

While the exact mechanism of the induction of the two-headed

state by space travel is unknown, we can propose several hypotheses.

TABLE 5 Six worms from the Earth-only and space-exposed groups
were tested for 10 min with respect to their positions in a Petri dish
that was half dark and half lit upwith blue LED light. The percentage of
time each worm spent in the dark side of the dish was calculated by an
automatedmachine vision system optimized for planaria

Percentage of time spent in the dark
quadrant over 10min

Worm no. Earth-only Space-exposed

1 87.3% 85.0%

2 91.0% 100.0%

3 100.0% 50.8%

4 100.0% 0.0%

5 94.5% 100.0%

6 100.0% 87.3%

Average 95.5% 70.5%

It is known that reduced GMF disrupts cytoskeletal structures (Wang

et al., 2008). It has also been shown that pharmacological disruption of

microtubules induces double-headed phenotypes (Mcwhinnie, 1955;

Mcwhinnie &Gleason, 1957). Thus, one possibility is that the observed

double-headed worm was induced by a reduced GMF-mediated dis-

ruption of cytoskeletal signaling. Another important recent finding is

that microgravity alters ion channel electrophysiology (Richard et al.,

2012); as several studies have shown the importance of endogenous

bioelectrical signaling in regenerative patterning in planaria (Beane

et al., 2011, 2013; Chan et al., 2014; Zhang, Chan, Nogi, & Marchant,
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F IGURE 7 Bacterial community composition of Earth-only and space-exposedD. japonica. (A) Relative abundance of culture-basedmorphotypes
detectedacrossEarth-only (n=9) and space-exposed (n=10)worms. (B)Representativeplates showingbacterialmorphotypes anddistinguishable
differences between space-exposed and Earth-only worms

2011) and many other model systems (Bates, 2015; Levin, 2007,

2014b; Levin & Stevenson, 2012; Sundelacruz, Levin, & Kaplan, 2009),

it is possible that some of our observed effects are mediated by alter-

ations of ion channel function. Other possibilities include the effects of

the space travel environment uponWnt pathway molecules (Petersen

& Reddien, 2007; Yazawa, Umesono, Hayashi, Tarui, & Agata, 2009)

or physiological connectivity via gap junctions (Emmons-Bell et al.,

2015; Nogi & Levin, 2005; Oviedo et al., 2010). Especially interest-

ing with respect to the hypothesis of gap junctional involvement is

the recent observation that microgravity reduced the expression of

two gap junction genes in embryonic stem cells (Blaber et al., 2015).

Given the importance of gap junctions in planarian regeneration (Nogi

& Levin, 2005; Oviedo et al., 2010) and in the control of stem cell

(including planarian neoblast) biology (Oviedo & Levin, 2007; Oviedo

et al., 2010; Starich, Hall, & Greenstein, 2014; Tazuke et al., 2002),

this is a mechanism that will be investigated further in subsequent

work.

Analysis using mass spectrometry revealed that the water sam-

ples contained many small molecules (Fig. S2) and several proteins

(Tables 4 and S1). Additional analyses are needed to determine the

exact molecular identity of the small organic molecules identified dur-

ing the LC-MSexperiments and the reasonswhy (and themechanism(s)

by which) they are selectively produced by the space-exposed pla-

naria. It is interesting to note that others have reported that C16 and

C18 fatty acids, like the ones identified in the positive ion mode of

our LC-MS experiment, can induce apoptosis (Ulloth, Casiano, & De

Leon, 2003; Yan et al., 2016) and that hexadecanoic acid (also known

as palmitic acid) can generate reactive oxygen species (Gao et al., 2014;

Lambertucci et al., 2008). Since these worms, and not the Earth-only

control worms, experienced high g force during liftoff and landing, it

is possible that the presence of these fatty acids directly caused cell

death via apoptosis (leading to the release of cytoplasmic proteins dis-

cussed below) or were just released into the water from damaged tis-

sue or ruptured cells on the surface of the worm.

