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Abstract

For the many years, the central dogma of molecular biology has been that RNA functions mainly as an
informational intermediate between a DNA sequence and its encoded protein. But one of the great surprises of
modern biology was the discovery that protein-coding genes represent less than 2% of the total genome
sequence, and subsequently the fact that at least 90% of the human genome is actively transcribed. Thus, the
human transcriptome was found to be more complex than a collection of protein-coding genes and their splice
variants. Although initially argued to be spurious transcriptional noise or accumulated evolutionary debris arising
from the early assembly of genes and/or the insertion of mobile genetic elements, recent evidence suggests that
the non-coding RNAs (ncRNAs) may play major biological roles in cellular development, physiology and
pathologies. NcRNAs could be grouped into two major classes based on the transcript size; small ncRNAs and long
ncRNAs. Each of these classes can be further divided, whereas novel subclasses are still being discovered and
characterized. Although, in the last years, small ncRNAs called microRNAs were studied most frequently with more
than ten thousand hits at PubMed database, recently, evidence has begun to accumulate describing the molecular
mechanisms by which a wide range of novel RNA species function, providing insight into their functional roles in
cellular biology and in human disease. In this review, we summarize newly discovered classes of ncRNAs, and
highlight their functioning in cancer biology and potential usage as biomarkers or therapeutic targets.
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Introduction
The abundance of non-translated functional RNAs in
the cell has been a textbook truth for decades. Most of
these non-coding RNAs (ncRNAs) fulfil essential func-
tions, such as ribosomal RNAs (rRNAs) and transfer
RNAs (tRNAs) involved in mRNA translation, small nu-
clear RNAs (snRNAs) involved in splicing and small nu-
cleolar RNAs (snoRNAs) involved in the modification of
rRNAs. The central dogma of molecular biology, devel-
oped from the study of simple organisms like Escheri-
chia coli, has been that RNA functions mainly as an
informational intermediate between a DNA sequence
(‘gene’) and its encoded protein. The presumption was
that most genetic information that specifies biological
form and phenotype is expressed as proteins, which have
not only diverse catalytic and structural functions, but
also regulate the activity of the system in various ways.
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This is largely true in prokaryotes and presumed also to
be true in eukaryotes [1]. But one of the great surprises
of modern biology was definitely the discovery that the
human genome encodes only ~20,000 protein-coding
genes, representing less than 2% of the total genome se-
quence (see Figure 1). Subsequently, with the advent of
tiling resolution genomic microarrays and whole genome
and transcriptome sequencing technologies (ENCODE
project) it was determined that at least 90% of the gen-
ome is actively transcribed. The human transcriptome
was found to be more complex than a collection of
protein-coding genes and their splice variants; showing
extensive antisense, overlapping and ncRNA expression
[1,2]. Although initially argued to be spurious transcrip-
tional noise or accumulated evolutionary debris arising
from the early assembly of genes and/or the insertion of
mobile genetic elements, recent evidence suggests that
the proverbial “dark matter” of the genome may play a
major biological role in cellular development, physiology
and pathologies. In general, the more complex an organ-
ism, the greater is its number of ncRNAs. The enticing
possibility that although the number of protein-coding
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Figure 1 The percentage of protein-coding genes sequences in several eukaryotic and bacterial genomes.
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transcripts between organisms is similar, the ultimate
control of cellular function may be through interactions
between proteins and ncRNA, is corroborated by the
fact that the majority of chromatin-modifying complexes
do not have DNA binding capacity and therefore, must
utilize a third party in binding to DNA. It has been
largely demonstrated that this third party may be repre-
sented by transcription factors as well as by ncRNAs
[2,3].
The beginnings of the present-day understanding on

regulatory non-coding RNAs were inspired mainly by
the pioneering ideas of John S. Mattick, who has long
argued that proteins comprise only a minority of the
eukaryotic genome’s information output. Considering
unique ability of RNA to both fold in three-dimensional
space and hybridize in a sequence-specific manner to
other nucleic acids, ncRNAs are proposed to behave as a
digital-to-analogue processing network, allowing the ex-
pansion of complexity in biological systems, well beyond
purely protein-based regulatory networks [4].
Non-coding RNAs are grouped into two major classes

based on transcript size; small ncRNAs and long
ncRNAs (lncRNAs) (classification of recently discovered
non-coding RNAs is summarized in Table 1). Small
ncRNAs are represented by a broad range of known and
newly discovered RNA species, with many being asso-
ciated with 5′ or 3′ regions of protein-coding genes.
This class includes the well-documented miRNAs, siRNAs,
piRNAs, etc. Most of them significantly extended our
view of molecular carcinogenesis, and at present they
are subject of intensive translational research in this
field. In contrast to miRNAs, lncRNAs are mRNA-like
transcripts ranging in length from 200 nt to ~100 kilo-
bases (kb) and lacking significant open reading frames.
LncRNAs’ expression levels appear to be lower than
protein-coding genes, and some lncRNAs are preferen-
tially expressed in specific tissues. The small number of
characterized human lncRNAs have been associated with
a spectrum of biological processes including alternative
splicing or nuclear import. Moreover they can serve as
structural components, precursors to small RNAs and
even as regulators of mRNA decay. Furthermore, accu-
mulating reports of misregulated lncRNA (HOTAIR,
MALAT1, HULC, T-UCRs, etc.) expressions across nu-
merous cancer types suggest that aberrant lncRNA expres-
sion may be an important contributor to tumorigenesis. In
this review, we summarize recent knowledge of novel
classes of ncRNAs, their biology and function, with special
focus on their significance in cancer biology and oncology
translational research, which is the field where the number
of publications focusing this topic is rapidly growing [5-7].

Small non-coding RNAs
Post-transcriptional RNA silencing or RNA interference
(RNAi) is a naturally conserved mechanism of regulation
of gene expression described in almost all eukaryotic
species including humans [8,9]. It is mostly triggered by
dsRNA precursors that vary in length and origin. These
dsRNAs are rapidly processed into short RNA duplexes
subsequently generating small ncRNAs (small ncRNAs),
which are associated with Argonaute family proteins and
guide the recognition and ultimately the cleavage or
translational repression of complementary single-
stranded RNAs, such as messenger RNAs or viral gen-
omic/antigenomic RNAs. Moreover, the small ncRNAs
have also been implicated in guiding chromatin modifi-
cations [9,10]. Since the discovery of the first small
ncRNA, various classes of small ncRNAs have been
identified. Based on whether their biogenesis is
dependent on Dicer, the dsRNA specific RNA III ribo-
nuclease, all the known eukaryotic small ncRNAs can be
classified into two goups: Dicer-dependent, such as
microRNAs (miRNAs), small interfering RNAs (siRNAs),
and in some cases small nucleolar RNAs (snoRNAs); and



Table 1 Types of recently discovered human non-coding RNAs

Class Symbol Characteristic Disease / biological function associations

Small
non-coding
RNAs

MicroRNAs miRNAs 18–25 nt; account 1–2% of the human genome;
control the 50% of protein-coding genes; guide
suppression of translation; Drosha and Dicer
dependent small ncRNAs

initiation of various disorders including many,
if not all, cancers / regulation of proliferation,
differentiation, and apoptosis involved in human
development

Small interfering
RNAs

siRNAs 19–23 nt; made by Dicer processing; guide
sequence specific degradation of target mRNA

great potential in diseases treatment /
posttranscriptional gene silencing mainly
through RISC degradation mechanism; defence
against pathogenic nucleic acids

Piwi-interacting
RNAs

piRNAs 26–30 nt; bind Piwi proteins; Dicer independent;
exist in genome clusters; principally restricted to
the germline and somatic cells bordering the
germline

relationship between piRNAs and diseases has
not yet been discovered / involved in germ cell
development, stem self-renewal, and
retrotransposon silencing

Small nucleolar
RNAs

snoRNAs 60–300 nt; enriched in the nucleolus; in
vertebrate are excised from pre-mRNA introns;
bind snoRNP proteins

association with development of some cancers /
important function in the maturation of other
non-coding RNAs, above all, rRNAs and snRNAs;
miRNA-like snoRNAs regulate mRNAs

Promoter-
associated small
RNAs

PASRs 20–200 nt; modified 5′ (capped) ends; coincide
with the transcriptional start sites of protein- and
non-coding genes; made from transcription of
short capped transcripts

relationship with diseases has not yet been
discovered / involved in the regulation of the
transcription of protein-coding genes by
targeting epigenetic silencing complexes

Transcription
initiation RNAs

tiRNAs ~ 18 nt ; have the highest density just
downstream of transcriptional start sites; show
patterns of positional conservation; preferentially
located in GC-rich promoters

Centromere repeat
associated small
interacting RNAs

crasiRNAs 34–42 nt; processed from long dsRNAs relationship between crasiRNAs and diseases has
not yet been discovered / involved in the
recruitment of heterochromatin and/or
centromeric proteins

Telomere-specific
small RNAs

tel-sRNAs ~ 24 nt; Dicer independent; 2′-O-methylated at
the 3′ terminus; evolutionarily conserved from
protozoa to mammals; have not been described
in human up to now

relationship between tel-sRNAs and diseases has
not yet been discovered / epigenetic regulation

Pyknons subset of patterns of variable length; form
mosaics in untranslated and protein-coding
regions; more frequently in 3′ UTR

expected association with cancer biology /
possible link with posttranscriptional silencing
of genes, mainly involved in cell communication,
regulation of transcription, signaling, transport,
etc.

