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Curcumin activates the p38MPAK-HSP25 pathway
in vitro but fails to attenuate diabetic nephropathy
in DBA2J mice despite urinary clearance

documented by HPLC
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Abstract

diabetic nephropathy.

HSP25 were performed.

failed to attenuate albuminuria.

Background: Curcumin has anti-inflammatory, anti-oxidant, and anti-proliferative properties, and depending upon
the experimental circumstances, may be pro- or anti-apoptotic. Many of these biological actions could ameliorate

Methods/Design: Mouse podocytes, cultured in basal or high glucose conditions, underwent acute exposure to
curcumin. Western blots for p38-MAPK, COX-2 and cleaved caspase-3; isoelectric focusing for HSP25
phosphorylation; and DNase | assays for F- to G- actin cleavage were performed for in vitro analyses. In vivo studies
examined the effects of dietary curcumin on the development of diabetic nephropathy in streptozotocin (Stz)-
induced diabetes in DBA2J mice. Urinary albumin to creatinine ratios were obtained, high performance liquid
chromatography was performed for urinary curcuminoid measurements, and Western blots for p38-MAPK and total

Results: Curcumin enhanced the phosphorylation of both p38MAPK and downstream HSP25; inhibited COX-2;
induced a trend towards attenuation of F- to G-actin cleavage; and dramatically inhibited the activation of caspase-
3 in vitro. In curcumin-treated DBA2J mice with Stz-diabetes, HPLC measurements confirmed the presence of
urinary curcuminoid. Nevertheless, dietary provision of curcumin either before or after the induction of diabetes

Conclusions: Apart from species, strain, early differences in glycemic control, and/or dosing effects, the failure to
modulate albuminuria may have been due to a decrement in renal HSP25 or stimulation of the 12/15 lipoxygenase
pathway in DBA2J mice fed curcumin. In addition, these studies suggest that timed urine collections may be useful
for monitoring curcumin dosing and renal pharmacodynamic effects.

Background

Diabetic nephropathy (DN) remains the commonest
cause of end stage renal disease. Albuminuria, the cardi-
nal clinical feature of DN, is induced by mechanisms
undergoing reappraisal [1], but which primarily involve
podocyte pathology, along with alterations in the glomer-
ular basement membrane (GBM), endothelium, mesan-
gium, and renal tubule cells [2-8]. Podocyte effacement is
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closely aligned with albuminuria and reflects, at least in
part, actin cytoskeletal rearrangement.

Heat shock proteins (HSP) are ubiquitously expressed
across virtually all phyla. Classified by molecular weight,
HSPs influence key biological processes such as cell
division and cell survival [9], differentiation, actin cytos-
keleton regulation, and resistance to injury from reactive
oxygen species (ROS), and other cell stressors [10].
HSP25, the rodent homolog of human HSP27, is phos-
phorylated by upstream p38 mitogen-activated protein
kinase (p38MAPK). Phosphorylated HSP25 plays a key
role in the regulation of actin cytoskeletal dynamics
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[11-17]. We previously showed in vitro that short-term
incubation of podocytes in medium with a high glucose
concentration (up to 4 hours) resulted in phosphoryla-
tion of p38MAPK and downstream HSP25, associated
with maintenance of the actin cytoskeleton. Incubation
of podocytes in high glucose medium for as briefly as 4
hours with a p38MAPK inhibitor attenuated down-
stream HSP25 phosphorylation, inducing F- to G-actin
cleavage, and cytoskeletal disruption. We previously
showed in vitro that short-term incubation of podocytes
in medium with a high glucose concentration resulted
in phosphorylation of p38MAPK and downstream
HSP25, associated with maintenance of the actin cytos-
keleton. Incubation of podocytes in high glucose med-
ium for hours, or incubation with a p38MAPK inhibitor,
attenuated downstream HSP25 phosphorylation, indu-
cing F- to G-actin cleavage, and cytoskeletal disruption.
In vivo, we showed that acutely after the induction of
diabetes with streptozotocin (Stz-DM) in rats, there is
coordinated activation of the glomerular p38MAPK-
HSP25 pathway, in association with maintenance of the
podocyte actin cytoskeleton and normoalbuminuria.
However, with chronicity of Stz-DM, pathway activation
declines, F-actin cleavage generates G-actin monomers,
and podocyte effacement and albuminuria occur [18].
These associations generated the hypothesis that early
activation of the p38MAPK-HSP25 pathway might be a
functional adaptation that maintained podocyte struc-
ture and function and prevented albuminuria in
response to the glucose stressor. Based on these obser-
vations, we posited that therapies that prolonged the
activation of the p38MAPK-HSP25 pathway would
attenuate albuminuria.

Curcumin (diferuloylmethane) is one of the most
commonly used spices in the world. In numerous cell
types, exposure to curcumin has been shown to increase
HSPs in vitro [14-17,19-22]. We performed experiments
to determine whether curcumin activates the p38MAPK
-HSP25-actin cytoskeletal pathway in glucose-stimulated
podocytes in vitro, and whether it attenuates diabetic
nephropathy (DN) in vivo in mice in whom feeding was
begun either before or 1 week after the induction of
Stz-DM.

Methods & Design

Podocyte Culture

Conditionally immortalized mouse podocytes (Pods), car-
rying a thermosensitive SV40 transgene, were obtained
from Dr. Peter Mundel and cultured as described with
minor modifications [23]. Briefly, PODs proliferated at
33°C (permissive conditions) in RPMI 1640 media sup-
plemented with 5.5 mM glucose, 10% fetal bovine serum
(FBS), y-IEN (tapered from 50 U/ml to 10 U/ml), and 1%
penicillin/streptomycin/amphotericin B (Invitrogen,
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Carlsbad, CA). Pods were grown in collagen-coated flasks
in a humidified atmosphere of 95% air and 5% CO,. Cells
were then thermoshifted to 37° and allowed to differenti-
ate for 14 days without y-IFN (nonpermissive conditions)
with media changed on alternate days. Pods between 4-8
passages were used for all experiments.

