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A knowledge graph of clinical trials 
( CTKG)
Ziqi Chen1,4, Bo Peng1,4, Vassilis N. Ioannidis2, Mufei Li3, George Karypis2 & Xia Ning1*

Effective and successful clinical trials are essential in developing new drugs and advancing new 
treatments. However, clinical trials are very expensive and easy to fail. The high cost and low success 
rate of clinical trials motivate research on inferring knowledge from existing clinical trials in innovative 
ways for designing future clinical trials. In this manuscript, we present our efforts on constructing 
the first publicly available Clinical Trials Knowledge Graph, denoted as CTKG . CTKG includes nodes 
representing medical entities in clinical trials (e.g., studies, drugs and conditions), and edges 
representing the relations among these entities (e.g., drugs used in studies). Our embedding analysis 
demonstrates the potential utilities of CTKG in various applications such as drug repurposing and 
similarity search, among others.

Clinical trials are studies aiming at determining the safety and efficacy of interventions, treatments or investi-
gational drugs on human subjects1. Effective and successful clinical trials are essential in developing new drugs 
and advancing new treatments2. However, clinical trials are very expensive. As reported in Sertkaya et al.3, the 
average cost of a single phase in clinical trials ranges from 1.4 million up to 52.9 million US dollars. In addi-
tion, the success rate of the clinical trials is considerably low. As reported in Wong et al.4, for certain therapeutic 
groups like Oncology, the overall success rate of clinical trials could be as low as 3.4%. The high cost and low 
success rate of clinical trials motivate deliberate analysis of existing clinical trials, inferring knowledge from 
them, utilizing existing clinical trials in innovative ways, and accordingly carefully designing future clinical tri-
als. The Access to Aggregate Content of ClinicalTrials.gov (AACT) database5 represents an effort in enhancing 
the accessibility and analysis of the clinical trial data. However, as a relational database, AACT is not formatted 
for the purpose of inferring new knowledge from existing clinical trials6. A Knowledge Graph (KG), instead, is 
a graph representation in which information entities are represented as nodes, and their relations are coded as 
edges connecting the corresponding nodes. In contrast to relational databases, KG has been proven7–10 to be an 
effective representation for knowledge inference purposes. Constructing a KG over clinical trial data is vital for 
advancing the analysis and research of clinical trials. In this manuscript, we present our work on constructing a 
such KG, referred to as Clinical Trials Knowledge Graph, denoted as CTKG , and also release CTKG to the research 
community to facilitate advanced research using clinical trial data. CTKG includes nodes representing medical 
entities (e.g., studies, drugs and conditions), and edges representing relations among these entities (e.g., drugs 
used in studies). Different from the recently released knowledge base11 that focuses only on extracting medical 
entities from the eligibility criteria in clinical trials, CTKG includes more medical entities (e.g., adverse events 
and outcomes) and also the relations among these entities. The rich information in CTKG could enable more 
biomedical applications (e.g., adverse drug event prediction, outcome prediction) than the existing knowledge 
base in clinical trials. Figure 1 presents the schema of CTKG . The detailed descriptions of nodes and edges in 
CTKG will be presented in “Nodes in CTKG” section. To the best of our knowledge, CTKG is the first publicly 
available clinical trials knowledge graph in the scientific research community. The results of the embedding 
analysis over CTKG demonstrate its potential utilities in various applications such as drug repurposing and 
similarity search, among others.

Results
CTKG schema.  Figure 1 presents the schema of CTKG . The schema presents the different information enti-
ties involved in clinical trials, represented as nodes, and the relations among them, represented as edges. There 
are 18 types of nodes and 21 types of edges in CTKG . Each node and edge type has attributes describing the prop-
erties of the nodes and edges. The statistics of different nodes and edges are presented in Tables 1 and 2, respec-
tively. Detailed descriptions of node and edge attributes are available in the online documentation of CTKG12. We 
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developed a web portal (https://u.​osu.​edu/​ning.​104/​data-​set/​ctkg/​ctkg-​webpo​rtal/) for users to visualize CTKG 
and access its nodes and edges interactively.