Long
non-coding
RNAs

Long intergenic
non-coding RNAs

lincRNAs ranging from several hundreds to tens of
thousands nts; lie within the genomic intervals
between two genes; transcriptional cis-regulation
of neighbouring genes

involved in tumorigenesis and cancer metastasis
/ involved in diverse biological processes such as
dosage compensation and/or imprinting

Long intronic non-
coding RNAs

lie within the introns; evolutionary conserved;
tissue and subcellular expression specified

aberrantly expressed in human cancers / possible
link with posttranscriptional gene silencing

Telomere-associated
ncRNAs

TERRAs 100 bp - >9 kb; conserved among eukaryotes;
synthesized from C-rich strand; polyadenylated;
form inter-molecular G-quadruplex structure with
single-stranded telomeric DNA

possible impact on telomere-associated diseases
including many cancers / negative regulation of
telomere length and activity through inhibition
of telomerase

Long non-coding
RNAs with dual
functions

both protein-coding and functionally regulatory
RNA capacity

deregulation has been described in breast and
ovarian tumors / modulate gene expression
through diverse mechanisms

Pseudogene RNAs gene copies that have lost the ability to code for
a protein; potential to regulate their protein-
coding cousin; made through retrotrans-position;
tissue specific

often deregulated during tumorigenesis and
cancer progression / regulation of tumor
suppressors and oncogenes by acting as
microRNA decoys

Transcribed-
ultraconserved
regions

T-UCRs longer than 200 bp; absolutely conserved
between orthologous regions of human, rat, and
mouse; located in both intra- and intergenic
regions

expression is often altered in some cancers;
possible involvement in tumorigenesis /
antisense inhibitors for protein-coding genes
or other ncRNAs
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Dicer-independent small ncRNAs, such as PIWI-
interacting RNAs (piRNAs) [11] (Figure 2). Moreover,
phylogenetic analysis indicates that known Argonaute
family proteins can be divided into two subgroups namely
AGO based on AGO1 and PIWI based on PIWI. Interest-
ingly, Ago proteins interact with miRNAs and siRNAs
while Piwi subgroup is characterized by interaction with
piRNAs [12]. Biogenesis of other small non-coding RNAs
is less or completely undescribed yet. These RNAs are
generally classified according to their genome and func-
tion localization. Among them belong promoter-
associated small RNAs (PASRs), transcription initiation
RNAs (tiRNAs), centromere repeat associated small inter-
acting RNAs (crasiRNAs), and telomere-specific small
RNAs (tel-sRNAs). To the class of small non-coding
RNAs also belong the recently discovered pyknons that, as
suggested by current findings, are involved in many bio-
logical functions. It was many times described that some
of above mentioned small non-coding RNAs play import-
ant roles in pathogenesis of various diseases including
tumors. In this respect, the most studied ncRNAs are
miRNAs, which have been described in many, if not all,
cancers [13-16].

MicroRNAs
The most frequently studied subclass of small ncRNAs
are microRNAs (miRNAs), originally discovered by Vic-
tor Ambros in Caenorhabditis elegans. They are 18–25
nucleotides long, evolutionary conserved, single-stranded
Figure 2 Short ncRNAs biogenesis pathways.
RNA molecules involved in specific regulation of gene ex-
pression in eukaryotes [17]. It is predicted that miRNA
genes account for 1–2% of the human genome and con-
trol the activity of ~50% of all protein-coding genes
[18,19]. Early annotation for the genomic position of miR-
NAs indicated that most miRNAs are located in intergenic
regions (>1 kb away from annotated or predicted genes),
although a sizeable minority was found in the intronic
regions of known genes in the sense or antisense orienta-
tion. This led to the postulation that most miRNA genes
are transcribed as autonomous transcription units [19]. A
detailed analysis of miRNA gene expression showed that
miRNA genes can be transcribed from their own promo-
ters and that miRNAs are generated by RNA polymerase
II (RNAPII) as primary transcripts (pri-miRNAs). These
are processed to short 70-nucleotide stem–loop structures
known as pre-miRNAs by the ribonuclease called Drosha
and the double-stranded-RNA-binding protein known as
Pasha (or DGCR8 – DiGeorge critical region 8), which
together compose a multiprotein complex termed a
microprocessor. The pre-miRNAs are transported to
cytoplasm by the RAN GTP-dependent transporter
exportin 5 (XPO5). In the cytoplasm, the pre-miRNAs
are processed to mature miRNA duplexes by their inter-
action with the endonuclease enzyme Dicer in complex
with dsRNA binding protein TRBP [19,20]. One strand
(“guide strand”) of the resulting 18–25-nucleotide ma-
ture miRNA duplex ultimately gets integrated into the
miRNA-induced silencing complex (miRISC) with the
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central part formed by proteins of the Argonaute family,
whereas the other strand (passenger or miRNA*) is
released and degraded. The retained (“guide”) strand is
the one that has the less stably base-paired 5′ end in the
miRNA/miRNA* duplex. Generally, most miRNA genes
produce one dominant miRNA species. However, the
ratio of miRNA to miRNA* can vary in different tissues
or developmental stages, which probably depends on
specific properties of the pre-miRNA or miRNA duplex,
or on the activity of different accessory processing fac-
tors [19]. Moreover, the ratio might be modulated by
the availability of mRNA targets as a result of enhanced
destabilization of either miRNA or miRNA* occurring
in the absence of respective complementary mRNAs
[20]. Mature miRNAs in miRISC exert their regulatory
effects by binding to imperfect complementary sites. MiR-
NAs repress target-gene expression post-transcriptionally,
apparently at the level of translation, through a miRISC
complex that is similar to, or possibly identical with, that
used for the RNAi pathway discussed later. Perfect com-
plementarity of mRNA-miRNA allows Ago-catalyzed
cleavage of the mRNA strand, whereas central mis-
matches exclude cleavage and promote repression of
mRNA translation. Consistent with translational con-
trol, miRNAs that use this mechanism reduce the pro-
tein levels of their target genes, but the mRNA levels of
these genes are barely affected [21-23]. Current studies
indicate that miRNA targeting in mammalian cells
occurs predominantly through binding to sequences
within 3′UTRs [24,25], however inhibition of gene ex-
pression through targeting the 5′UTR has been also
demonstrated [26]. Nevertheless, statistical analyses of
conserved miRNA target sequences proved that mam-
malian miRNA target sites rarely occur within 5′UTRs
[24,25,27]. Moreover, it was found out that miR-10a
induces, rather than inhibits, protein expression
through binding to 5′UTRs of cellular transcripts [23].
It is therefore supposed that binding to 5′UTR results
in mechanistic effects divergent from 3′UTR binding.
Most of the miRNAs described to date regulate crucial

cell processes such as proliferation, differentiation, and
apoptosis. Therefore, these RNAs are involved in human
development as well as in initiation of various disorders
including many, if not all, cancers where miRNAs have
been found to be also significant prognostic and predict-
ive markers [13,28-35]. Examples of miRNAs with sig-
nificant functional effects in cancer are mentioned
below.
Bloomston et al. [36] identified 6 miRNAs linked to