Cells were serum starved in RPMI with 0.4% FBS for
24 h. Dose and time-course experiments were per-
formed to determine optimal conditions for the experi-
ments. Curcumin (Cur, generously donated by Sabinsa
Corporation, Piscataway, NJ) was dissolved in 100%
ethanol at a stock concentration of 10 mM and further
diluted to experimental concentrations ranging from 1
UM to 100 pM in RPMI. In dose-response preliminary
in vitro studies, 30 uM Cur demonstrated the most
robust HSP25 signaling activation and was used for all
experiments. Cur at 100 pM induced cell death (data
not shown). The effects of Cur on the phosphorylated
p38 mitogen-activated protein kinase (pp38MAPK) -
phosphorylated HSP25/27 (pHSP25/27) signaling path-
way in the presence and absence of glycemic stress were
assessed with the following treatment groups: 1) 5.5
mM glucose for 60-70 min (normal glucose, NG); 2) 5.5
mM glucose with 30 uM Cur for 60-70 min (NG+Cur);
3) 5.5 mM glucose for 60 min immediately replaced by
30 mM glucose for 10 min (high glucose, HG); 4) 5.5
mM glucose with 30 uM Cur for 60 min immediately
replaced by 30 mM glucose with 30 pM Cur for 10 min
(HG+Cur); and 5) 5.5 mM glucose + mannitol to
achieve iso-osmolarity (5.5 + 24.5 mM) (NG + M). The
HG/Cur treatment used in isoelectric focusing was per-
formed under the following conditions: 5.5 mM glucose
with 30 pM Cur for 60 min immediately replaced by 30
mM glucose for 10 min. Published work from our lab
[18] showed that HG for 10 min induced significant
increases in pp38MAPK and pHSP25 in Pods. Thus, a
10 min HG treatment period was used in the current
study. Cells were harvested in RIPA or urea buffer (see
below) following treatments.

Western Blot Analysis

Following experimental treatments, cells were washed
with ice cold phosphate-buffered saline (PBS) and har-
vested in RIPA buffer (1 x PBS, 1% nonidet P-40, 0.5%
sodium deoxycholate, 0.1% sodium dodecyl sulfate, 20
mM sodium fluoride) with proteinase and phosphatase
inhibitor cocktails 1 and 2 (Sigma-Aldrich, St Louis,
MO, USA). Cells were sonicated, centrifuged at 10,000 x
g for 10 min at 4°C, and cell lysates stored at -20°C until
use. Protein concentration in cell lysate was measured
using Protein Assay Dye Reagent (Bio-Rad Laboratories,
Hercules, CA) and known bovine serum albumin (BSA)
concentrations as standards. Supernatants containing
50-100 pg protein were loaded onto 7-15% gradient
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sodium dodecyl sulfate (SDS)-polyacrylamide gels. Fol-
lowing electrophoresis, proteins were transferred over-
night onto nitrocellulose membranes (GE Osmonics
Labstore, Minnetonka, MN) and blocked with 5% milk
or 5% BSA in tris-buffered saline solution with 0.2%
Tween 20.

Membranes were probed with the following antibo-
dies: HSP25 (Stressgen, Victoria, BC, Canada), total
p38MAPK, phospho-p38MAPK and cleaved caspase-3
(Cell Signaling Technology, Inc. Danvers, MA, USA),
cyclooxygenase-2 (COX-2)(Santa Cruz Biotechnology,
Santa Cruz, CA, USA), glyceradehyde-3-phosphate dehy-
drogenase (GAPDH, Fitzgerald Industries International,
Inc., Concord, MA, USA), goat anti-mouse IgG (Santa
Cruz Biotechnology), goat anti-rabbit IgG (Cell Signaling
Technology, Inc.) and mouse anti-goat IgG (Santa Cruz
Biotechnology). Western blots were incubated in com-
mercial enhanced chemiluminescence reagents (Pierce
Biotechnology, Inc., Rockford, IL) and exposed to photo-
graphic film. Densitometry was quantified using Alpha-
DigiDoc 1000 software (Alpha Innotech Corporation,
San Leandro, CA).

Isoelectric Focusing for HSP25

Isoelectric focusing (IEF) was performed to measure
concentrations of phosphorylated HSP25 as described
previously [2,3]. All samples for IEF were solubilized in
urea buffer (9 M urea, 2% nonidet P-40, 0.005% p-mer-
captoethanol) at the time of cell harvesting and stored
at -20°C until use.

DNase 1 inhibition assay for the measurement of F/G
actin ratio

Pod F- and G-actin were measured using the methods
of others [24,25] and as we previously utilized [18].
Once solubilized in lysis buffer, lysate was added to
DNAse I solution (0.1 mg/mL bovine pancreas DNase I
in 50 mM Tris/HCl, 10 mM phenylmethylsulfonyl fluor-
ide, 0.5 mM CaCl,, pH 7.5) and DNA solution (40 pg/
mL calf thymus DNA type 1 in 100 mM Tris/HCI,
4 mM MgSO,, 1.8 mM CaCl,, pH 7.5). DNase I activity
was monitored at 260 nm. Actin was measured using a
standard curve for inhibition of DNase I activity using
rabbit skeletal muscle G-actin (Sigma-Aldrich). Linearity
was established between 25 and 70% inhibition of
DNase I activity. For total actin, lysates were diluted
with lysis buffer and incubated on ice with an equal
volume of guanidine/HCI buffer to depolymerize F-actin
to monomeric G-actin. F-actin was calculated as the dif-
ference between total and G-actin.