Nodes in CTKG.  Each study node represents a clinical trial and is associated with the primary properties 
of that clinical trial as node attributes. The properties of each study node describe the purposes, phases and the 
protocols of the corresponding clinical trial. Each study node links to condition nodes, drug nodes, outcome 
nodes and multiple types of group nodes via one-to-many relationships. Each condition node describes a disease 
or syndrome that is extracted from the AACT and studied by some clinical trials.

Each drug-term node represents the drug used in clinical trials, and is identified by the extracted drug mention 
(“Drug mentions and normalization” section). The drug-term nodes connect with study nodes via StudiedDrug 
and UsedDrug relations. The StudiedDrug relation connects studies and drug terms that are studied in at least 
one study group of the corresponding clinical trial, and the UsedDrug relation connects studies and the auxiliary 
drug terms such as pain reducers. Please refer to “Drug mentions and normalization” section for more details.

Each outcome node represents an outcome measure used to evaluate the efficacy of interventions in the clini-
cal trials, and has the name and the description of the outcome measure as attributes. For example, the study 
“NCT04322526” uses the outcome “changes in blood oxygenation level-dependent (BOLD)” to evaluate the 
efficacy of interventions. Each outcome node is connected to a study node, representing that this specific outcome 
is used within the study. Note that unlike the condition node linking to multiple study nodes, each outcome node 
links to a unique study node. This is due to the complexity and the diversity of outcome measures, which makes 
it difficult to be shared across multiple study nodes. Each outcome node also links to one cluster-outcome node 
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Figure 1.   Schema of CTKG.

Table 1.   Statistics of node types in CTKG.

Node type Is study specific? Statistics

Study Yes 8210

Condition No 1394

Drug term No 2548

Event group Yes 22,725

Adverse event No 18,546

Organ No 27

Baseline group Yes 27,068

Baseline record Yes 315,533

Drop group Yes 22,272

Period Yes 34,330

Drop record Yes 123,627

Outcome group Yes 32,499

Method No 907

Outcome measurement Yes 690,626

Outcome analysis Yes 107,294

Outcome Yes 88,386

Standard outcome No 492

Cluster outcome No 200

https://u.osu.edu/ning.104/data-set/ctkg/ctkg-webportal/
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and multiple standard-outcome nodes. The connection between the outcome node and the cluster-outcome node 
represents that the name of the outcome can be assigned to the cluster represented by the cluster-outcome node, 
while the connection between the outcome node and the standard-outcome node represents that the name or the 
description of the outcome contains the standard outcome measure. Please refer to “Outcome extraction and 
outcome clustering” section for more details.

Each group node represents a study arm or a comparison group, that is, a group of participants who receive 
a specific intervention. There are multiple types of group nodes as follows:

•	 event-group node. The information described by each event-group node is the number of participants within 
the group affected by specific types of adverse events. Each event-group node is connected to multiple drug 
nodes representing the drugs used in the event group, and adverse-event nodes representing the specific 
adverse events that occurred in the event group. Each adverse-event node also links to an organ-system node 
representing the affected organ system.

•	 baseline-group node. Each baseline-group node represents a group of participants with their demographic 
attributes (e.g., “Age” and “Ethnicity”) or study-specific attributes (e.g., “Baseline Modified Gingival Index”). 
Each baseline-group node is connected to one or multiple baseline-record nodes.

•	 drop-group node. Each drop-group node represents a group of participants with their withdrawal information. 
Each drop-group node is connected to one or multiple period nodes. Each period node represents an interval 
of the study (e.g., “First Intervention” and “Part 1: Treatment Period 1”), and has attributes describing the 
number of participants at the beginning and the end of the period. Each period node can link to multiple 
drop-record nodes. Each drop-record node includes a withdrawal reason and documents the number of the 
participants in the group withdrawing with this reason in a period.