long-term survival in pancreatic adenocarcinoma.
They found also that expression level of miR-196a-2
was able to predict patients’ survival, since higher
miRNA levels marked the poor survivors group. In
HCC, up-regulation of miR-221 and down-regulation of
miR-122 were associated with shorter time to recur-
rence [37,38]. MiR-21 is up-regulated in many solid
tumors, including CRC. Slabý et al. [39] proved that
miR-21 over-expression shows a strong correlation with
the established prognostic factors as nodal stage, meta-
static disease and UICC stage. Moreover, Kulda et al.
[40] correlated miR-21 expression to disease-free inter-
val (DFI). There was shorter DFI in patients with a
higher expression of miR-21. Several studies proved that
down-regulated expression of miR-221, miR-137, miR-
372, miR-182*, let-7 and miR-34a is associated with
shorter survival in patients with lung cancer [41-43].
Breast cancer metastatic process has been connected
with up-regulation of miR-10b [44] and with loss of ex-
pression of miR-126 and miR-335 [45]. Finally, higher
levels of miR-15b were associated with poor survival
and recurrence in melanoma [46]. Another important
question for management of cancer patients is the pos-
sibility of predicting therapy response. Nakajima et al.
[47] identified let-7g and miR-181b as significant indica-
tors for chemoresponse to S-1-based chemotherapy.
The same year, Markou et al. [48] demonstrated that in-
hibition of miR-21 and miR-200b increases the sensitiv-
ity of cholangiocarcinoma cells to gemcitabine. Yang et
al. [49] identified miR-214, a miRNA up-regulated in
ovarian cancer, as responsible of cisplatin resistance
through its action on PTEN/AKT pathway. Subse-
quently, there is a large number of publications which
confirmed many 3′UTRs of oncogenes an tumor sup-
pressor genes to be direct targets of selected miRNAs.
According to a recent study by Nagel et al. [50],
miR-135a and miR-135b decrease translation of the
APC transcript in vitro. Concerning CRC, KRAS
oncogene has been reported to be a direct target of
the let-7 miRNA [51]. Another miRNA associated
with KRAS regulation is miR-143 [52]. MiRNAs
arrays-based studies revealed the p85β regulatory sub-
unit of PI3K as a direct target of miR-126 [53]. More-
over, another important regulatory component of
PI3K pathway, the tumor suppressor gene PTEN, is
strongly repressed by miR-21 in hepatocellular carcin-
oma [54]. MiR-17-5p belongs to a highly conserved,
polycistronic miRNA cluster miR-17-92. Yu et al. [55]
described the function of this cluster as a negative
regulator of cell cycle and proliferation of human
breast cancer cells, which directly regulates cyclin D1
(CCND1). The same cluster is also involved in malig-
nancies of B cell origin [56] and a direct regulation by c-
MYC has been reported [57,58]. Some of the most often
deregulated miRNAs with their experimentally proved
mRNA targets are summarized in the Table 2, however,
the number of described miRNAs and putative targets is
much more higher and it is not possible to mention all
of them.



Table 2 Gene targets of the most common described
human cancer-associated miRNAs

MiRNA Associated cancers In vitro confirmed gene
targets

MiR-21 CRC, PC, RCC, GBM, BrC,
NSCLC, BCL, PTC, HCC,
HNSCC, ESCC, GC, CML,
CCC, MM, OC, M, LC, PDA

PDCD4, TIMP3, RhoB, Spry1,
PTEN, TM1, CDK2AP1,
ANP32A, SMARCA4,
ANKRD46, THRB, Cdc25A,
BMPRRII, LRRFIP1, BTG2,
MARCKS, TPM1

MiR-155 NSCLC, SCLC, HCC, BrC,
M, CCC, HL, PDA, RCC,
GBM, PTC, CML, CRC,
SPA, AML, NPC, CLL

FOXO3A, SOX6, SATB1, SKI,
Wee1, SOCS1, SHIP1, S/EBPβ,
IFN-γRα, AGTR1, FGF7,
ZNF537, ZIC3, IKBKE, RhoA,
BACH1, ZIC3, HIVEP2, CEBPB,
ZNF652, ARID2, SMAD5,
TP53INP1

MiR-145 BrC, CRC, ESCC, NSCLC, PC,
BCL, OC, GC, BlC, NPC, HCC

c-Myc, ERK5, FSCN1, SMAD2/3,
IGF-1R, FLI1, DFF45, mucin 1,
MYO6, CBFB, PPP3CA, CLINT1,
ICP4, RTKN

MiR-221 BrC, PC, CRC, M, GBM, ALL,
HCC, PTC, PDA, GC, CML,
NSCLC, AML, OC

DVL2, KIT, CDKN1B, Bmf, p27,
HOXB5, CDKN1C/p57,
CDKN1B/p27, MMP1, SOD2,
TIMP3, Dicer1, ERα, ARHI,
PUMA, p27Kip1, p57

MiR-222

Let-7a M, HL, nHL, CRC, SLC, NSCLC,
GC, HNSCC, ESCC, OC, CLL,
HCC

PRDM-1, STAT3, Caspase-3,
Integrin β3, PRDM1/blimp-1

MiR-16 LC, OC, NPC, GC, PC, BrC,
HCC, MM, CLL, HL

VEGFR2, FGFR1, Zyxin, Cyclin
E1, Bmi-1, BRCA-1, BCL2

MiR-200 BrC, PDA, GC, HNSCC, M,
OC, PC

FN1, MSN, NTRK2, LEPR,
ARHGAP19, ZEB1/2, Flt1/
VEGFR1, FAP-1, FOG2, ERRFI-1

MiR-205 M, BrC, PC, ESCC, HNSCC Runx2, E2F1, ErbB3, Zeb1

MiR-31 PTC, CRC, BrC, LC, GC, HCC LATS2, WAVE3, SATB2, ITGA5,
RDX, RhoA, FIH

MiR-126 CRC, GC, BrC, SCLC, AML,
NSCLC, HCC

SLC7A5, SOX2, PLAC1, VEGFA,
PIK3R2, Crk, EGFL7, p85beta

MiR-210 PDA, RCC, BrC, PC, GBM,
NSCLC, OC, GC, HNSCC

FGFRL1, SDHD, MNT

MiR-9 GBM, PC, nHL, EC, OC CAMTA1, PDGFR-β, CDX2,
PRDM-1, E-cadherin, NF-
kappaB1

MiR-141 PC, EC, CRC, HNSCC, LC,
BrC, ESCC, OC, RCC

SIP1, YAP1

MiR-122 HCC, RCC Bcl-w, ADAM17

CRC colorectal cancer, PC prostate cancer, RCC renal cell carcinoma, GBM
glioblastoma multiforme, BrC breast cancer, LC lung cancer, NSCLC non-small
cell lung cancer, SCLC small cell lung cancer, BCL B-cell lymphoma, PTC
papillary thyroid carcinoma, HCC hepatocellular carcinoma, HNSCC head and
neck squamous cell carcinoma, ESCC esophagus squamous cell carcinoma, GC
gastric cancer, CLL chronic lymphocytic leukemia, CML chronic myelogenous
leukemia, ALL acute lymphocytic leukemia, AML acute myeloid leukemia, CCC
cervical cell carcinoma, MM multiple myeloma, OC ovarian cancer, M
melanoma, LC laryngeal carcinoma, PDA pancreatic ductal adenocarcinoma,
HL Hodgkin lymphoma, nHL Non-Hodgkin lymphoma, SPA sporadic pituitary
adenomas, NPC nasopharyngeal carcinoma, BlC bladder cancer, EC
endometrial cancer.
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Small interfering RNAs
Another class of small ncRNAs involved in post-
transcriptional RNA silencing are so-called small inter-
fering RNAs (siRNAs). They are produced from long
dsRNAs of exogenous or endogenous origin [59]. These
short helical RNA molecules are formed by two at least
partially complementary RNA single strands, namely the
passenger strand and the guide strand. Typical strand
lengths of these dsRNAs are 19–23 nucleotides and they
are made by Dicer processing as miRNAs [60]. One of
the arisen single strands is subsequently incorporated
into RISC (RNA-induced silencing complex) where
guides sequence-specific degradation of complementary
target mRNAs unlike miRNA that rather suppresses
translation and does not lead to degradation of the
mRNA target [9,61,62]. SiRNAs are worldwide used in
gene silencing experiments and have become a specific
and powerful tool to turn off the expression of target
genes, and also turned into a promising experimental
tool in molecular oncology. SiRNAs could be used in
cancer therapy by several strategies. These include the
suppression of overexpressed oncogenes, retarding cell
division by interfering with cyclins and related genes or
enhancing apoptosis by inhibiting anti-apoptotic genes.
For example, Vassilev et al. [63] developed new siRNA-
based inhibitors of the p53-MDM2 protein interaction.
A year later, Wu et al. [30] demonstrated that down-
regulation of RPL6 (ribosomal protein L6) in gastric can-
cer SGC7901 and AGS cell lines by siRNA reduced col-
ony forming ability and cell growth. Moreover, the cell
cycle of these cells was suppressed in G1 phase. Simi-
larly, CDK8 specific siRNA transfection down-regulated
the expression of CDK8 in colon cancer cells, which was
also associated with a decrease in the expression of β-
catenin, inhibition of proliferation, increased apoptosis
and G0/G1 cell cycle arrest [64]. Dufort et al. [65]
described that cell transfection of IGF-IR siRNAs
decreased proliferation, diminished phosphorylation of
downstream signaling pathway proteins, AKT and ERK,
and caused a G0/G1 cell cycle block in two murine
breast cancer cell lines, EMT6 and C4HD. The IGF-IR
silencing also induced secretion of two proinflammatory
cytokines, TNF-α and IFN-γ. Another study showed that
mTOR-siRNA transfection significantly inhibits cell pro-
liferation, increases the level of apoptosis and decreases
migration of NSCLC cells, and could be used as an alter-
native therapy targeting mTOR with fewer side effects
[66]. RNAi against multidrug resistance genes or che-
moradioresistance and angiogenesis targets may also
provide beneficial cancer treatments. He et al. [67]
proved that silencing of MDR1 by siRNA led to
decreased P-glycoprotein activity and lower drug resist-
ance of L2-RAC cells, which could be used as a novel
approach of combined gene and chemotherapy for yolk
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sac carcinoma. Another study showed that combination
of proteasome inhibitors with Mcl-1 siRNA enhances
the ultimate anticancer effect in DLD-1, LOVO, SW620,
HCT-116, SKOV3 and H1299 cell lines [68]. Bansal et
al. [69] states that selective siRNA depletion of CDK1
increases sensitivity of patients with ovarian cancer to
cisplatin-induced apoptosis. The number of publications
dealing with siRNAs is rapidly growing and successful
cancer therapy by siRNA in vitro and in vivo provides
the enthusiasm for potential therapeutic applications of
this technique [70]. Some examples of siRNA cancer
therapies in clinical trials are summarized in Table 3.