Experimental Animals
Diabetes mellitus (DM) was induced in male 20-22 gm
two-month old DBA/2] mice (Jackson Laboratories,
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Bar Harbor, Maine, USA) by injecting a daily dose of
streptozotocin (Stz, 50 mg/kg, i.p., prepared in 0.05 M
sodium citrate buffer) for 5 consecutive days. Age-
matched control mice received only sodium citrate buf-
fer. Diabetes was confirmed by fasting blood glucose
levels one week after the 5™ daily Stz injection. Control
and DM mice were placed on custom-prepared diets
(Purina Mills LLC TestDiet® Division, Richmond, IN)
that differed only in Cur content. The diet compositor,
and initial dosing assignments, were chosen based on
the prior experience of the Purina Mills LLC Test Diet
Division, who prepared identical diets for a therapeuti-
cally successful study using Cur for a mouse model of
Alzheimer disease [26]. Two studies were performed. In
Experiment 1, Cur feeding at 5,000 ppm (Curs oo ppm)
began one week after the last Stz injection, at the time
the diagnosis of DM was confirmed. Due to the inability
to show benefit from Cur in Experiment 1, in Experi-
ment 2, pre-feeding of Curs ogo ppm 0r Curyso0 ppm Was
begun prior to DM induction by Stz injections.

In Experiment 1, non-diabetic (noDM) or DM mice
were assigned to one of the following diets at the time
the DM was confirmed in the Stz-injected group (Day
0): 1) control chow with 0 ppm Cur (n = 8 for noDM-
Curg; n = 11 for DMCury); 2) test chow with Curs oo
ppm (N = 10 for noDMCursggp; n = 6 for DMCursggg).
For each mouse, food and water intake were measured.
On days 9 and 15 of the study, mice were placed in
individual metabolic cages with 5% dextrose in water for
an overnight collection to measure urinary albumin
(ELISA Albuwell M Kit Stock no. 1011, Exocell Inc.,
Philadelphia, PA), creatinine (Creatinine Companion
Stock no. 1012, Exocell Inc., Philadelphia, PA), the ara-
chidonic acid metabolite 12-hydroxytetraenoic acid (12-
HETE), and Cur and its metabolites by high perfor-
mance liquid chromatography (HPLC). For urine albu-
min/creatinine ratio, data was expressed as log;o in
order to achieve a normal distribution.

In Experiment 2, mice were randomly assigned to
receive a control or Cur diet one week prior to Stz
injections. Mice were then injected with Stz daily for 5
days as described above. DM was ascertained one week
after the last Stz injection (Day 0), and then again in
steady state from weeks 5-7, and in some mice specially
maintained for glycemic monitoring, up to 11 weeks.
The following experimental conditions were compared:
1) control chow with 0 ppm Cur (n = 5 for noDMCur,
n = 5 for DMCury); 2) test chow with Curs oo ppm (0 =
6 for noDMCursggp, n = 7 for DMCursgg); or 3) test
chow Cury 500 ppm (n = 6 for noDM Curysg0; n = 5 for
DMCur;5q9). Timed urine collections were made on
weeks 2, 4, and 7 for urine albumin and creatinine mea-
surements. All studies were performed under a protocol
approved by the Los Angeles Biomedical Research
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Institute Animal Use Committee. Mice were sacrificed
by exsanguination under general anesthesia.

Measurement of Urinary 12-HETE and Cur

Urinary 12-HETE was measured by enzyme immunoas-
say (12-HETE EIA, 12(S)-HETE Correlate EIA Kit Cata-
log no. 900-050, Assay Designs Inc., Ann Arbor, MI).
Cur and its metabolites (total curcuminoid) were mea-
sured at the Nutrition Core Research Laboratory at the
University of California at San Diego using HPLC at a
wavelength of 262 nm by methods similar to those pre-
viously reported [27]. However, an interfering back-
ground peak that co-eluted with urine total
curcuminoid at 262 nm was identified. The mean OD
values measured at 262 nm from the urine of mice
receiving control diet Cury were subtracted from the
urine results from mice receiving Cur in the diet in
order to compensate for the presence of the interfering
substance.

Statistical Analysis

Analysis of variance followed by Student’s ¢ test was uti-
lized for analysis of all results. Statistical calculations
were performed using StatMost (Salt Lake City, UT).
Data are expressed as mean + SEM. Significance is
assigned at the p < 0.05 level.

Results and discussion

Cur stimulates phosphorylation of p38MAPK and HSP25
in cultured podocytes

The ability of Cur to stimulate phosphorylation of
p38MAPK and HSP25 in both normal glucose (NG,
5.5 mM) and high glucose (HG, 30 mM) media was
assessed. To determine optimal experimental conditions,
a pilot dose-dependent titration experiment was per-
formed exposing Pods to Cur concentrations ranging
from 1-100 uM. 30 uM Cur (Cur 30 ) stimulated total
HSP25 protein expression the most (data not shown)
and was therefore used for all subsequent experiments.
A time-dependent titration further demonstrated that
treating cells with Cur for 60-70 min stimulated HSP25
protein expression (data not shown). Our published
work showed that incubating Pods in HG for up to 24
hrs stimulated the phosphorylation of p38MAPK and
HSP25 while maintaining the actin cytoskeleton [18].
We performed all subsequent experiments under the
conditions selected from these initial studies. Mannitol
served as an iso-osmotic control.

Cur significantly increased podocyte pp38MAPK 1.8-
fold when added to NG media (NG+ Curzg v, 1.77
0.10 vs. NG, 1.00 + 0.02; P < 0.01; Figure la). As antici-
pated, podocyte pp38MAPK was significantly higher in
HG compared to NG, but Curzo ,\ further increased
pp38MAPK even when added to HG (1.76 + 0.13 versus
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1.38 + 0.03; P < 0.05). Thus, when added to either NG
or HG, Cursg . exposure further increased p38MAPK
activation by a similar degree. Mannitol did not replicate
the p38MAPK activation induced by HG, indicating an
effect occurring independent of osmolarity.