•	 outcome-group node. An outcome-group node has the information on the efficacy of the studied interventions 
on the participants. The efficacy is evaluated by different outcome measures and analyzed by different statisti-
cal test methods with the measurements. For example, an outcome-group node could represent a group of 
17 participants receiving Naltrexone as the intervention, and the efficacy of Naltrexone was evaluated using 
the results from this group of participants; these 17 participants and the efficacy evaluation are included in 
an outcome-group node. Other nodes related to the efficacy measures of interventions are as below:

–	 method node. Each method node represents a statistical hypothesis testing method that is used to make 
inference or draw conclusion statistically from the data collected in clinical trials. For example, the 
variance analysis method “ANOVA” could be a method node that is used to test the superiority of an 
intervention compared with a control in a clinical trial. Each method node is connected to multiple 
outcome-analysis nodes, representing that the method is used to conduct the analyses. Please refer to 

Table 2.   Statistics of relation types in CTKG. Columns represent: “Relation type”: the type of relation; “Node 
type 1”: the type of head nodes in the relations; “#Node 1”: the number of unique head nodes with the 
relations; “Node type 2”: the type of tail nodes in the relations; “#Node 2”: the number of unique tail nodes 
with the relations; “#Relations”: the number of relations of a relation type.

Relation type Node type 1 #Node 1 Node type 2 #Node 2 #Relations

Study-Condition Study 8210 Condition 1394 17,259

Study-EventGroup Study 8172 Event group 22,725 22,725

Study-BaselineGroup Study 8209 Baseline group 27,068 27,068

Study-DropGroup Study 8210 Drop group 22,272 22,272

Study-OutcomeGroup Study 8210 Outcome group 32,499 32,499

Study-Outcome Study 8210 Outcome 88,386 88,386

Study-StudiedDrug Study 8169 Drug term 2373 20,982

Study-UsedDrug Study 2234 Drug term 920 3992

Drug-EventGroup Drug term 2201 Event group 21,790 31,528

EventGroup-AdverseEvent Event group 20,571 Adverse event 18,546 966,450

AdverseEvent-Organ Adverse event 18,546 Organ 27 18,546

BaselineGroup-BaselineRecord Baseline group 27,068 Baseline record 315,533 315,533

DropGroup-Period Drop group 22,272 Period 34,330 34,330

Period-DropRecord Period 25,956 Drop record 123,627 123,627

OutcomeGroup-OutcomeMeasurement Outcome group 32,240 Outcome measurement 690,541 690,541

OutcomeGroup-OutcomeAnalysis Outcome group 23,923 Outcome analysis 107,294 209,314

OutcomeAnalysis-Method Outcome analysis 91,463 Method 907 91,463

Outcome-OutcomeAnalysis Outcome 45,689 Outcome analysis 107,294 107,294

Outcome-OutcomeMeasurement Outcome 85,905 Outcome measurement 690,626 690,626

Outcome-ClusterOutcome Outcome 88,244 Cluster outcome 200 88,244

Outcome-StandardOutcome Outcome 50,342 Standard outcome 492 58,819
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“Statistical analysis method normalization” section for more details about the normalization of method 
names.

–	 outcome-measurement node. Each outcome-measurement node represents the measurement of a specific 
outcome measure (i.e., outcome node) on the corresponding group of participants. For example, the 
measurement of the average changes in BOLD (i.e., outcome node) on the 17 participants in the outcome-
group node is 1.23 with a standard deviation 1.07, and is represented as a outcome-measurement node. 
Each outcome-measurement node links to one outcome node and one outcome-group node.

–	 outcome-analysis node. Each outcome-analysis node represents a statistical analysis on a specific outcome 
measure by comparing multiple outcome groups using a statistical testing method. For example, the 
analysis of the outcome “average changes in BOLD” via the statistical testing method “paired t-test” on 
two groups of participants receiving the intervention “Naltrexone” and placebo, is represented as an 
outcome-analysis node; the p-value of the analysis is 0.002, indicating that the alternative “Naltrexone 
will block contextual processing” can be accepted at the significance level of 0.005. Each outcome-analysis 
node links to one outcome node, one method node and multiple outcome-group nodes.

Note that the different types of group nodes for a study could represent the same participant group with different 
information. According to AACT, using a single group to uniquely represent a participant group in the study 
is impossible due to the complicated designs of clinical trials. Therefore, we followed AACT and used different 
types of group nodes to represent different types of information of the clinical trials.