Of the 11 proteins remaining on the list (Table 4) it was possible to

find orthologs in S. mediterranea for nine of them, including a homolog

of fibrillin, a putative cathepsin C homolog, a putative myosin heavy

chain homolog, a putative tubulin beta homolog, and a homolog of

calmodulin. While homologs of most of the proteins on this list are not

known to be secreted into the extracellularmedium (e.g., myosin, tubu-

lin, and calmodulin), fibrillin (Jensen & Handford, 2016) and cathep-

sin C (Legowska et al., 2016) are bona fide extracellular proteins. How

these proteins, or any of the proteins found on this list that are pre-

sumably intracellular proteins, ended up in the water that surrounded

the space-exposed worms is not yet clear. Since these worms, and not

the Earth-only control worms, experienced a high g force during liftoff

and landing, it is possible that theproteinswere released into thewater

from damaged tissue or ruptured cells on the surface of the worm.
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TABLE 6 Absolute bacterial densities (colony forming units per microliter of worm homogenate) across replicate Earth-only (n = 9) and space-
exposed (n= 10) worms.

Earth-only Space-exposed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10

Chryseobacterium 0 2 2 0 1 0 5 1 0 13 3.6 2 1.4 7 8 6 17 1.1 0.6

Pedobacter 34 29 19 31 20 27 25 20 6 18 4.8 4.2 4.7 8 11 13 18 2.1 1.2

Variovorax 27 31 21 13 24 35 25 19 12 7 2.2 1.1 1.3 3 4 5 13 0.4 0.4

Pseudomonas 4 4 1 4 2 6 9 1 2 4 1.2 0.4 0.4 2 2 2 3 0.8 0

Herminiimonas 43 42 47 23 53 69 43 23 18 15 1.9 2.9 1.2 10 11 11 15 1.4 1.1

UnknownComamonadaceae 5 6 9 4 8 15 9 4 1 0 0.4 0.2 0.3 2 0 0 1 0.1 0.3

Alternative possibilities include novel secretion pathways activated by

microgravity or altered GMF. Additional work is needed to determine

what role, if any, theseproteins play in theunusual ‘water shock’ behav-

ior or in the behavioral experiments described earlier in this paper.

The worm microbiome was different between space-exposed and

Earth-only worms (one-way PERMANOVA F = 12.29, p < 0.001)

(Fig. 7; Table 6). The density of Chryseobacterium colonies significantly

increased in space-exposedworms, and Variovorax,Herminiimonas, and

the unknown Comamonadaceae decreased in space-exposed worms

(t test, p < 0.01). These shifts could be driven by the direct effects

of microgravity on bacterial populations or indirect effects mediated

through the planarian host. Bacteria and other microbes have recently

been shown to impact thedevelopmentof a varietyofmodel organisms

(Lee & Brey, 2013). There is limited work on planarianmicrobiomes, so

it is currently difficult to know the causes and consequences of micro-

biome composition shifts for planarian regeneration and patterning.