Activation of p38MAPK phosphorylates downstream
HSP25/27. Thus, podocyte exposure to Cursg UM
induced HSP25 biphosphorylation as demonstrated by
isoelectric focusing (IEF) (Figure 1b). Curso v, when
added to NG, significantly increased the biphosphory-
lated HSP25/total HSP25 ratio by ~1.5-fold (1.00 + 0.07
(NG) vs. 1.47 + 0.11 (NG+ Cursg wm), P < 0.01; Figure
1b). As anticipated, the biphosphorylated HSP25/total
HSP25 ratio also significantly increased when Cursg
was added to HG medium (1.28 + 0.07 (HG) vs 1.86 +
0.061(HG+ Cursg i), P < 0.05). Mannitol did not affect
pHSP25 phosphorylation (data not shown).

Curcumin’s effect on the preservation of Pod actin
cytoskeleton was directly examined (Figure 1c). There
was a trend towards increased filamentous to mono-
meric globular actin ratio (F/G-actin) in Pods receiving
Cur (1.8-fold in NG, 1.3-fold in HG). These increases in
F/G-actin fell short of statistical significance. Collec-
tively, these data demonstrate that Cur activates the Pod
p38MAPK-HSP25 signaling pathway by phosphorylation
in vitro under both NG and HG conditions.

Cur prevents caspase-3 activation and inhibits COX-2
expression

When podocytes were harvested immediately after a 1-
hr exposure to Curzo ., activation of caspase-3 was
attenuated to levels significantly below those observed
in the control NG conditions (1.00 + 0.04 (NG) vs. 0.57
£ 0.02 (NG+ Curzg ym); P < 0.01; Figure 2a). This inhi-
bition was even more pronounced in HG media (1.18 +
0.01 (HG) vs. 0.22 + 0.03 (HG+ Curzo uu); P < 0.02).
Similar results were observed for the effect of Curzg v
on COX-2 expression (Figure 2b) (COX-2, (1.00 + 0.08
(NG) vs. 0.20 £ 0.05 (NG+ Curzp ym); P < 0.01)). Cur
had a greater effect on COX-2 inhibition in HG than
NG media, (COX-2, 1.00 + 0.18 (HG) vs. 0.05 + 0.004
(HG+ Cursg (m); P < 0.01)).

The effect of Cur feeding on DN as measured by urine
albumin/creatinine (Ualb/cr) ratio

Diets with Cur or identical control diets without Cur
were fed to noDM mice and mice with DM beginning
one week after the last Stz injection (Experiment 1).
Ualb/cr was measured as an indicator of the develop-
ment and severity of DN. Blood glucose in the six
experimental groups one week after the last Stz injection
were not different and are summarized in Figure 3a.
Ualb/cr was measured after 9 and 15 days on the var-
ious diets. Since similar levels of Ualb/cr were present
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Figure 1 Curcumin activates p38MAPK and phosphorylates HSP25 in cultured Pods. 5.5 mM glucose (NG), 5.5 mM glucose+30 uM
curcumin (NG+Cur), 30 mM glucose (HG), 30 mM glucose+30 puM curcumin (HG+Cur), 5.5 mM glucose+24.5 mM mannitol (NG+M). (a)
Representative Western blots of phospho-specific p38MAPK (pp38MAPK) and quantitative evaluation of pp38MAPK relative to total p38MAPK
(p38MAPK) by densitometric analysis. (b) Representative IEF separating total HSP25 into its nonphosphorylated isoform (P0), mono- (P1), and bi-
phoshorylated (P2) isoforms, Western blots of HSP25, and quantitative evaluation of relative phosphorylated HSP25 isoforms to total HSP25 ((P1
+ P2)/(PO + P1 + P2)) by densitometry analysis. Mannitol values (n = 2) are not displayed but were similar to NG. (c) DNAse | assay of F-actin/G-
actin ratios. All data expressed as mean + SEM (n = 3). *P < 0.05 compared with NG; #P < 0.01 compared with NG; **P < 0.05 compared with

"F:J
'

HCGHCur

HG

HG/Cur

in the diabetic mice at 9 and 15 days, pooled data from
these two time points are provided (Figure 3b). As
expected, Ualb/cr excretion (log;o) was higher in
DMcyro than noDM ¢y, mice (2.23 + 07 vs1.93 + 0.11,
respectively; P < 0.05), even at this early time point.
(Original Ualb/cr measure was pug/mg). However, In

DMcurs000 mice, Cur did not lower Ualb/cr. Ualb/cr
excretion in DMcy,s5000 mice was actually higher (2.41 +
0.09) than DMy, mice (2.00 + 0.09; P < 0.05).

Since the feeding regimen in Experiment 1 failed to
lower Ualb/cr, we performed Experiment 2, in which
Cur feeding preceded Stz DM-induction. In addition, to
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A Table. Level of blood glucose in Control and Db mice with and without curcumin dietary

Control

i DM

Curl) Cur5000

Cur7500 Curl Cur5000 Cur7500

Expl
DM acsertainment, mg/dl 853478 T0.4L35
Exp2

DM acsertainment, mg/dl TEOL2 830422
Steady state, 5-11 wks, mg/dl 244439 778437

ND 183.7£12.6 18784186 MND

91.522.3 1384433 165.1213.07 204382171
80.8£2.1 2553434 2785183 2332304

All values are mean+ 3. E M. T p< 0.01 versus DMCud

L2

by ANOVA. ND: not done

- n
= in ] in
}’ *

o
i

Log Urinary Albumin/Creatinine 9-15days

O 2 wks
O 4 wks
W 7 wks

2.5 o

L5 -

Le -

Log Albumin/Creatinine Ratio
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C C+Curc DM DM+Curc

P values
Cvs DM DM vs DM+Curc C+Curc vs DM+Curc C vs C+Curc

2wks  0.007 0.674
4wks  0.002 0.192
Twks 0395 0.806

1.5x10-5 0.067
0.022 0.013
0.019 0.337

transformed (log;o). *P < 0.05.