Embedding analysis
We conducted an embedding analysis to evaluate the quality of CTKG and demonstrate its utilities in various 
important applications. We applied TransE 13, a state-of-the-art graph embedding method, to generate embed-
dings for nodes in CTKG . These computable embeddings can benefit various downstream tasks. For example, we 
could establish similarities among nodes using their embeddings. The similarities enable fast retrieval of nodes 
corresponding to similar medical entities and could facilitate applications such as drug repurposing and similar 
study search, as will be discussed below. Note that TransE generates node embeddings based on the topology of 
the graph (i.e., node attributes are not considered). We used the TransE implementation in DGL-KE 14, which 
is a high-performance python library on top of the Deep Graph Library (DGL 15). DGL is a python library for 
deep learning on graphs and enables training models on large-scale graphs in a convenient way. Based on DGL, 
DGL-KE provides many popular KG embedding algorithms like TransE for users to learn KG embeddings that 
can be used for many different applications 9. Other KG embedding methods are also applicable for the following 
analyses. Detailed information on KG embedding methods is available in a survey 16.

CTKG for drug repurposing.  In this analysis, we evaluated the utilities of CTKG for drug repurposing—a 
strategy to identify new therapeutic indications for existing drugs 17. Particularly, we assessed if the high similari-
ties between the condition node embeddings and drug-term node embeddings indicate the high potential of the 
corresponding drugs in treating the conditions. For the evaluation, we calculated the cosine similarities between 
all the condition nodes and drug-term nodes, and identified the top-10 most similar pairs. Among these 10 pairs, 
we found that 5 of them have evidence demonstrated by the literature indicating potential repurposability, as 
presented in Table 3. For example, the condition node “Diabetes Mellitus, Type 2” has a similarity 0.597 with the 
drug-term node “Benzoates”; as demonstrated in the literature 18, Alogliptin Benzoates, an agent of Benzoates, 
is now available for the treatment of Type 2 Diabetes. Similarly, the condition node “Lung Neoplasms” has a 
similarity 0.574 with the drug-term node “Triterpenes”, and as demonstrated in the literature 19, Triterpenes have 
anti-cancer properties against Lung Neoplasms. Please note the average similarity between condition nodes and 
drug-term nodes is -0.032, and thus the above similarities are significantly high. In addition, the above drugs are 
not studied for their highly-similar conditions in any CTKG studies (i.e., no existing edges connecting the condi-
tion nodes and drug-term nodes). Thus, the above results demonstrate the utilities of CTKG for drug repurposing. 
Other similar condition and drug-term node pairs, for example, “Squamous Cell Carcinoma of Head and Neck” 

Table 3.   Similar condition nodes and drug-term nodes for drug repurposing. The average cosine similarity 
between condition nodes and drug-term nodes is - 0.032.

Similarity Similar nodes Possible evidence

0.597
Diabetes Mellitus, Type 2

Alogliptin benzoate, an agent of Benzoates, is now available for treatment of type 2 diabetes18

Benzoates

0.587
Diabetes Mellitus, Type 2 Pulmonary surfactant involves in delaying the fetal lung biochemical maturation by maternal 

diabetes38Pulmonary Surfactants

0.576
Diabetes Mellitus Pulmonary surfactant involves in delaying the fetal lung biochemical maturation by maternal 

diabetes38Pulmonary Surfactants

0.574
Lung Neoplasms Representatives of triterpenes show anti-cancer properties against multiple types of cancer 

including lung cancer19Triterpenes

0.562
Lung Neoplasms

Pregnenediones shows promising activity against lung cancer cell lines39

Pregnenediones
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and “Naloxone” with similarity 0.565, and “Lung Neoplasms” and “Uric Acid” with similarity 0.564, may enable 
new hypothesis generation for innovative investigation and findings.

CTKG for similar medical entity retrieval.  In this analysis, we evaluated whether CTKG enables high-
quality node embeddings for similar medical entity retrieval tasks. Particularly, we focused on the retrieval of 
similar studies, and the retrieval of similar conditions, drugs, adverse events and outcomes. All these retrieval 
tasks are common and useful in designing new clinical trials 20.