Piwi proteins associated RNAs
Extensive research in the past few years has revealed that
members of the Argonaute protein family are key players
in gene-silencing pathways guided by small RNAs. This
family is further divided into AGO and PIWI subfamilies
[72]. It was proved that the AGO proteins are present in
diverse tissues and bind to miRNAs and siRNAs,
whereas PIWI proteins are especially present in germ-
line, and associate with a new class of small ncRNAs
termed PIWI-interaction RNAs (piRNAs). PiRNAs are
typically 24–32 nucleotides long RNAs that are gener-
ated by a Dicer-independent mechanism. It was thought
that they are derived only from transposons and other
repeated sequence elements [73] and therefore, they
were alternatively designated as repeat-associated small
interfering RNAs (rasiRNAs) [74]. But it is now clear
that piRNAs can be also derived from complex DNA
Table 3 Small RNA-based therapeutics in clinical trials
(adapted from [71])

Gene target Drug type Drug name Clinical
phase

Notes

Bcl-2 LNA-oligo SPC2996 I/II CLL

Immunoproteasome
β-subunits LMP2,
LMP7 and MECL1

siRNA Proteasome
siRNA

I Metastatic
lymphoma

PLK1 siRNA PLK SNALP pre-
clinical

M2 subunit of
ribonucleotide
reductase

siRNA CALAA-01 I Solid tumors

PKN3 siRNA Atu027 I Solid tumors

KSP and VEGF siRNA ALN-VSP I Solid tumors

Survivin LNA-oligo EZN3042 I/II Solid tumors

HIF-1α LNA-oligo EZN2968 I/II Solid tumors

Furin shRNA FANG
vaccine

I Solid tumors

eiF-4E LNA-oligo elF-4E ASO I Solid tumors

Survivin LNA-oligo Survivin
ASO

II Solid tumors
sequence elements [75] and that rasiRNAs are a subset
of piRNAs.
The precise mechanism of piRNAs biogenesis is not

clear, but in 2007 Brennecke et al. [73] described a new
mechanism similar to secondary siRNA generation,
called as ping-pong model. He observed that antisense
piRNAs associate with PIWI/AUB complex while sense
piRNAs associate with AGO3 protein. This information
led to the suggestion that PIWI and AUB proteins bind
to maternally deposited piRNAs (primary piRNA) and
this complex is subsequently bound to the transcripts
produced by retrotransposons and cleaves a transcript
generating a sense piRNAs (secondary piRNAs) that
bind to AGO3. Finally, piRNA-AGO3 complex binds to
the retrotransposon transcript, creating another set of
anti-sense piRNAs. However, the model of piRNAs bio-
genesis is still incomplete and precise mechanisms of
action remain poorly characterized (for a review, see
[76-78]).
The PIWI subfamily as well as piRNAs have been

implicated in germ cell development, stem cell self-
renewal, and retrotransposon silencing. Recently, several
studies were published describing the association be-
tween HIWI (the human ortholog of PIWI) expression
and diverse group of cancers including pancreatic [79]
and gastric [80] adenocarcinomas, sarcomas [81], hepa-
tocellular carcinomas [82], colorectal cancer [83], gli-
omas [84] and esophageal squamous cell carcinomas
[85]. It was proved that higher levels of HIWI mRNA
are connected with worse clinical outcome. Moreover,
the expression patern of HIWI in gastric cancer tissues
was similar to that of Ki67 and suppression of HIWI
induced cell cycle arrest in G2/M phase [80]. Lee et al.
[86] described that PIWIL2 (PIWI-like 2) protein is
widely expressed in tumors and inhibits apoptosis
through activation of STAT3/BCL-X(L) signalling path-
way. Similarly, the newest study of Lu et al. [87] shows
that this protein forms a PIWIL2/STAT3/c-Src complex,
where STAT3 is phosphorylated by c-Src and translo-
cated to nucleus. Subsequently, STAT3 binds to P53
promoter and represses its transcription. These findings
indicate that PIWI proteins may be involved in the de-
velopment of different types of cancer and could be a
potential target for cancer therapy. Recently, it was also
proved, that not only PIWI proteins, but also piRNAs
can play an important role in carcinogenesis. It was dis-
covered that expression of piR-823 in gastric cancer tis-
sues was significantly lower than in non-cancerous
tissues. Artificial increase of the piR-823 levels in gastric
cancer cells inhibited their growth. Moreover, the obser-
vations from the xenograft nude mice model confirmed
its tumor suppressive properties [88]. On the contrary,
levels of the piR-651 were upregulated in gastric, colon,
lung, and breast cancer tissues compared to the paired



Sana et al. Journal of Translational Medicine 2012, 10:103 Page 8 of 21
http://www.translational-medicine.com/content/10/1/103
non-cancerous tissues. The growth of gastric cancer cells
was efficiently inhibited by a piR-651 inhibitor and the
cells were arrested at the G2/M phase [89]. Interestingly,
the peripheral blood levels of piR-651 and piR-823 in the
patients with gastric cancer were significantly lower than
those from controls. Thus, piRNAs may be valuable bio-
markers for detecting circulating gastric cancer cells
[90]. Resolving the function of PIWI proteins and piR-
NAs has broad implications not only in understanding
their essential role in fertility, germline, stem cell devel-
opment, and basic control and evolution of animal gen-
omes, but also in the biology of cancers [12].

Small nucleolar RNAs
Small nucleolar RNAs (snoRNAs), 60 – 300 nucleotides
long, represent one of the abundant groups of small
ncRNAs characterized in eukaryotes. SnoRNAs are
enriched in the nucleolus, which is the most prominent
organelle in the interphase nucleus providing the cellular
locale for the synthesis and processing of cytoplasmic
ribosomal RNAs (rRNAs) [91]. Most of the snoRNAs
are located within introns of protein-coding genes and
are transcribed by RNA polymerase II, however, they
can also be processed from introns of longer ncRNA
precursors [92]. Nevertheless, while vertebrate snoRNAs
are prevalently excised from pre-mRNA introns, in plant
and yeast these RNAs are mainly generated from inde-
pendent transcription units, as either monocistronic or
(especially in plants) polycistronic snoRNA transcripts
[93].
All snoRNAs fall into two major classes based on the

presence of short consensus sequence motifs. First group
contains the box C (RUGAUGA) and D (CUGA) motifs,
whereas members of the second group are characterized
by the box H (ANANNA) and ACA elements [94]. In
both classes of snoRNAs, short stems bring the con-
served boxes close to one another to constitute the
structural core motifs of the snoRNAs, which coordinate
the binding of specific proteins to form small nucleolar
RNPs (snoRNPs) distinct for both groups [91,95]. SnoR-
NAs have important functions in the maturation of
other non-coding RNAs. Above all, they manage post-
transcriptional modification of rRNA and snRNA by 2′-
O-methylation and pseudouridylation (for a review, see
[91]). Interestingly, it was identified number of human
snoRNAs with miRNA-like function. These snoRNAs
are processed to small 20–25 nucleotides long RNAs
that stably associate with Ago proteins. Processing is in-
dependent of the Drosha, but requires Dicer. Moreover,
cellular target mRNA, whose activity is regulated by
snoRNA, was identified [96].
Several studies have indicated that alterations of snoR-