Figure 3 Fasting blood glucose values and effects of curcumin on DN measured by urinary albumin/creatinine in noDM and DM mice.
(a) Fasting blood glucose in mice in Experiments 1 and 2. 24 h urine was collected to measure Ualb/cr in noDM and DM mice. (b) Ualb/cr from
urine collected on days 9-15 for noDM and DM mice given control chow (0 ppm curcumin) or chow with 5,000 ppm curcumin. Mice were fed
curcumin post-Stz injections (Experiment 1). (c) Ualb/cr at 2, 4 and 7 weeks for noDM and DM mice given control chow (0 ppm) or curcumin
chow (data pooled for mice fed 5,000 and 7,500 ppm curcumin). Mice were fed curcumin pre-Stz injections (Experiment 2). All data are log-

address the possibility that the failure to lower albumi-
nuria in the DM mice was due to a dose effect, a
Cury soodiet was also studied. Thus, Experiment 2
addressed three concerns with the design of Experiment
1: 1) that the administration of Cur began too late after

diabetes induction; 2) that the dose of Cur was inade-
quate to induce a beneficial response; and 3) that the
duration of therapy was too brief to demonstrate
attenuation of severity even if it did not demonstrate
attenuation of induction of diabetic nephropathy. Thus,
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in Experiment 2, mice received either Cur, diets, or
identical diets with Curs oo or Cur; soo. Diets were
begun one week prior to Stz injections to achieve a
steady state of Cur prior to the induction of DM. Then,
DM was induced with five daily Stz injections. DM was
confirmed one week after the last Stz injection. Fasting
blood glucose one week after the last of the five Stz
injections in the six groups are summarized (Figure 3a),
and were higher in mice fed curcumin. For this reason,
additional fasting blood glucose measurements were
performed in these mice and in additional mice for up
to 11 weeks after Stz-diabetes induction. These values
failed to confirm this trend (Figure 3a). Overnight urines
for Ualb/cr were collected in weeks 2, 4, and 7 (Figure 3c).
Since no difference was apparent, data from mice who
received Curs oo and Cury 5o were pooled. The antici-
pated increment in Ualb/cr excretion in DM mice com-
pared to noDM mice was observed, both at week 2
(noDM ¢y, 2.07 £ 0.06 pg/mg vs. DMcyo, 2.38 £ 0.07 pg/
mg) and at week 4 (noDMcy,o, 1.65 £ 0.09 pg/mg vs.
DMcuro 2.38 £ 0.12 pg/mg) (P < 0.05). However, confirm-
ing the observations in Experiment 1, even when Cur feed-
ing began before DM induction, Cur still failed to
attenuate albuminuria in the DM animals.

Urinary curcuminoid excretion as a measure of Cur
pharmacodynamics

Low bioavailability of Cur is thought to limit its poten-
tial clinical efficacy. Low plasma levels make these assays
technically difficult to perform and relatively unreliable
as a measure of curcumin’s pharmacodynamic proper-
ties. Urinary HPLC curcuminoid measurements were
therefore carried out to explore the potential use of a
timed urine collection as a measure to reflect Cur phar-
macodynamics. Total urine curcuminoid from a timed
collection was measured in mice receiving Cur, and
Cursgo diets. Urine curcuminoid was expressed both as
total urinary curcuminoid (Figure 4a) and also as urine
cucuminoid adjusted for urine creatinine (Figure 4b). In
urine samples with no Cur (eg, urine collected from
mice receiving the Cur, diet), an interfering substance
was identified that resulted in a low level absorption
value when HPLC measurements for Cur were made at
262 nm. After adjusting for this at 262 nm, there was
no measurable curcuminoid in mice fed Curg, diets.
Urinary curcuminoid was abundantly detected in mice
fed the Curs oo diet. The total urinary curcuminoid
excretion in both noDMcy,s5000 (3.08 = 1.09 nMol) and
DMcus,000 (8:61 + 1.93 nMol) mice was easily measur-
able; the levels in DM and noDM mice given the Curg
chow were generally undetectable. When adjusted for
urine creatinine excretion, urinary Cur/cr levels were
much higher in DMcy;5,000 (24.74 + 6.56 nmol/mg)
compared to noDMcy;s,000 (5.30 £ 0.85 nmol/mg; P <
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0.05) mice. This large difference can be accounted for
by polyphagia and low muscle mass (and therefore low
urine creatinine excretion) in the diabetic mice. DMcyro
mice ingested somewhat more food than those with
noDM curo (24.5 + 2.05 vs. 19.8 + 1.03 gm, P = 0.10),
although this difference did not reach statistical signifi-
cance. DMc,,5,000 mice also ingested significantly more
food than the noDMcy;s5,000 group (21.3 + 1.48 gm vs.
16.4 + 0.93 gm, P < 0.05), but both Curs e groups con-
sumed less food than the Curg groups (Figure 5). Urine
curcuminoid/cr excretion in DM mice was approxi-
mately four times higher than the noDM mice, but food
intake was only ~50% higher. Total urine creatinine
over the 12-hour collection period in the diabetic mice
was 261 + 72 pg, and in the non-diabetic control mice
was 548 + 128 pg, reflecting the lower muscle mass in
the more wasted diabetic animals. Taken together, the
polyphagia and the reduced muscle mass of the diabetic
mice accounted for the large observed differences in the
urine curcuminoid/creatinine ratio in the DM compared
to noDM mice. In addition, the data show incontrovert-
ibly that renal exposure to curcuminoid was abundant.
The data demonstrate that the failure to attenuate dia-
betic nephropathy in the DBA2] mice was not due to a
failure of the administered Cur and/or its metabolites to
reach the target organ. Furthermore, these results sug-
gest that urinary curcuminoid/cr measurements may be
a reliable measure of Cur bioavailability.