Similar study retrieval.  CTKG can support the search and retrieval of similar studies. To demonstrate this, we 
first identified the top-5 most similar pairs of study nodes using cosine similarity over their embeddings. In each 
identified pair, we randomly selected one study node, and identified its top-5 most similar study nodes. Table 4 
presents the selected study nodes and their top-5 most similar study nodes. As presented in Table 4, the identi-
fied similar studies all investigated similar drugs or conditions. For example, study “NCT00795769” and its top-5 
most similar studies investigated the prevention of the side effects caused by the stem cell transplant, or condi-
tions that could be treated by the stem cell transplant; study “NCT01431274” and its top-5 most similar studies 
all investigated the therapies for the Chronic Obstructive Pulmonary Disease (COPD). These results show the 
utilities of CTKG for retrieving similar studies, which could facilitate new clinical trial design.

Similar medical concept retrieval.  CTKG can also support the retrieval of other similar medical concepts. To 
demonstrate this, we identified the top-10 most similar pairs of condition nodes, drug-term nodes, adverse-event 
nodes, and standard-outcome nodes, as in Tables 5, 6, 7, and 8, respectively, using cosine similarities over their 
embeddings. As presented in Table 5, the identified similar condition nodes all share some commonalities. For 
example, condition node “Nephritis” and “Lupus Nephritis” have a similarity 0.997 (average condition similarity 
is 0.331), and Lupus Nephritis is a common sub-type of Nephritis. We also found a similar trend in Table 6, 7 
and 8. For example, durg-term nodes “ABT-267” and “Macrocyclic Compound” have a similarity 0.997 (average 
drug-term similarity is 0.254), and both drugs could be used to treat Hepatitis C Virus (HCV) infection 21,22. 
In addition, the two drugs are studied together in multiple studies such as NCT01458535, NCT01464827 and 
NCT01563536. In Table  7 for adverse-event nodes, “Blood Luteinising Hormone” is very similar to “Uterus 
Myomatosus” (cosine similarity 0.995; average adverse-event similarity is 0.329). The high similarity could be 
due to the fact that Luteinising Hormone can affect the development and growth of Uterus Myomatosus by 
stimulating the production of estrogen 23. Note that Luteinising Hormone and Uterus Myomatosus are not pre-
sent together in any of the CTKG studies; therefore, such similar pairs demonstrate the effectiveness of CTKG on 

Table 4.   Similar study nodes. The average cosine similarity among Study nodes is 0.301.

Study node Similarity Similar nodes Possible evidence

NCT00795769

0.840 NCT01789255

NCT00918333 and NCT00720109 investigate therapies for conditions that could be treated by the stem cell transplant (e.g., Lym-
phoma). All the other studies are on preventing side effects following the stem cell transplant

0.741 NCT00918333

0.713 NCT00105001

0.672 NCT00293384

0.629 NCT00720109

NCT01431274

0.826 NCT01431287

All the studies investigate therapies for the Chronic Obstructive Pulmonary Disease (COPD)

0.737 NCT01559116

0.721 NCT02796651

0.716 NCT00782509

0.709 NCT00931385

NCT00137111

0.825 NCT00866307

All the studies investigate therapies for different sub-types of Leukemia (e.g., Acute Lymphoblastic Leukemia, Acute Myeloid 
Leukemia)

0.748 NCT00720109

0.747 NCT00136084

0.744 NCT00808639

0.724 NCT00119262

NCT00782509

0.784 NCT00796653

All the studies investigate the safety and efficacy of BI 1744 CL in patients with COPD

0.749 NCT00793624

0.735 NCT01040793

0.724 NCT01040130

0.700 NCT00782210

NCT02105688

0.801 NCT02252016

All the studies investigate therapies for the Chronic Hepatitis C Virus (HCV)

0.688 NCT02105467

0.662 NCT02358044

0.655 NCT01544920

0.652 NCT02216422
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retrieving similar/related adverse events. In Table 8 for standard-outcome nodes, “Aspartate Aminotransferase” 
is very similar to “Alanine Aminotransferase” in their embeddings (cosine similarity 0.986; average standard-
outcome similarity is 0.315), and both measure the amount of two enzymes made by liver in the blood and can 
be tested to check the liver damage. These results demonstrate that CTKG can facilitate the search and retrieval of 
medical entities in the context of clinical trials that carry similar/related information.