Recent work with the planarian S. mediterranea found similar bacterial

types aswedetected inD. japonica, andbloomsofProteobacteria in the

S. mediterraneamicrobiome were associated with tissue degeneration,

while high abundances of Bacteroidetes, including Chryseobacterium

and Pedobacter, were associated with healthy animals (Arnold et al.,

2016). Work is ongoing to analyze the functional significance of the

D. japonica microbiome, but we predict that shifts in the ratio of Pro-

teobacteria and Bacteroidetes may also impactD. japonica growth and

development. Chryseobacterium, which was enriched in space-exposed

worms, is a widespread genus of bacteria, with some species being

rare pathogens in humans (Mukerji, Kakarala, Smith, &Kusz, 2016) and

others providing benefits to animal and plant hosts through improved

growth and pathogen protection (Antwis, Preziosi, Harrison, &

Garner, 2015; Coon, Vogel, Brown, & Strand, 2014). Future efforts will

elucidate the functional consequences of Chryseobacterium and other

D. japonica bacteria.

Our experiments illustrate a template for regeneration experi-

ments in space, piloting many aspects of the crucial logistics of such

research. Planaria are an excellent model for the investigation of phys-

iology, host−microbe interactions, behavior, and anatomy of a com-

plex species exposed to space travel. It is clear that exposure to these

conditions induces a range of detectable and long-lasting changes in

these organisms. As spaceflight becomesmore accessible, future work

in this and other model organisms will surely uncover new details

of the interactions between gravitational and geomagnetic fields and

processes in living systems. Exciting opportunities for biomedical dis-

coveries abound, not only in terms of learning to mitigate risk factors

for human space travel, but also for the discovery of novel biophysi-

cal mechanisms that could be exploited both on Earth and in space in

the regenerative medicine field. Finally, it should be pointed out that,

in light of their remarkable self-repair and complex behavioral capabil-

ities, planaria themselves present an ideal design challenge for the next

generation of space exploration robots.

4 MATERIALS AND METHODS

4.1 Animals

A clonal planarian flatworm stain of D. japonica, cultured at 20˚C in

commercial Poland Spring water (Poland, ME, U.S.A.) in the dark, was

used.

4.2 Logistics

As part of the SpaceX (Hawthorne, CA, U.S.A.) Commercial Resupply

Service mission CRS-5, also known as SpX-5, live worms either whole

or cut as indicated inFigures1(D) and2(A)were loaded into theSpaceX

Dragon Spacecraft (Fig. 1G, I), which was launched into space on 10

January 2015 by the SpaceX Falcon 9 rocket from the Kennedy Space

Center in Florida (Fig. 1H). The samples were exposed to the micro-

gravity and micro-geomagnetic field environment at the ISS approxi-

mately 78 h post-amputation. The Dragon capsule returned to Earth

into thePacificOceanoff the coast ofCalifornia approximately 32days

post-amputation. Live worms were kept sealed inside 50 mL conical

tubes andwere secured inside theBRIC-100VC (Biological Research in

Canisters, see Fig. 1E, F) containers provided by NASA, with tempera-

ture data recorder attached, immediately prior to launch and through-

out themission.

Twosetsof controlwormsweregenerated: one setof controls (‘con-

current’) consisted of liveworms that had been sealed in Poland Spring

water in the same manner as their space-exposed counterparts and

kept in full darkness at 20˚C for the same period of time as their space-

exposed counterparts. These worms were used as controls for all of

the experiments described in this paper, except for the mass spec-

troscopy analysis. For the mass spectroscopy experiments, a second

set ofwormswere generated after the space-exposedworms returned

to Earth that were ‘temperature-matched’ (see Fig. S1), so that they
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experienced the same changes in temperature as the space-exposed

worms for the same duration.

For logistics on Earth between laboratories before launch and

after splashdown, live worm samples were secured inside the pro-

prietary battery operated precision-temperature-controlled shipping

container iQ2 from Micro Q Technologies (Scottsdale, AZ, U.S.A.,

Fig. 1A–C), and FedEx Space Solutions (Memphis, TN, U.S.A.) was uti-

lized for rapid shipment of the experimental worm group in the iQ2

container.

4.3 Air-to-water ratio in sample tubes

The initial CRS-5 mission was expected to span a duration of approxi-

mately 30 days in space, starting from the Falcon9 rocket launch out of

Kennedy Space Center, the Dragon Spacecraft’s docking with, berthed

at, and thendetaching fromthe ISS, until theDragon capsule’s return to

Earth. The planarian worms were expected to survive within a sealed

environment for a minimal 30-day duration, without any water filtra-

tion/purification system. To determine the optimal air-to-water ratio

of the sealed environment for a minimal 30-day survival, 10 worms

approximately 1 cm in length (average 0.25 g per worm) cultivated at

20˚C and starved for at least 1 week were sealed inside 50 mL coni-

cal tubes with different ratios of air to water and were maintained at

either 10˚C or 20˚C in the dark. Aside from the worms with mostly no

air,which survived for only 5days,wormskept at 25%, 50%, or 75%air-

to-water ratios survived for over 30 days, and up to 43 days after iso-

lation. Thewater from the 75% air-to-water sample at 20˚Cwas trans-

parent, but browner than water from the 25% air-to-water sample at

10˚C, which suggests that the water quality is declining more rapidly

because of the higher air ratio and the higher culture temperature. This

led us to determine the optimal condition for 30-day survival of adding

25mL of fresh Poland Spring water and air filling the rest of the 50mL

volume, at a 50% air-to-water ratio at 20˚C (to facilitate spontaneous

fissioning while in space).