Curcumin activated renal cortical p38MAPK and reduced
total HSP25 in Stz-DM mice

In renal cortical samples from mice with DM for 9-15
days, curcumin feeding induced a trend toward phos-
phorylation of p38MAPK (DMcy, 1.0 £ 0.09 vs.
DMcus,0000 2.0 + 0.39; P = 0.07; Figure 6a) and signifi-
cantly decreased total HSP25 10-fold (DMcyyo, 1.0 £
0.006 vs. DMcurs,000 0.11 + 0.004; P < 0.01; Figure 6b).
These in vivo data, particularly those observed for
HSP25, demonstrate the biological activity of curcumin
in the kidney despite its failure to attenuate albuminuria.

The effect of curcumin feeding on urinary 12-HETE/cr
excretion in noDM and DM mice

We measured urine 12-HETE/cr in samples collected on
days 9 and 15 (Figure 7). Urinary 12-HETE/cr was higher
in DM than in noDM animals receiving either Curq (P <
0.01) or Cursggp chow (P = 0.14). These results are consis-
tent with the activation of the 12/15-lipoxygenase (12/15
LO) pathway in diabetes [28]. Diabetic mice fed
DMcurs,000 had numerically higher urinaryl12-HETE/cr
levels than DMy, mice (4.27 + 0.14 ng/mg vs 3.87 + 0.10
ng/mg)(P < 0.05). Moreover, even in noDM mice, curcu-
min in the diet increased urine 12-HETE/cr (noDM-
Curs,0000 3.92 £ 0.13 ng/mg vs noDMcy,o diet, 3.30 + 0.12
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DM

ng/mg, P < 0.01). These results further confirm the phar-
macodynamic HPLC data and show that curcumin
induced a renal biological effect, a conclusion also consis-
tent with the decrement in HSP25 during curcumin
feeding.

Conclusions

Curcumin (diferuloylmethane) has anti-inflammatory,
anti-oxidant, and anti-proliferative properties. It inhibits
the arachidonic acid pathway, especially COX-2 [29-33].
It has been reported to maintain cytoskeletal stress
fibers in cells exposed to stressors [34], and in some set-
tings, it is cytoprotective [19,35-38]. However, in high
concentrations, it is also pro-apoptotic [39]. The latter
property has been exploited extensively in vitro and in
vivo, and curcumin has been utilized experimentally as a
potential therapy in cancer [40-46].

The in vitro studies reported herein are consistent
with some, but not all of these observations. Our experi-
ments show that in podocytes cultured under basal or
high glucose conditions, acute exposure to curcumin
induced the phosphorylation of both p38MAPK and
downstream HSP25. These changes were associated

with inhibition of COX-2, and a trend towards attenua-
tion of F- to G-actin cleavage. In association with these
changes, a dramatic inhibition of activated caspase-3
was observed. The pro-survival, anti-inflammatory, anti-
apoptotic, and structural preservation tendencies
induced by curcumin in podocytes in vitro could be
potentially therapeutic if replicated in vivo. Therefore,
we tested whether curcumin would diminish the albu-
minuria characteristic of DN in experimental animals.
We measured curcumin and its metabolites in timed
urine collections to verify renal curcuminoid exposure.
Our findings are distinct from other publications in
which benefits for DN conferred by curcumin are
reported [47-50]. Curcumin administered in the diet
either before or 1 week after Stz-DM in DBA2J mice
failed to ameliorate albuminuria. A trend towards renal
cortical p38MAPK activation was observed (p = 0.07),
and total HSP25 content diminished dramatically, the
latter confirming that curcumin did induce a biological
effect in the kidneys. Furthermore, the anticipated
decrement in 12/15-LO activation did not materialize,
and urinary 12-HETE was increased in curcumin-fed
diabetic mice. The decrement in total HSP25 and the
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increase in urine 12-HETE excretion in curcumin-fed
DBA2J mice may be markers and/or mediators, at least
in part, of the failure of curcumin to achieve an anti-
albuminuric effect in these diabetic mice.

In our in vitro studies, the most surprising result was
the attenuation of the apoptosis marker, activated cas-
pase-3, along with an increase in phosphorylation of
p38MAPK in curcumin-treated podocytes. Activation of
p38MAPK has been shown to induce apoptosis predomi-
nantly in cultured neoplastic cells [44,45,51-58], but also
in non-neoplastic cells [59-63]. However, p38MAPK

activation is not always pro-apoptotic in experimental
settings, and it is cytoprotective in some cells and cir-
cumstances. For instance, in human colonic carcinoma
cells, inhibition of p38MAPK activity with SB203580
increased drug-induced apoptosis [64]. In addition, in a
model of anoxia-reoxygenation-induced lung endothelial
cell apoptosis, SB203580 or transfection with a p38a
dominant negative mutant each inhibited the anti-apop-
totic effects of carbon monoxide through a pathway
involving the modulation of caspase 3 [65]. Thus, the
relationship between p38MAPK activation and apoptosis
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may be dependent on cell type and the inciting stimulus,
and both apoptosis and cytoprotection have been
observed [38,57,64,65]. Our in vitro data suggest that in
curcumin-stimulated podocytes under the conditions of
study, the p38MAPK-HSP25-apoptosis axis favored cyto-
protection, consistent with a minority of published
reports in the literature. Since phosphorylated p38MAPK
is one of the major regulators of the phosphorylation of
downstream HSP25, activation of the p38MAPK-HSP25
pathway may explain both the tendency towards mainte-
nance of the actin cytoskeleton and the attenuation of
apoptosis in this iz vitro model.