CTKG for other applications.  CTKG could also enable other potential applications such as adverse drug 
event prediction and outcome prediction, etc. Specifically, for the adverse drug event prediction, we could 

Table 5.   Top-10 most similar condition nodes. The average cosine similarity among condition nodes is 0.311.

Similarity Similar nodes Possible evidence

0.997
Nephritis

Lupus Nephritis is a common sub-type of Nephritis
Lupus Nephritis

0.997
Hepatitis

Hepatitis A is a special sub-type of Hepatitis
Hepatitis A

0.996
Rhinitis

Rhinitis, Allergic is a sub-type of Rhinitis caused by allergy
Rhinitis, Allergic

0.996
Urinary Bladder Disease

Urinary Bladder Disease is a special sub-type of Urologic Disease
Urologic Disease

0.996
Arthritis

Arthritis, Rheumatoid is a chronic inflammatory Arthritis
Arthritis, Rheumatoid

0.995
Neovascularization, Pathologic

Both of the conditions are sub-types of Neovascularization
Choroidal Neovascularization

0.995
Diabetes Mellitus

Diabetes Mellitus, Type 2 is a common sub-type of Diabetes Mellitus
Diabetes Mellitus, Type 2

0.994
Alopecia

Alopecia Areata is a sub-type of Alopecia
Alopecia Areata

0.994
Depression

Depression is also known as major Depressive Disorder in Clinics40

Depressive Disorder

0.993
Keratosis

Keratosis, Actinic is a sub-type of Keratosis
Keratosis, Actinic

Table 6.   Top-10 most similar drug-term nodes. The average cosine similarity among drug-term nodes is 0.254.

Similarity Similar nodes Possible evidence

0.997
ABT-267 Both ABT-267 and Macrocyclic Compounds could be used to treat Hepatitis C Virus (HCV) 

infection21,22Macrocyclic Compounds

0.996
Pulmonary Surfactants

Pulmonary Surfactants is a type of Surface-Active Agents41

Surface-Active Agents

0.995
Phenylethyl Alcohol Phenylethyl Alcohol and LY2216684 are studied together in study NCT00922636, NCT01243957 

and NCT01380691LY2216684

0.994
Thioguanine

Thioguanine is a substitute of Mercaptopurine in treating childhood lymphoblastic leukaemia42

Mercaptopurine

0.993
Cilastatin

Cilastatin and Imipenem are commonly used together as a treatment for serious infections43

Imipenem

0.985
Metylperon

Metylperon is an atypical antipsychotic of the Butyrophenone chemical class44

Butyrophenones

0.983
Ubiquinone

Ubiquinone is a form of Coenzyme Q1045

Coenzyme Q10

0.982
PHiD-CV Vaccine

Both of the drug terms are vaccines for diphtheria46,47

VAXELIS

0.982
Propafenone Both Propafenone and Sotalol could maintain sinus rhythm for patients with recurrent sympto-

matic atrial fibrillation48Sotalol

0.980
SNAP25 Protein

SNAP25 Protein could block Acetylcholine from releasing at the neuromuscular junction49

Acetylcholine
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employ knowledge reasoning methods24 over CTKG , and infer new adverse events of drugs using the existing or 
predicted paths from drug-term nodes to adverse-event nodes in CTKG . For the outcome prediction, we could 
employ link prediction methods9,13 to infer new edges between study nodes and outcome nodes based on the 
existing ones in CTKG . Overall, CTKG could facilitate new knowledge discovery and benefit the design of new 
clinical trials, and also improve the success rate of future clinical trials. We released the code for drug repurpos-

Table 7.   Top-10 most similar adverse-event nodes. The average cosine similarity among adverse-event nodes is 
0.329.