4.4 Membrane cap

In parallel, we also tested 50 mL conical tubes equipped with air-

permeable waterproof membrane caps, with the hope that improved

gas exchange would lead to higher worm survival. Although all worms

survived up to 49 days, interestingly the worms kept inside membrane

cap tubes were outlasted by worms sealed in non-membrane tubes,

while losing a small amount ofwater along the duration possibly due to

evaporation. We concluded that an optimal experimental 30-day con-

dition in space was a maximum of 10 worms (1 cm in length), sealed

inside a non-membrane 50 mL conical tube, with 50% air-to-water

ratio, maintained at 20˚C (to facilitate spontaneous fissioning while in

space).

4.5 Spontaneous fission

Since direct manipulation of the worms while in space was not an

option for this mission, we next examined if this condition was suit-

able to facilitate spontaneous worm fissioning. We tested with differ-

ent numbers of worms (4, 6, 8, or 10) sealed into a 50 mL conical tube

with 50% air-to-water ratio, and this resulted in all worms fissioning

within 1 week at 20˚C.

4.6 Pre-launch amputation and preparation

In addition to having the worms spontaneously undergo fission and

regeneration while in space, we also included worms amputated on

Earth just prior to the launch. Fifteen flatworms in total were ampu-

tated by hand (Fig. 1D) on a stack of wetted filter paper using a scalpel

into threedifferent fragments (head, pharynx, tail; seeFig. 2A) onEarth

approximately 31 h before launch. Fifteen of each fragment were sep-

arated and sealed into individual 50mL conical tubes, with 50% air-to-

water ratio. This is approximately equivalent to five whole worms per

tube. Also, 4, 5, 6, 8, or 10 whole worms were also sealed into individ-

ual 50 mL conical tubes with 50% air-to-water ratio. A total of eight

50mL conical tubes (Table 1) were then secured by custom3D-printed

retainers inside two sealedBRIC-100VC containers provided byNASA

(Fig. 1E, F), with a temperature data logger secured inside each BRIC.

As controls on Earth, eight tubes of exactly the same number of whole

worms and amputated fragments were sealed inside 50mL tubes with

50% air-to-water ratio and kept in the laboratory at 20˚C in the dark.

These samples are considered concurrent (constant temperature) con-

trols. The time from amputating the worms to the worms reaching the

ISS was approximately 78 h, based on the temperature data retrieved

from the attached data logger (see Fig. S1). The optimal temperature

range for worms’ long-term survival is considered a minimum of 10˚C

to a maximum of 25˚C, with a short-term durable range from 0˚C to

30˚C.Thedata logger indicates that thewormsweremaintainedwithin

the optimal temperature range throughout the mission (Fig. S1), with

the help of sophisticated temperature-maintaining gel packs provided

by NASA during transport to and from the ISS in the Dragon Space-

ship, similar to commercial ice packs, andwhile situated in an incubator

onboard the ISS.

4.7 Post-splashdown

The worm samples spent approximately 29 days at microgravity and

in a micro-geomagnetic field environment in the ISS. After return to

Earth, the worm samples were received in our laboratory approxi-

mately 68 h after splashdown. Thewormswere immediately subjected

to basic analysis in the laboratory. All space worms were alive inside

the sealed tubes. Live worms were either photographed or had video

movies taken with a Canon (Tokyo, Japan) Rebel T3i DSLR (digital

single-lens reflex) camera attached to a Zeiss (Oberkochen, Germany)

Stemi V6 dissecting microscope. Water from the concurrent, Earth-

only control and space-exposed worms was frozen immediately after

return to Earth and stored at−20°C.