HSPs are a pleiotropic family of chaperone proteins
with numerous functions. Phosphorylated HSP25 mono-
mers play a role in the maintenance of the actin cytos-
keleton during cell stress [11,13,66-69]. One group
recently reported that the anti-apoptotic properties of
HSP25/27 were ascribable to its maintenance of actin
cytoskeletal integrity, which prevented mitochondria

from releasing cytochrome c [70]. Actin cytoskeletal dis-
ruption may be both a marker and a mechanism of
apoptosis [71-73]. Through the stabilization of actin,
phosphorylated HSP25 may attenuate apoptosis. The
anti-apoptotic activities of phosphorylated HSP25/27 in
cells exposed to TNFa have also been ascribed to
enhanced IKKy proteasomal degradation, which
increases NFxB activity in some cells [74-76], but not in
others [77]. Non-phosphorylated HSP25 oligomers also
enhance cell survival, but through mechanisms involving
the inhibition of canonical targets in the mitochondrial
and death-domain apoptotic pathways and through inhi-
bition of NFxB activation [74-81]. While curcumin
increases HSP70 [19-22], limited information is available
concerning the effect of curcumin on HSP25/27. Curcu-
min increased total HSP27 in glioma cells cultured
under stress-conditions by prolonging the stress-induced
activation of the heat shock element-binding activity of
heat shock transcription factor [82]. In in vivo studies,
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these same investigators also showed further induction
of HSP25 by curcumin in the adrenal glands and livers
of rats exposed to heat stress. In contrast, in our in vitro
studies in curcumin-treated podocytes, phosphorylated
HSP25 was increased, but not total HSP25 (not shown).
Since phosphorylated HSP25 regulates the maintenance
of the actin cytoskeleton and NFxB activation, our in
vitro data are consistent with a role for activation of the
p38MAPK-HSP25 pathway in the observed trend favor-
ing maintenance of stress fibers in curcumin-treated
podocytes during high glucose exposure. In other pub-
lished experiments consistent with these findings, curcu-
min has been reported to increase stress fibers and F-
actin in prostate cancer cells [34]. Thus, the increase in
phosphorylated HSP25 induced by curcumin in vitro
may contribute to the observed curcumin-associated
trend to maintain actin stress fibers and the decrement
in activated caspase-3.

Finally, curcumin inhibited COX-2 in vitro. Curcumin
is well-known to inhibit the arachidonic acid pathway,
particularly COX-2 [30-33,83-86]. Our in vitro results
showing inhibition of COX-2 by curcumin is consistent
with these other published studies. Medicinal COX-2
inhibitors such as celecoxib induce apoptosis, but COX-
2 inhibition by other means, including molecular inter-
ventions, do not necessarily induce apoptosis [87].
Taken together, our in vitro data demonstrate that in
podocytes cultured in normal or high glucose media,
curcumin activates the p38MAPK-HSP25 pathway, inhi-
bits COX-2, attenuates apoptosis, and likely contributes
towards the trend for cytoskeletal maintenance.

In contrast to our findings in vitro, which corroborate
other published findings, our inability to demonstrate a
benefit for curcumin in diabetic nephropathy (DN) in
DBA2] mice is unique among published studies in this
field. We were unable to show an anti-albuminuric effect
or an attenuation in urine 12-HETE excretion in diabetic
DBA?2] mice, despite our clear ability to demonstrate renal
exposure to curcuminoids by measuring curcumin and its
metabolites in urine. Curcumin has previously been
reported to inhibit proteinuria, albuminuria, and/or histo-
logic change in Stz-DN in rats [48-50]. Species, strain,
and/or dosing differences may underlie our inability to
demonstrate a clinical benefit from curcumin in mice
while others reported benefit in rats. Indeed, in a recently
published paper, Li et al [88] showed that in the DBA2]
mouse used herein, which has a naturally occurring muta-
tion in the gene glycoprotein non-metastatic melanoma
protein b (gpnmb), there is a defect in renal reparative
processes. It is possible that the negative results observed
for curcumin in this mouse are due to this inherited
reparative defect. It is well-known that both susceptibility
to disease and responsiveness to therapy are influenced by
genetic predisposition.” However, review of the
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publications in which benefit from curcumin was actually
reported raises some skepticism concerning the robustness
of these observations. In the work by Babu et al in Stz-DN
in Wistar rats, renal hypertrophy, measures of tubular pro-
teinuria, urine excretion of proteins with MW > 66 kD,
and histological change were improved at 8 weeks [49]. Of
note, the investigators went to great lengths to publish the
results of a large number of tubular and large molecular
weight proteinuria markers, but did not publish their albu-
minuria result. In addition, blood glucose data are not pro-
vided, a description of how the histologic analyses were
performed is lacking, and the photomicrographs provided
are of very low magnification and not easily interpretable
by the reader. In the work by Sharma et al [48], a claim for
the benefit of curcumin on DN was based on lower albu-
minuria concentration (but not lower urine albumin/crea-
tinine ratio or albumin/unit time, which are the standard
methods of reporting); lower serum creatinine and urea
nitrogen; higher creatinine clearance; and less renal
pathology in the curcumin-treated diabetic rats compared
to diabetic rats on a control diet. Unfortunately, in this
experiment, the curcumin-treated rats had lower plasma
glucose levels than the diabetic rats receiving a control
diet. The authors attribute this to the curcumin treatment
itself. Nevertheless, the difference in glycemic control con-
founds the interpretation of the role of curcumin in
directly ameliorating DN in this experiment. Furthermore,
the time point of study (6 weeks after diabetes induction)
was shorter than optimal for the establishment of DN in
rats, and the histologic sections provided are of inadequate
quality, falling short of establishing DN changes. In the
work by Chiu et al [47], Sprague-Dawley rats with Stz-DN
were studied after 4 weeks. Curcumin-treated rats had
improvement in a number of biochemical parameters
including attenuation of renal mRNAs for fibronectin,
eNOS, TGF-beta, heme oxygenase-1, and improvements
in glomerular nitrotyrosine, 8-OHdG, transcription coacti-
vator p300, and NFxB. Albuminuria was not measured,
the studies were not carried out beyond 4 weeks, and, as
pointed out by others [89], key controls for the ethanol
and DMSO diluents were lacking. In the work by Tikoo et
al [50], Stz-DN was studied in Sprague-Dawley rats after 8
weeks, having received curcumin treatment for 6 weeks.
Improvement in DN was inferred from modulation in the
curcumin-treated group of blood urea nitrogen, serum
creatinine, and kidney/body weight ratio. Acceptance of
this conclusion is limited by concerns regarding the use of
BUN and serum creatinine in polyuric animals with low
muscle mass as robust measures of renal function, the
methodology used for the measure of serum creatinine
(picric acid, [90]), and the absence of a measure of albumi-
nuria. Taken together, no prior report showing a beneficial
effect of curcumin on Stz-DN actually measured the urine
albumin/creatinine ratio, a cardinal manifestation of DN,
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and many of the studies had other significant design flaws.
The work reported herein is the only one to date to
demonstrate pharmacodynamic data consistent with renal
exposure to curcumin and its metabolites, biochemical
changes consistent with a renal biological effect of curcu-
min, but no ameliorative effect on albuminuria, which is
the key clinical feature of early DN.