Similarity Similar nodes Possible evidence

0.998
Blood Luteinising Hormone Increased Luteinising Hormone (LH) can affect the growth of Uterus Myomatosus by 

controling the level of estrogen23Uterus Myomatosus

0.997
Inpatient Hospitalization

Excess length of inpatient hospitalization can lead to ulceration50

Ulceration

0.997
Major Bleeding Event Patients receiving hemodialysis are at risk for major bleeding event and 

catheter-related infection51Infection with Unknown Anc, Catheter-Related

0.996
Blood Luteinising Hormone Increased

The level of LH is related to uterine bleeding52

Major Bleeding Event

0.995
Blood Luteinising Hormone Increased

LH may regulate skin functions via LH receptors on skin53

Skin Procedural Complication

0.995
Skin Procedural Complication Both are similar to the adverse-event node “Blood Luteinising Hormone 

Increased”Uterus Myomatosus

0.995
Infection with Unknown Anc, Catheter-Related Patients with prostatic obstruction often receive urinary catheters, and are 

at risk for catheter-related infection54Prostatic Obstruction

0.994
Gi Tract Perforation

Diabetes can induce Gi Tract Perforation55

Latent Autoimmune Diabetes in Adults

0.994
Cervix Carcinoma Stage III

Both of the adverse events are related with Uterus
Vanishing Twin Syndrome

0.994
Major Bleeding Event

Uterus Myomatosus can associate with major bleeding event56

Uterus Myomatosus

Table 8.   Top-10 most similar standard-outcome nodes. The average cosine similarity among standard-outcome 
nodes is 0.315.

Similarity Similar nodes Possible evidence

0.986
Aspartate Aminotransferase

Both are enzymes that are tested to check liver damage57

Alanine Aminotransferase

0.955
Swollen Joint Count

Both are used to assess patients with rheumatoid arthritis58

Tender Joint Count

0.952
Calcium

Both are electrolyte that can be tested to monitor a range of medical conditions59

Potassium

0.952
Incomplete Response

Both are used to assess the response to treatment60

Partial Response

0.946
Aspartate Aminotransferase

Both can be tested to check liver damage57,61

Blood Urea Nitrogen

0.941
Potassium

Both are included in basic metabolic panel blood test59

Blood Urea Nitrogen

0.940
Calcium

Both are included in basic metabolic panel blood test59

Blood Urea Nitrogen

0.930
Alanine Aminotransferase

Both can be tested to check kidney damage57,61

Blood Urea Nitrogen

0.930
Hemoglobin A1c

Hemoglobin A1c represents the hemoglobin in the blood that has glucose attached to it62

Hemoglobin

0.923
Erythrocyte Sedimentation Rate

Disease Activity Score 28 can be calculated based on Erythrocyte Sedimentation Rate63

Disease Activity Score 28
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ing and similar node retrieval (“Data availability” section). For the link prediction applications, please refer to 
the examples in DGL 25 for a concrete implementation.

Discussion
In this manuscript, we presented and released a new knowledge graph CTKG for clinical trials. We also described 
our methods in generating CTKG . We demonstrated the potential utilities of CTKG in drug repurposing and 
similarity search, among others, via embedding analysis over CTKG . Currently, CTKG only includes studies that 
have both drug interventions and reported outcomes. However, incomplete studies (e.g., studies not started or 
without reported outcomes), and studies without drug interventions (e.g., studies for medical devices) could 
also contain valuable knowledge for the design of future clinical trials. Therefore, we will enrich CTKG with more 
studies in the future research. In addition, current CTKG does not contain all the important information for 
drug discovery and development. For example, CTKG does not have the interactions between drugs/molecules 
and proteins/diseases, nor the interactions among proteins. Missing such information may limit the potential 
of CTKG for a much wider range of applications (e.g., to predict if a new molecule for a disease can survive from 
clinical trials). In the future research, we will align CTKG with other knowledge bases10,26,27 and integrate more 
and diverse information into CTKG to enable more applications using CTKG . Moreover, CTKG embeds rich textual 
information (e.g., title and description) and heterogeneous data types (e.g., numerical, categorical and textual 
data) as node attributes, which encourages a much borader spetrum of research (e.g., deep graph embedding, link 
prediction) and more complicated methods to be developed to leverage such information for better translational 
clinical trial design. We will also investigate attribute-sensitive KG embedding methods 28 to better leverage CTKG.