4.8 Mass spectrometry analysis: small

molecules/metabolites

The water which the space-exposed planaria and the Earth-only pla-

naria inhabited during the course of the experiment was thawed in
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coldwater, and 4.0mL aliquots of each samplewere freeze-dried using

a lyophilizer. The samples were then re-suspended in 100 𝜇L of 60%

acetonitrile. The sample was centrifuged at 14,000g to remove debris.

5 𝜇L of this reconstituted sample was injected for each LC-MS anal-

ysis. A Thermo q-Exactive Plus mass spectrometer (Thermo Fisher

Scientific, Waltham, MA, U.S.A.) coupled to a Thermo Ultimate 3000

(Thermo Fisher Scientific) high performance liquid chromatograph

(HPLC) was used to perform the LC-MS analysis of metabolites in

biological samples and authentic chemical standards in both pos-

itive and negative ion mode using polarity switching. Two sepa-

rate data-dependent MS/MS analyses were conducted in positive

and negative ion mode using the top five ions using dynamic exclu-

sion for 30 s. Electrospray source settings included a sheath gas

flow rate set at 35 (arbitrary units), an auxiliary gas flow rate at

5 L/min, a capillary temperature of 250°C, and an auxiliary gas tem-

perature of 300°C. A calibration of them/z range used was performed

using the Thermo LC-MS calibration mix immediately prior to the

analysis for both positive and negative ion mode. A scan range of

66.7−1000m/zwas used at a resolving power of 70,000with alternat-
ing positive andnegative ionmode scans. The chromatographic separa-

tion ofmetabolites was performed using hydrophillic interaction liquid

chromatography (HILIC) on a SeQuant R© ZIC R©-pHILIC column, 5 𝜇m,

polymerPEEK150mm×2.1mmcolumn (EMDMillipore, Billerica,MA,

U.S.A.) at a flow rate of 0.1mL/min.Mobile phase Awas 20mMammo-

nium bicarbonate with 0.1% ammonium hydroxide, and mobile phase

Bwas acetonitrile. Themobile phase compositionwas started at 100%

B and subsequently decreased to 40% B over 20 min. The column was

then washed at 0% B for 5 min before re-equilibration to 100% B over

15min.

The space-exposed planaria and the Earth-only planaria sam-

ples were analyzed for differences using XCMS (Tautenhahn, Patti,

Rinehart, & Siuzdak, 2012): significant differences between the two

samples were observed in positive ion mode (Fig. S2A), but fewer dif-

ferences were observed in negative ionmode (Fig. S2B).

4.9 Mass spectrometry analysis: proteins

The water in which the space-exposed planaria and the later estab-

lished ‘temperature-matched’ Earth-only control planaria inhabited

during the course of the experiment was thawed in cold water, and 4.0

mL aliquots of each sample were freeze-dried using a lyophilizer. The

samples were then re-suspended in 100 𝜇L of tetraethylammonium

bromide (TEAB), reduced with 20 mM tris-(2-carboxyethyl)phosphine

(TCEP) in 25 mM TEAB at 37°C for 45 min, and alkylated with 10 mM

iodoacetamide (Sigma) in 25 mM TEAB and kept in the dark, room

temperature, for 45 min. Then 2 𝜇g of trypsin/LysC (V5073, Promega,

Fitchburg, WI, U.S.A.) was added overnight. 14 𝜇L from a final volume

of 140 𝜇Lwas injected into the instrument after a hard spin and super-

natant was removed to a new HPLC vial as there were particulates

on the floor of each digestion tube. LC-MS/MS was performed on an

Orbitrap Fusion LumosTM TribridTM (Thermo Fisher Scientific) mass

spectrometer with the 100716L 90 min ID 150 nL KASIL trap 300 bar

method to generate a list of proteins that were present in each of the

samples.

Each sample was submitted for a single LC-MS/MS experi-

ment that was performed on an LTQ Orbitrap Elite (Thermo

Fisher Scientific) equipped with a Waters (Milford, MA, U.S.A.)