NAs play important functions in cancer development
and progression. The first report linking snoRNAs to
cancer was published in 2002 by Chang et al. [97]. He
proved that h5sn2, a box H/ACA snoRNA, was signifi-
cantly downregulated in human meningiomas compared
with normal brain tissues. Subsequently, Dong et al.
[98] identified snoRNA U50 as a reasonable candidate
for the 6q tumor-suppressor gene in prostate cancer
and this statement was confirmed in another study de-
scribing involvement of snoRNAs U50 in the develop-
ment and/or progression of breast cancer [99].
Interestingly, chromosome 6q14-15 is a breakpoint of
chromosomal translocation t(3;6)(q27;q15) for human
B-cell lymphoma [100]. The same year, the GAS5
(growth arrest-specific transcript 5) was identified to
control mammalian apoptosis and cell growth. GAS5
transcript levels were found to be significantly lower in
breast cancer samples relative to adjacent unaffected
normal breast epithelial tissues and despite the fact that
this gene has no significant protein-coding potential, it
was proved that several snoRNAs are encoded in its
introns [101]. By profiling ncRNAs signatures in
NSCLC tissues and matched noncancerous lung tissues,
four snoRNAs (snoRD33, snoRD66, snoRD76 [102] and
snoRA42 [103]) were found to be overexpressed in lung
tumor tissues and it is supposed that they could be used
as potential markers for early detection of non-smal cell
lung cancer [102]. Moreover, snoRD33 is located at
chromosome 19q13.3 that contains oncogenes involved
in different malignances including lung cancer, whereas
snoRD66 and snoRD76 are located at chromosomal
regions 3q27.1 and 1q25.1, respectively. These two
chromosomal segments are the most frequently ampli-
fied in human solid tumors [28,104,105]. Recently, low
levels of four snoRNAs (RNU44, RNU48, RNU43,
RNU6B), commonly used for normalization of miRNA
expression, were associated with a poor prognosis of
the cancer patients [106]. Martens-Uzunova et al. [107]
analyzed the composition of the entire small transcrip-
tome by Illumina/Solexa deep sequencing and he
revealed several snoRNAs with deregulated expression
in samples of patients with prostate cancer. The newest
publication concerning snoRNAs proved that snoRD112-
114 located at the DLK1-DIO3 locus are ectopically
expressed in acute promyelotic leukemia (APL), which
shows that a relationship exists between a chromosomal
translocation and expression of snoRNA loci. Moreover,
in vitro experiments revealed that the snoRD114-1 [14q
(II-1)] variant promotes cell growth through G0/G1 to
S phase transition mediated by the Rb/p16 pathways
[108]. Finally, it was also published that snoRNAs are
present in stable form in plasma and serum samples
[102,106] and therefore could be used as fluid-based bio-
markers for cancers. These facts indicate that snoRNAs
are critically associated with the development and pro-
gression of cancer, however further research for
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comprehensive understanding their role in carcinogen-
esis is required.

Promoter-associated RNAs
Recently, a new class of ncRNAs known as promoter-
associated RNAs (paRNAs) (sometimes termed as
promoter-upstream transcripts – PROMPTs [109], tran-
scription start site-associated RNAs [110] or promoter-
proximal transcription start site RNAs [111]), were discov-
ered. These ncRNAs are derived from eukaryotic promo-
ters and have the potential to regulate the transcription of
protein-coding genes by targeting epigenetic silencing
complexes [71,112,113]. Their size ranged from 18 to 200
nucleotides and they include long, small and tiny RNAs.
The short paRNAs (PASRs) were identified in 2007

[114] using RNA maps. They are located near the pro-
moter or transcription start site (TSS), but they are not
associated with a known protein-coding genes. These
transcripts are 20–90 nt long and it was proved that
they are not Dicer product [110]. Human PASRs are
expressed at low levels and their number per gene is
positively correlated with promoter activity and mRNA
level [109]. The tiny paRNAs or transcription iniciation
RNAs (tiRNAs) are shorter than 23 nt and they are
transcribed in both sense and antisense directions
around the promoter [115]. Furthermore, they are
closely associated with highly expressed promoters and
are preferentially located in GC-rich promoters [71,115].
It is still unclear how these two classes of small RNAs are
related to one another, or if they share common biogen-
esis pathways [115]. Recently, a long paRNAs (PALRs,
100–200 nt) has been identified at a single-gene level and
they were associated with regulatory functions (for a re-
view, see [112,113,116,117]), especially with modification
of DNA methylation [118].
It is supposed, that because of potential of paRNAs to

regulate transcription, their deregulation could be asso-
ciated with different types of diseases, including cancer.
It was proved, that transfection of mimetic paRNAs into
HeLa and HepG2 cells resulted in the transcriptional re-
pression of human C-MYC and connective tissue growth
factor (CTGF) [119]. Hawkins et al. [120] described that
targeting of the human ubiquitin C gene (UbC) with a
small paRNA led to long-term silencing which corre-
lated with an early increase in histone methylation and a
later increase in DNA methylation at the targeted locus.
Furthermore, it was shown that PASRs play an import-
ant role in maintaining accessible chromatin architecture
for transcription and releasing negative supercoils during
transcription [110]. Concerning tiRNAs, they may have
similar functions like PASRs, moreover they are usually
found at CTCF-binding sites. Taft et al. [121] proved,
that overexpression of tiRNAs decreased CTCF binding
and associated gene expression, whereas inhibition of
tiRNAs resulted in increased CTCF localization and
associated gene expression. Wang et al. [122] described,
that an RNA-binding protein TLS (for translocated in
liposarcoma) can specifically bind to CREB-binding pro-
tein (CBP) and p300 histone acetyltransferase depending
on its allosteric modulation by PALRs, and so repress
gene target CCND1 in human cell lines. Finally, it was
shown that paRNAs have the potential to form double-
stranded RNAs and to be processed into endogenous
siRNAs [123]. These facts indicate, that this novel class
of ncRNAs has a great potential to regulate expression
of various tumor suppressors and oncogenes on tran-
scriptional level and therefore be involved in human
cancerogenesis.

Centromere repeat associated small interacting RNAs
Cell stresses can induce incorrect centromere function
manifesting in loss of sister chromatid cohesion, abnor-
mal chromosome segregation, and aneuploidy, which
have been observed in many human diseases including
cancers [124]. These defects are often correlated with
the aberrant accumulation of centromere satellite tran-
scripts [125]. Morover, it was observed that human cells
under stress accumulate large transcripts of SatIII satel-
lites [126]. The accumulation of similar transcripts in
vertebrate cells is thought to result from defective RNA
processing of larger transcripts that leads to a reduction
of the small RNAs that participate in the recruitment
of specific histones critical for centromere function
[125,127]. The research on mammalian model uncov-
ered the strong bidirectional promoter capability of the
kangaroo endogenous retrovirus (KERV-1) LTR to pro-
duce long double-stranded RNAs for both KERV-1 and
surrounding sequences, including sat23. These long
dsRNAs are then processed into centromere repeat
associated small interacting RNAs (crasiRNAs), 34 - 42
nucleotides in length. Unfortunately, the mechanism by
which full-length KERV-1 and sat23 transcripts are pro-
cessed into crasiRNAs remains unknown. The crasiRNAs
are involved in the recruitment of heterochromatin and/
or centromeric proteins. These findings have profound
implications for understanding of centromere function
and epigenetic identity by suggesting that a retrovirus,
KERV-1, may participate in the organization of centro-
mere chromatin structures indispensable to chromosome
segregation in vertebrates [124]. These small centromere-
associated ncRNAs occur conserved among eukaryotes
suggesting their impact also in human.

Telomere-specific small RNAs
Another group of recently described short ncRNAs are
telomere-specific small RNAs (tel-sRNAs). Tel-sRNAs
are ~ 24 nt long, Dicer-independent, and 2′-O-methylated
at the 3′ terminus. They are asymmetric with specificity
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toward telomere G-rich strand, and evolutionarily con-
served from protozoan to mammalian cells. Interestingly,
tel-sRNAs are up-regulated in cells that carry null muta-
tion of H3K4 methyltransferase MLL and down-regulated
in cells that carry null mutations of histone H3K9 methyl-
transferase SUV39H, suggesting that they are subject to
epigenetic regulation. These results support that tel-
sRNAs are heterochromatin associated pi-like small RNAs
[128]. Recently, it was also reported that an 18-mer RNA
oligo of (UUAGGG)3 has potential to inhibit telomerase
TERT activity in vitro by RNA duplex formation in the
template region of the telomerase RNA component [129].
Therefore, it is supposed that tel-sRNAs containing
UUAGGG repeats could act as sensors of chromatin sta-
tus and create a feedback loop between the telomeric het-
erochromatic regulation and telomere length control.
Although tel-sRNAs have not been described in human
until to date, they could play an important role in carcino-
genesis and contribute to unlimited replicative potencial
of cancer cells.