The burden of explaining why curcumin failed to
ameliorate albuminuria in these mice remains, and one
can only speculate. A unique response in this mouse
strain cannot be ruled out, as it is well-appreciated that
genetic backgrounds influence both disease susceptibility
and response to treatments. In addition, at least in
Experiment 2, fasting blood glucose was higher at week
1 in mice receiving curcumin, a finding that was not
replicated in measures taken at later weeks. These early
differences were statistically significant, but their biolo-
gical significance is uncertain. Nevertheless, we cannot
exclude that this apparently transient and relatively
small increment in blood glucose early in disease devel-
opment contributed to the lack of apparent efficacy of
curcumin to attenuate albuminuria. However, some bio-
logical observations may be relevant. We have previously
shown in podocytes cultured under normal or high glu-
cose conditions, and in renal cortical tissue from dia-
betic and control rats, that phosphorylated HSP25
appears as an acute adaptation to glycemic stress. This
adaptation was associated with maintenance of the
podocyte cytoskeleton in vitro, and an association with
normoalbuminuria in vivo. Decrements in phospho-
HSP25 later in the course of Stz-DN were associated
with the appearance of albuminuria and glomerular
podocyte effacement [18]. We have also reported that in
mice overexpressing HSP27, there was diminished beta
cell apoptotic death from Stz and an attenuation of Stz-
DN. In other studies in vitro, direct binding of HSP25/
27 to the upstream regulator of NF«B, IKKy (NEMO),
inhibited pancreatic beta cell apoptosis [74-77]. These
data underscore the significant relationship between
phosphorylated and non-phosphorylated HSP25/27 with
cytoskeletal maintenance and cytoprotection from apop-
totic death. Taken together, the experimental results
published herein are consistent with the hypothesis that
the profound decrease in total HSP25 in the curcumin-
treated Stz-DN mice may confer a susceptibility to loss
of structural cellular integrity and apoptosis of cells
comprising the glomerular capillary wall, resulting in
albuminuria. In Tikoo et al, a decrement in renal HSP25
is also reported in Stz-DN rats fed with curcumin [50].

Finally, the failure to mitigate albuminuria in the cur-
cumin-treated Stz-DN mice may have been related to
the persistent activity of the arachidonic acid pathway
enzyme, 12/15-LO. Natarajan et al showed that the 12/
15-LO pathway mediates the actions of the key effector
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molecules that induce albuminuria and extracellular
matrix accumulation in DN, including glucose, TGF-
beta, angiotensin II, and PDGF in vascular smooth mus-
cle cells [91]. Our prior work showed that 12/15-LO
mRNA and protein are induced in mesangial cells in
HG and in Stz-DN rat glomeruli [6,92-94]. In podocytes
in vitro and in Stz-DN, HG stimulated 12/15-LO mRNA
and protein synthesis, podocyte p38MAPK activation,
and collagena5(IV) mRNA and protein, while 12/15-LO
inhibition diminished HG-stimulated podocyte col-
lagena5(IV) mRNA and protein [6].

Curcumin has been reported to inhibit lipoxygenases
by one group of investigators [95], but was found to be
a substrate of lipoxygenases by another group [96].
Urine 12-HETE is a reliable measure of activation of the
12/15-LO pathway in vivo [97], and in these curcumin-
treated mice, the urine 12-HETE/cr ratio was increased.
In prior studies performed to inhibit 12/15-LO in Stz-
DN rats, our published work showed that chemical inhi-
bition of 12/15-LO is only transiently effective, and that
tachyphylaxis occurs rapdily [98]. In the rats receiving
the chemical inhibitor, a linear relationship between
urine 12-HETE excretion and albuminuria was observed
[97]. The failure of curcumin to suppress activation of
12/15-LO, as evidenced by the high urine 12-HETE/cr
ratio, may have contributed to the albuminuria observed
in the curcumin-treated diabetic DBA2] mice.

Thus, our data extend and confirm prior in vitro evi-
dence concerning the effects of curcumin on cultured
cells exposed to glycemic stress. In cultured podocytes,
curcumin induced the phosphorylation of p38MAPK
and downstream HSP25, inhibited COX-2 and the acti-
vation of caspase-3, and demonstrated a tendency to
attenuate F-actin cleavage to G-actin monomers. How-
ever, in DBA2] mice with Stz-DM, despite pharmacody-
namic proof of exposure to orally administered
curcumin by timed urine collections measuring excreted
curcuminoids, curcumin attenuated the HSP25 response
to Stz-DM, increased urinary 12-HETE excretion, and
failed to attenuate the albuminuria of DN. While strain,
species, and dosing issues may be responsible for this
negative result, the biological responses of HSP25 and
12/15-LO to curcumin may underlie this failure. Thus,
despite encouraging in vitro effects, these data do not
confirm prior published in vivo work and suggest that
curcumin is not universally useful in ameliorating DN.
In addition, these studies suggest that timed urine col-
lections may be useful for monitoring curcumin dosing
and renal pharmacodynamics.
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