NanoAcquity HPLC pump. Peptides were separated onto

a 100 𝜇m inner diameter microcapillary trapping column

packed first with approximately 5 cm of C18 Reprosil resin

(5 𝜇m, 100 Å, Dr Maisch GmbH, Germany) followed by an analyt-

ical column∼20 cm of Reprosil resin (1.8 𝜇m, 200 Å, DrMaisch GmbH,

Germany). Separation was achieved through applying a gradient from

5% to 27% acetonitrile in 0.1% formic acid over 90 min at 200 nL/min.

Electrospray ionization was enabled through applying a voltage

of 1.8 kV using a home-made electrode junction at the end of the

microcapillary column and sprayed from fused silica pico tips (New

Objective, MA, U.S.A.). The LTQ Orbitrap Elite was operated in the

data-dependent mode for the mass spectrometry methods. The mass

spectrometry survey scan was performed in the Orbitrap in the range

395–1800 m/z at a resolution of 6 × 104, followed by selection of the

20 most intense ions (TOP20) for CID-MS2 fragmentation in the ion

trap using a precursor isolation width window of 2m/z, automatic gain

control (AGC) setting of 10,000, and a maximum ion accumulation

of 200 ms. Singly charged ion species were not subjected to CID

fragmentation. Normalized collision energy was set to 35 V and an

activation time of 10 ms, AGC was set to 50,000, the maximum ion

time was 200 ms. Ions in a 10 ppm m/z window around ions selected

for MS2 were excluded from further selection for fragmentation for

60 s.

Raw data were submitted for analysis in Proteome Discoverer

2.1.0.81 (Thermo Fisher Scientific) software. Assignment of MS/MS

spectra was performed using the Sequest HT algorithm by search-

ing the data against a protein sequence database including all entries

from the Human Uniprot database (SwissProt 16,768 and TrEMBL

62,460; a total of 79,228 protein forms, 2015) and other known con-

taminants such as human keratins and common laboratory contami-

nants. Sequest HT searches were performed using a 20 ppm precursor

ion tolerance and requiring each peptides’ N/C termini to adhere with

trypsin protease specificity while allowing up to twomissed cleavages.

Cysteine carbamidomethyl (+57.021) was set as static modifications

while methionine oxidation (+15.99492 Da) was set as variable modi-

fication. AnMS2 spectra assignment false discovery rate of 1% on pro-

tein level was achieved by applying the target-decoy database search.

Filtering was performed using a Percolator (64 bit version, reference

6). For quantification, a 0.02m/zwindowwas centered on the theoret-

ical m/z value of each of the six reporter ions and the intensity of the

signal closest to the theoretical m/z value was recorded. Reporter ion

intensities were exported in the result file of Proteome Discoverer 2.1

search engine as Excel tables. All fold changeswere analyzed after nor-

malization between samples based on total unique peptide ion signal.

The list of identified ‘spaceworm’ proteins was filtered for reagents

used in the trypsin digestion step, known contaminants (e.g., human

keratin), and proteins that were also identified (i.e., the presence of at

least one peptide in the mass spectrum) in the Earth-only control sam-

ple. The remaining proteins were further filtered so that every protein

on the list was identified via two or more unique peptides in the mass

spectrum.
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The full DNA sequences of the identified proteins were obtained

from a recently published D. japonica transcriptome (Chan et al.,

2016) and translated into potential protein sequences in all three

reading frames using ExPASy (http://web.expasy.org/translate/). These

D. japonica putative protein sequences (Table S1) were then sub-

jected to a BLASTP search against the Smed_unigenes_20150217.aa

database housed at the S. mediterranea Genome Database web-

site (http://smedgd.stowers.org/) (Robb, Gotting, Ross, & Sanchez

Alvarado, 2015). The resulting S. mediterranea ortholog was then sub-

jected to pairwise BLASTP search against the sequence identified dur-

ing the originalmass spectrometry experiments to determine how sim-

ilar the sequences of the D. japonica and the S. mediterranea proteins

were (Supplemental Data and Table S1).