Pyknons
Pyknons are a subset of 127998 patterns of variable
length, which form mosaics in untranslated as well as
protein-coding regions of human genes. Nevertheless,
they are found more frequently in the 3′UTR of genes
than in other regions of the human genome [130,131].
Pyknons are present in statistically significant manner in
genes that are involved in specific processes such as cell
communication, transcription, regulation of transcrip-
tion, signaling, transport, etc. Pyknons involve ~ 40% of
the known miRNA sequences, thus suggesting possible
link with posttranscriptional gene silencing and RNA
interference [131]. Different sets of pyknons are con-
nected to allele-specific sequence variations of disease-
associated SNPs and miRNAs, suggesting that increased
susceptibility to multiple common human disorders is
associated with global alterations in genome-wide regu-
latory templates affecting the biogenesis and functions of
non-coding RNAs [132].
In the time since their discovery, evidence has been

slowly accumulating that these pyknon motifs mark
transcribed, non-coding RNA sequences with potential
functional relevance in human disease. Tsirigos et al.
[133] described two GO terms (GO:0006281/DNA re-
pair, GO:0006298/mismatch repair) that were signifi-
cantly enriched in pyknons-containing regions of the
human introns. He pointed out that these two terms are
uniquely associated with pyknons and a search of the
ENSEMBL database [134] for human genes labeled with
these two GO terms identified a MLH1 gene, that has
been associated with hereditary non-polyposis colorectal
cancer and other types of carcinomas and microsatellite
instabilities. The human MLH1 transcript has 17 introns
and the authors proved that these introns contain more
than 10 different pyknons. Nevertheless, further research
for comprehensive understanding their role in carcino-
genesis is necessary.

Long non-coding RNAs
Long non-coding RNAs (lncRNAs) are the broadest class
encompassed all non-protein-coding RNA species with
length more than 200 nucleotides, however, frequently
ranging up to 100 kb. Many identified lncRNA are tran-
scribed by RNA polymerase II (RNAPII), spliced, and
usually contain canonical polyadenylation signals, but
this is not a fast rule [2]. On the other hand, Pagano et
al. [135] found out that some of these lncRNAs are due
to their promoter structure likely to be transcribed by
polymerase III (RNAPIII) and he marked them as
cogenes since they could specifically coact with a
protein-coding pol II gene. There is substantial evidence
to suggest that lncRNAs mirror protein coding genes.
Additionally, lncRNAs’ promoters are bound and regu-
lated by transcriptional factors and epigenetically marked
with specific histone modifications [136]. LncRNAs are
developmentally and tissue specific, and have been asso-
ciated with a spectrum of biological processes, for ex-
ample, alternative splicing, modulation of protein
activity, alternation of protein localization, and epigenetic
regulation. LncRNAs can be also precursors of small
RNAs and even tools for miRNAs silencing [71,137-141].
However, one of their primary tasks appears to be regula-
tors of protein-coding gene expression (Figure 3) [142].
Recently, Wang et al. [143] described four different
mechanisms of lncRNAs action. He supposes that these
molecules can function as signals, decoys, guides or as
scaffolds (Figure 4). It is not surprising, then, that dysre-
gulation of lncRNAs seems to be an important feature
of many complex human diseases, including cancer
(Table 4), ischaemic heart disease [144] and Alzheimer’s
disease [145]. Also dysregulation of lncRNAs that func-
tion as regulators of the expression of tumor suppres-
sors or oncogenes, and not the protein-coding sequence
itself, may be one of the ‘hits’ that leads to oncogenesis
[2]. That is why they might be suitable as potential bio-
markers and targets for novel therapeutic approaches in
the future.

Long intergenic non-coding RNAs
Long intergenic non-coding RNAs (lincRNAs) are newly
discovered ncRNAs belonging to lncRNAs. RNAs of this
subclass ranging in length from several hundred to tens
of thousands of bases and they lie within the genomic
intervals between two genes. More than 3000 human
lincRNAs have been identified, but less than 1% has
been characterized [136,186]. It was shown that distinct
lincRNAs are involved in diverse biological processes



Figure 3 Schematic illustration of lncRNAs functioning. LncRNA transcribed from an upstream non-coding promoter can negatively (1) or
positively (2) affect expression of the downstream gene by inhibiting RNA polymerase II recruitment and/or inducing chromatin remodeling,
respectively. LncRNA is able to hybridize to the pre-mRNA and block recognition of the splice sites by the spliceosome, thus resulting in an
alternatively spliced transcript (3). Alternatively, hybridization of the sense and antisense transcripts can allow Dicer to generate endogenous
siRNAs (4). The binding of lncRNA to the miRNA results in the miRNA function silencing (5). The complex of lncRNA and specific protein partners
can modulate the activity of the protein (6), is involved in structural and organization roles of the cell (7), alters the protein localizes in the cell
(8), and affects epigenetic processes (9). Finally, long ncRNAs can be processed to the small RNAs (10)
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such as imprinting or cancer metastasis [7,140,186].
Moreover, recent studies proved that lincRNAs are ex-
quisitely regulated during development and in response
to diverse signaling cues, and exhibit distinct gene ex-
pression patterns in primary tumors and metastases
[136]. Therefore, these lncRNAs could be utilized for
cancer diagnosis, prognosis, and serve as potential thera-
peutic targets.
Recently it has been demonstrated that lncRNAs can

act as natural ‘miRNA sponges’ to reduce miRNA levels
[155]. The most highly upregulated transcript found in a
microarray-based study of gene expression in hepatocel-
lular carcinoma was determined to be the ncRNA
HULC, or Highly Upregulated in Liver Cancer. Tran-
scribed from chromosome 6p24.3, this lncRNA demon-
strates the hallmarks of a typical mRNA molecule,
including a single spliced GT-AG intron, canonical poly-
adenylation signals upstream of the poly(A) tail and nu-
clear export demonstrating strong localization to the
cytoplasm. Although HULC was found to co-purify with
ribosomes, no translation product for this lncRNA has
been detected, supporting its classification as a non-
coding transcript [156]. In addition to liver cancer,
HULC was found to be highly upregulated in hepatic
colorectal cancer metastasis and in hepatocellular car-
cinoma cell lines (HCC) producing hepatitis B virus
(HBV) [157]. HULC exists as part of an intricate auto-
regulatory network, which when perturbed, resulted in
increased HULC expression (Figure 5a). The HULC
RNA appeared to function as a ‘molecular decoy’ or
‘miRNA sponge’ sequestering miR-372, of which one
function is the translational repression of PRKACB, a
kinase targeting cAMP response element binding protein
(CREB). Once activated, the CREB protein was able to
promote HULC transcription by maintaining an open
chromatin structure at the HULC promoter resulting in
increased HULC transcription [158].
Another well known RNA that belongs to lncRNA

subclass described in previous paragraph is HOX anti-
sense intergenic RNA (HOTAIR) (see Figure 5b).
HOTAIR is 2.2 kb gene localized within the human
HOXC gene cluster on the long arm of chromosome 2.
It has been shown that this lincRNA has a potential to
regulate HOXD genes in trans via the recruitment of
polycomb repressive complex 2 (PRC2), followed by the
trimethylation of lysine 27 of histone H3 [7]. In general,
the 5′ region of the RNA binds the PRC2 complex re-
sponsible for H3K27 methylation, while the 3′ region of
HOTAIR binds LSD1 (flavin-dependent monoamine oxi-
dase), a histone lysine demethylase that mediates enzym-
atic demethylation of H3K4Me2. HOTAIR exists in
mammals, has poorly conserved sequences and consid-
erably conserved structures, and has evolved faster than
nearby HOXC genes [187]. HOTAIR was one of the first
metastasis-associated lncRNAs, described to have a fun-
damental role in cancer. This lncRNA was found to be
highly upregulated in both primary and metastatic breast
tumors, showing up to 2000-fold increased transcription



Figure 4 Schematic diagram of the four mechanisms of
lncRNAs functioning. A, lncRNAs can function as signals and
regulate gene expression. B, lncRNAs can titrate transcription factors
and other proteins away from chromatin or they can function as
decoy for miRNA target sites. C, lncRNAs can recruit chromatin-
modifying enzymes to target genes and therefore function as
guides. D, lncRNAs can bring together multiple proteins to form
ribonucleoprotein complexes (modified according to [143])
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over normal breast tissue. This phenotype seems to be
closely linked with PRC2-dependent gene repression
induced by HOTAIR. High levels of HOTAIR expression
correlate with both metastasis and poor survival rate,
connecting lncRNAs with tumor invasiveness and pa-
tient prognosis [140]. In addition, it was observed that
the high expression level of HOTAIR in hepatocellular
carcinoma could be a candidate biomarker for predicting
tumor recurrence in hepatocellular carcinoma patients
who have undergone liver transplant therapy and might
be a potential therapeutic target [188]. Huarte et al.
[189] identified several lincRNAs that are regulated by
p53. Furthermore, he proved that lincRNAs-p21 serves
as a repressor in p53-dependent transcriptional
responses, since inhibition of this lincRNA affected the
expression of hundreds of gene targets enriched for
genes normally repressed by p53.
While targeting cancer-specific miRNAs has proven to

be successful, it will be necessary to design molecules with
potential to inhibit lincRNAs. Gupta et al. [140] proved
that these molecules can be depleted by siRNAs, but this
possibility is quite complicated because of extensive sec-
ondary structures in lincRNAs [187]. Nevertheless, it is
evident that cancer-associated lincRNAs may provide new
approaches to the diagnosis and treatment of cancer.

Long intronic non-coding RNAs
The biogenesis of long intronic ncRNAs is poorly under-
stood at this time. Nevertheless, there are some indirect
evidences that indicate an involvement of RNA polymer-
ase II (RNAPII). Among such evidences belong a con-
cordant and co-regulated expression profiles of many
intronic ncRNAs and their corresponding protein-
coding genes, the broad contribution of RNAPII asso-
ciated transcription factors and physiological stimuli in
the transcription of intronic ncRNAs as well the pres-
ence of poly(A+) tail [190-194]. Nonetheless, it is
described that over 10% of long intronic poly(A+)
ncRNAs are up-regulatated compared to only 4% of
protein-coding transcripts after treatment with the
RNAPII specific inhibitor α-amanitin [190,193,195].
These findings suggest that some intronic ncRNA and
peculiar protein-coding RNAs could be transcribed by
another RNA polymerase such as the recently described
spRNAP-IV, whose transcriptional output seems to be
enhanced by α-amanitin, or also could be transcribed by
RNAP III [190,195-199].
Similarly to lincRNAs, there are also described evolu-

tionary conserved long intronic ncRNAs sequences from
mouse and human [200,201]. When the introns of a lar-
ger selection of vertebrates were aligned, the length of
the conserved region became only 100 bp, while in the
alignment of a smaller group of closely related species
(human–mouse–cow–dog) the evolutionary conserva-
tion of the region extended to as much as 750 bp [201].
The widespread occurrence, tissue and subcellular ex-

pression specificity, evolutionary conservation, environ-
ment alteration responsiveness and aberrant expression in
human cancers are features that accredit intronic ncRNAs
to be mediators of gene expression regulation. A few sets
of intronic ncRNAs have the same tissue expression pat-
tern as the corresponding protein-coding genes, whereas
others are inversely correlated. These findings point to
complex regulatory relationships between intronic ncRNAs
and their host loci [190,193,202,203]. Some small ncRNAs
are encoded within intronic regions; moreover, intronic



Table 4 Human cancer associated lncRNAs (adapted from [4])

LncRNA Size Cytoband Cancer types References

HOTAIR 2158 nt 12q13.13 breast [7,140]

MALAT1/α/NEAT2 7.5 kb 11q13.1 breast, lung, uterus, pancreas, colon, prostate,
liver, osteosarcoma, neuroblastoma, cervix

[146-151]

HULC 500 nt 6p24.3 liver [152,153]

BC200 200 nt 2p21 breast, cervix, esophagus, lung, ovary, parotid, tongue [154,155]

H19 2.3 kb 11p15.5 bladder, lung, liver, breast, endometrial, cervix esophagus,
ovary, prostate, colorectal

[156-159]

BIC/MIRHG155/MIRHG2 1.6 kb 21q11.2 B-cell lymphoma [160]

PRNCR1 13 kb 8q24.2 prostate [161]

LOC285194 2105 nt 3q13.31 osteosarcoma [162]

PCGEM1 1643 nt 2 g32.2 prostate [163-165]

UCA1/CUDR 1.4–2.7 kb 19p13.12 bladder, colon, cervix, lung, thyroid, liver,
breast, esophagus, stomach

[166]

DD3/PCA3 0.6–4 kb 9q21.22 prostate [167,168]

anti-NOS2A 1.9 kb 17q23.2 brain [169]

uc.73A 201 nt 2q22.3 colon [170]

uc.338 590 nt 12q13.13 liver [171]

ANRIL/p15AS/CDK2BAS 34.8 kb 9p21.3 prostate, leukemia [172-175]

MEG3 1.6 kb 14q32.2 brain [176-178]

GAS5/SNHG2 isoforms 1q25.1 breast [101]

SRA-1/SRA 1965 nt 5q31.3 breast, uterus, ovary [179,180]

PTENP1 3.9 kb 9p13.3 prostate [181,182]

ncRAN 2186 nt 2087 nt 17q25.1 bladder, neuroblastoma [183,184]

LSINCT5 2.6 kb 5p15.33 breast, ovary [185]
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miRNAs tend to be present in large introns with 5′-biased
position distribution, what correlates with the previous ob-
servation that most long intronic transcripts are expressed
within first introns of the host genes. Thus, it is expected
that a number of long intronic ncRNAs are processed into
smaller ncRNAs [68,190,204,205]. Similar to lincRNAs
HOTAIR, Heo et al. [206] described a long intronic non-
coding RNA termed as cold assisted intronic non-coding
RNA – COLDAIR, which is required for the vernalization-
mediated epigenetic repression of FLC mediated by PRC2.
Interestingly, the newest study of Tahira et al. [207] shows
that long intronic non-coding RNAs are differentially
expressed in primary and metastatic pancreatic cancer.
Moreover, loci harbouring intronic lncRNAs differentially
expressed in pancreatic ductal carcinoma metastases were
enriched in genes associated to the MAPK pathway. These
findings indicate potential relevance of this class of tran-
scripts in biological processes related to malignant trans-
formation and metastasis.

Telomere-associated ncRNAs
Telomeres protect linear chromosome ends from being
recognized and processed as double-strand breaks by
DNA repair activities. This protective function of telo-
meres is essential for chromosome stability. Until re-
cently, the heavily methylated state of subtelomeric
regions, the gene-less nature of telomeres, and the
observed telomere position effect led to the notion that
telomeres are transcriptionally silent [208]. This hypoth-
esis was recently challenged when several groups inde-
pendently demonstrated that subtelomeric and telomeric
regions, although devoid of genes, have the potential to
be transcribed into telomeric UUAGGG-repeat contain-
ing ncRNAs (TERRA) [209-211]. TERRA molecules are
conserved among eukaryotes and have been identified
also in human. TERRA transcripts are synthesized from
the C-rich strand and polyadenylated, and their synthesis
is α-amanitin-sensitive, suggesting that they are tran-
scripts of RNAPII [208,212]. TERRA molecules range
between 100 bp and >9 kb in length and were reported
to form intermolecular G-quadruplex structure with
single-stranded telomeric DNA, but can also fold into a
compact repeated structure containing G-quartets [211].
TERRA transcripts can be found throughout the differ-
ent stages of the cell cycle, and their levels are affected
by several factors that include telomere length, tumor



Figure 5 Proposed mechanism of HULC up-regulation in hepatocellular carcinoma (a) and HOTAIR mediated gene silencing of 40 kb of
the HOXD locus (b).
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stage, cellular stress, developmental stage, and telomeric
chromatin structure [208].
TERRA most likely negatively regulates telomere length

[211]. Increased TERRA levels by interfering with TERRA
decay, such as the impairment of non-sense-mediated
RNA decay in human cells or by deletion of the 5′–3′exo-
nuclease Rat1p in Saccharomyces cerevisiae, are associated
with a loss of telomere reserve [209,212]. Current models
propose a role for TERRA in controlling telomerase activ-
ity. In yeast, the formation of a DNA/RNA hybrid between
TERRA and telomeres is thought to inhibit elongation by
telomerase, whereas in mammals, TERRA was shown to
efficiently inhibit telomerase activity in vitro, presumably
by base pairing with the template region of the RNA com-
ponent of telomerase [208,210,212]. Caslini et al. [213]
described that telomere uncapping through either TRF2
shelterin protein knockdown or exposure to telomere G-
strand DNA oligonucleotides significantly increases the
transcription of TERRA, an effect mediated by the func-
tional cooperation between transcriptional regulator MLL
and the tumor suppressor p53. Sampl et al. [214] found
out that the expression of TERRA in patients with glio-
blastoma multiforme negatively correlates with the grade.
Moreover, this finding of a diagnostic value of TERRA
levels in astrocytoma WHO grade 2 to 4 corresponded
with preliminary data in advances stages of human tumors
of larynx, colon, and lymph node [210]. Unfortunately, it
is largely unclear how the expression of TERRA and the
amount of TERRA transcripts are regulated in the cell
[208]. Nevertheless, TERRA opens new avenues for telo-
mere research that will impact on telomere-associated dis-
eases including many cancers [215].