4.10 Analysis of planaria regeneration upon return

to Earth

Live whole worms that returned from space were maintained in fresh

Poland Spring water and kept at 20˚C in the dark, with weekly feeding

of organic calf liver paste.

4.11 Behavioral analysis

Randomly chosen whole worms from the space-exposed and Earth-

only colonies were tested, 20 months after return to Earth, in an auto-

mated behavior platform as described previously (Blackiston, Shom-

rat, Nicolas, Granata, & Levin, 2010; Shomrat & Levin, 2013). Briefly,

the device consists of 12 individual arenas each containing a standard

disposable 60 mm × 15 mm Petri dish filled with 15 mL of Poland

Spring water. Above each arena, an illumination control head pro-

vides red or blue light independently, or in combination, to each quad-

rant of the dish in 12 even intensity steps via LED illumination (Opto

Semiconductors GmbH, Regensburg, Germany: blue LED; 470 nm part

no. LBW5SM, red LED, 635 nm part no. LRG6SP). Below each dish,

a motion tracking camera (Insight-Micro 1400, Cognex Corporation,

Natick, MA, U.S.A.) records the position of each animal every 1000

ms via hardware background subtraction algorithms (this capture rate

was chosen to minimize centroid bounce, which can artificially inflate

movement rates of slowmoving irregular objects). Planarian locations,

and lighting conditions, are recordedas a logfile,which canbeanalyzed

to determine animal movement rates, color preference, preference for

edge versus center of the arena, and rotation direction (clockwise vs.

counterclockwise).

The behavior trial lasted 18 h and consisted of the following set-

tings. Background illumination in all quadrants was 50 lm red light,

which is undetectable to planarians given their photoreceptor profiles

(Azuma, Iwasaki, & Ohtsu, 1999; Brown & Ogden, 1968). In addition,

half of the arena is illuminated by 420 lm blue light, giving the animals

a choice between “light” and “dark” halves of the environment. Every

hour, the lighting conditions were inverted, causing animals in the dark

portion of the arena to be exposed to light and vice versa. Light rota-

tion served dual roles. First, as planaria are photophobic it promoted

movement of animals across the trail, and allowed movement rates

to be compared across treatments. Second, without rotation, animals

that remained stationary during the course of the experiment would

be scored as having a 100%preference for either light or dark, depend-

ing on their starting position. By inverting the light, stationary behavior

would instead result in a 50/50preference, andwould thus not bias the

averages towards either extreme.

4.12 Culture-based assessment of planarian

microbiome

Todeterminedifferences in bacterial community compositionbetween

space-exposed and Earth-only worms, we used culture-based assess-

ments of individual worm microbiomes. We chose to use culture-

based approaches because unpublished work from our laboratories

and recent studies of the S. mediterranea microbiome (Arnold et al.,

2016) suggest that dominant bacteria types in planarian microbiomes

are culturable, and bacterial colony morphotypes of dominant bacte-

rial genera can be easily distinguished.

Ten randomly chosen worms from each group were homogenized

in 400 𝜇L of phosphate-buffered saline using a sterile micropestle.

Homogenates were serially diluted in phosphate-buffered saline and

plated on brain heart infusion agar plates and were incubated for

a week at 24°C. Representative morphotypes that grew were iden-

tified based on previous in-house sequencing and identification of

D. japonica bacterial isolates. To confirm the identities of these mor-

photypes, representative colonies were isolated, DNA was extracted

using a PowerSoil R© DNA Isolation Kit (MO BIO Laboratories, Carls-

bad, CA, U.S.A.), and the the 16S rRNA region was amplified using

the polymerase chain reaction primers 27f-1492r; resulting amplicons

were sequenced using Sanger sequencing. Differences in total commu-

nity composition for the culture-based microbiome data were deter-

mined using PERMANOVA, and differences in relative abundances of

individual bacterial groupswere determined using t tests, with Bonfer-

roni corrections for multiple comparisons.
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