Long ncRNAs with dual functions
Until not long ago, ncRNAs were strictly considered as
RNA molecules with regulatory functions but not
associated with the protein coding capacity typical of
messenger RNAs. However, the recent identification and
characterization of bifunctional RNAs, i.e. RNAs for
which coding capacity and activity as functional regula-
tory RNAs have been reported, suggests that a definite
categorization of some RNA molecules is far from being
straightforward [216]. The steroid receptor RNA activa-
tor (SRA) is a unique co-regulator that functions as a
non-coding RNA, although incorporation of an additional
5′ region can result in translation of an SRA protein
(SRAP) that also has co-activator activity [180,217,218].
SRA was initially shown to enhance gene expression
through a ribonucleoprotein complex with steroid recep-
tors and SRC-1 [217]. Currently, SRA is known as an
RNA co-activator for many other nuclear receptors. In
addition, SRA may act as an RNA scaffold for co-
repressor complexes [216,219]. SRA transcripts have been
identified in normal human tissues, with a higher expres-
sion in liver, skeletal muscle, adrenal and pituitary glands,
whereas intermediate expression levels were observed in
the placenta, lung, kidney and pancreas [217]. In some
pathological cases, increased RNA levels of SRA were
reported like in breast and ovarian tumors [179,220,221].
Interestingly, levels of SRA expression could be character-
istic of tumor grade or particular subtypes of lesions
among different tumors. Indeed, serous ovarian tumors
showed higher levels of SRA than granulosa tumor cells
[216,220].

Pseudogene RNAs
Pseudogenes are gene copies that have lost the ability
to code for a protein; they are typically identified
through annotation of disabled, decayed or incomplete
protein-coding sequences. These molecules have long
been labeled as “junk” DNA, failed copies of genes
that arise during the evolution of genomes. However,



Sana et al. Journal of Translational Medicine 2012, 10:103 Page 15 of 21
http://www.translational-medicine.com/content/10/1/103
recent results showed that some pseudogenes appear to
harbor the potential to regulate their protein-coding cou-
sins [222,223]. Processed pseudogenes are made through
retrotransposition of mRNAs, especially as a possible by-
product of LINE-1 (Long INterspersed Elements) retro-
transposition. Thus, these mRNAs are reverse tran-
scribed and re-integrated into the genomic DNA
[224,225]. The parent gene of the mRNA need not to be
on the same chromosome as the retrotransposed copy.
Retrotransposed mRNAs have three possible fates in the
genome: formation of processed genes, formation of
non-transcribed pseudogenes, or formation of pseudo-
genes transcribed into RNAs [222]. Interestingly, some
of these RNAs exhibit a tissue-specific pattern of acti-
vation. Pseudogene transcripts can be processed into
short interfering RNAs that regulate coding genes
through the RNAi pathway. In another remarkable dis-
covery, it has been shown that pseudogene RNAs are
capable of regulating tumor suppressors and oncogenes
by acting as microRNA decoys [223,225]. Moreover,
Devor et al. [226] found out that primate-specific miR-
NAs, miR-220 and miR-492, each lie within a pro-
cessed pseudogene. Several studies also show
deregulated expression of these molecules during can-
cer progression, which provides evidence for the func-
tional involvement of pseudogene RNAs in
carcinogenesis and suggests these molecules as a po-
tential novel diagnostic or therapeutic target in human
cancers. One of these pseudogenes is myosin light
chain kinase pseudogene (MYLK). MYLKP1 is partially
duplicated from the original MYLK gene that encodes
nonmuscle and smooth muscle myosin light chain kin-
ase (smMLCK) isoforms and regulates cell contractility
and cytokinesis. Despite strong homology with the
smMLCK promoter (∼ 90%), the MYLKP1 promoter is
minimally active in normal bronchial epithelial cells,
but highly active in lung adenocarcinoma cells. More-
over, MYLKP1 and smMLCK exhibit negatively corre-
lated transcriptional patterns in normal and cancer
cells with MYLKP1 strongly expressed in cancer cells
and smMLCK highly expressed in non-neoplastic
cells. For instance, expression of smMLCK decreased
in colon carcinoma tissues compared to normal colon
tissues. Mechanistically, MYLKP1 overexpression inhi-
bits smMLCK expression in cancer cells by decreasing
RNA stability, leading to increased cell proliferation.
These findings provide strong evidence for the func-
tional involvement of pseudogenes in carcinogenesis
and suggest MYLKP1 as a potential novel diagnostic
or therapeutic target in human cancers [227]. Using
massively parallel signature sequencing (MPSS) tech-
nology, RT-PCR, and 5′ rapid amplification of cDNA
ends (RACE) a novel androgen regulated and tran-
scribed pseudogene of kallikreins termed as KLK31P
was discovered. It was further proved that this
pseudogene may play an important role in prostate
carcinogenesis [228]. He et al. [229] found out that
pseudogene RNAs are also able to regulate a dosage
of PTEN tumor suppressor during tumor develop-
ment. Pseudogene RNAs however, warrant further in-
vestigation into the true extent of their function
[223,227].

Transcribed-ultraconserved regions
Ultraconcerved regions (UCRs) are a subset of con-
served sequences that are located in both intra- and
intergenic regions. They are 481 sequences, longer than
200 bp that are absolutely conserved between ortholo-
gous regions of human, rat, and mouse genomes [230].
Calin et al. [170] have proved in cancer systems that dif-
ferentially expressed UCR could alter the functional
characteristics of malignant cells. The link between gen-
omic location of UCRs and analyzed cancer-related gen-
omic elements is highly statistically significant and
comparable to that reported for miRNAs. UCRs are fre-
quently located at fragile sites and genomic regions
involved in cancers. Using northern blot, qRT-PCR and
microarray analysis, it was revealed that UCRs have dis-
tinct signatures in human leukemias and carcinomas
[170].
Majority of UCRs are transcribed (T-UCRs) in normal

human tissues, both ubiquitously and tissue specifically.
From the molecular point of view, untranscribed UCRs
might have regulatory functions as enhancers [231],
while many functions can be assigned for T-UCRs, such
as antisense inhibitors for protein-coding genes or other
ncRNAs, including miRNAs. On the other hand, instead
of T-UCRs interacting with protein-coding genes and
miRNAs, it is possible that miRNAs control T-UCRs.
Evidence supporting this predication is that many T-
UCRs have significant antisense complementarity with
particular miRNAs and negative correlation between ex-
pression of specific T-UCRs and predicted interactor
miRNAs [170,232].
The expression of many T-UCRs is significantly altered

in cancer, especially in adult chronic lymphocytic leuke-
mias, colorectal and hepatocellular carcinomas and neu-
roblastomas [170]. Their aberrant transcription profiles
can be used to distinguish types of human cancers and
have been linked to patient outcome [233]. Especially in
neuroblastoma, functional T-UCR annotations, inferred
through a functional genomics approach and validated
using cellular models, reveal associations with several
cancer-related cellular processes such as apoptosis and
differentiation [234]. Further, DNA hypomethylation
induces release of T-UCR silencing in cancer cells. Stud-
ies of primary human tumors have shown that hyper-
methylation of T-UCR CpG islands is common event
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among the various tumor types. Thus in addition to
miRNAs, another class of ncRNAs (T-UCRs) undergoes
DNA methylation-associated inactivation in transformed
cells, and so supports model that both epigenetic and
genetic alterations in coding and noncoding sequences
cooperate in human tumorigenesis. Most importantly,
restoration of T-UCR expression was observed upon
treatment with the DNA-demethylating agent [232]. An-
other study proved, that SNPs (single nucleotide poly-
morphisms) rs9572903 and rs2056116 in ultraconserved
regions were associated with increased familial breast
cancer risk [235]. Because of increasing number of stud-
ies concerning T-UCRs is published, it is supposed that
the more specific roles of these molecules in cancer will
be known in a short time.

Conclusions and future perspectives
For a long time, the central dogma of molecular biology
proposed RNA molecules primarily to be informational
“messenger” between DNA and protein. But, surprisingly,
only 2% of the human genome sequence encodes proteins,
while a large part of it is devoted to the expression of
ncRNAs, which are divided into two main groups accord-
ing to their nucleotide length – small and long ncRNAs.
These molecules are suggested to be important regulators
of gene expression. Nevertheless, the two groups of
ncRNAs are distinct in their biological functions and
mechanisms of gene regulations. Small ncRNAs are
involved mainly in the post-transcriptional gene regulation
using translational repression or RNAi pathway, while
long ncRNAs are much more involved in epigenetic regu-
lation. In many cases, differential expression of ncRNAs is
becoming recognized as a one of the hallmarks of cancer
cell, indicating their potential usage as the novel diagnos-
tic, prognostic, or predictive biomarkers. Growing evi-
dence also suggests that ncRNAs have the promising
potential in targeted regulation of gene expression and,
therefore, in cancer targeted therapy. However, the func-
tion of many ncRNAs remains unknown and it will be ne-
cessary to discover the precise mechanisms by which are
these molecules involved in carcinogenesis.
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