Methods
CTKG represents each medical entity (e.g., a clinical trial, also referred to as a study; a drug; an adverse event) 
as a single node. To develop CTKG , we extracted the medical entities from the Access to Aggregate Content of 
ClinicalTrials.gov (AACT) database 5. We then normalized multiple expressions of a same medical entity into a 
single one. Figure 2 presents the overview of development of CTKG.

Clinical trials data.  The clinical trials data in CTKG is collected from the AACT database. AACT is a pub-
licly available relational database, which contains the information of every clinical trial registered in ClinicalTri-
als.gov, and is updated on a daily basis. In AACT, each clinical trial, also referred to as a study, is associated with a 
unique National Clinical Trial (NCT) ID, and all the information of a clinical trial is stored in 45 different tables. 
For example, information representing the medications, procedures and other actions provided or conducted in 
a clinical trial is stored in two tables: “interventions” and “browse interventions”; information representing the 
measurements used to evaluate the safety and efficacy of drugs or procedures studied in clinical trials is stored 
in the table “outcomes.” All the tables and their schemas are publicly available 29. Until July 2020, 344,500 clini-
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Figure 2.   Flow chart of CTKG construction.
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cal trials have been registered in ClinicalTrials.gov and included in AACT. We selected all the studies that have 
drug interventions, conditions and outcome analyses into CTKG . Specifically, we excluded 232,274 studies that 
do not have drug interventions, and 103,047 studies that do not have outcome analyses. Among 9,179 remaining 
studies, we excluded 969 studies without the conditions, resulting 8210 studies in CTKG . Note that we did not 
consider clinical trials that are not on drug inventions, such as physical therapies, behavioral therapies or medi-
cal devices. We will update CTKG with more studies in the future as new studies on drug interventions become 
available.

Note that CTKG does not include all the tables in AACT. For example, CTKG does not include tables such as 
“Sponsors”, “Overall officials” and “Result contacts” because they are not directly related to the design and results 
of clinical trials, and including them may not significantly benefit the knowledge graph in analyzing the relations 
among medical entities. Other AACT tables such as “Provided documents” and “Documents” contain the links 
to detailed study protocols, informed consent forms and statistical analysis plans, etc. These documentations 
have rich textual information that might be complementary to the structural relations represented by CTKG . 
However, such information is highly specific to each individual clinical trial, and does not help establish new 
relations across clinical trials if no natural language processing is applied first, which by itself is highly non-
trivial. Therefore, CTKG does not include such tables; instead, CTKG uses AACT’s original study IDs so that all 
such information can still be retrieved from AACT if needed. CTKG does not include other AACT tables such 
as “Calculated values”, “Design outcomes” and “Design group interventions” because information in such tables 
is already included in other tables that CTKG includes. Table 9 summarizes the AACT tables that are included 
and are not included in CTKG.

Adverse event normalization.  In AACT, we could find the adverse events ( AE ) , represented by AE 
terms, happened among the participants in the “reported events” table. Many AE terms listed in the table could 
be mapped to the Medical Dictionary for Regulatory Activities ( MedDRA �30). MedDRA � is the international 
medical terminology developed under the auspices of the International Council for Harmonisation of Technical 
Requirements for Pharmaceuticals for Human Use (ICH). More specifically, we found 28,677 unique AE terms in 
which 13,995 terms could be directly mapped to the MedDRA dictionary. In CTKG , such terms are also referred 
to as MedDRA terms. We normalized the remaining 14,682 AE terms that are not in the MedDRA � to MedDRA 
terms as follows:

•	 We removed parenthesized contents (e.g., “Altered pitch perception (pitch seemed lower)”). The contents in 
parentheses are typically explanations or afterthoughts so removing them would not significantly affect the 
major meanings.

Table 9.   AACT tables included and not included in CTKG.

Included in CTKG Not included in CTKG

Baseline counts Brief summaries

Baseline measurements Calculated values

Browse conditions Central contacts

Browse intervention Countries

Conditions Design group interventions

Designs Design groups

Drop withdrawals Design outcomes

Eligibilities Detailed descriptions

Interventions Documents

Id information Facilities

Milestones Facilities contacts

Outcome measure Facility investigator

Outcome analyses Intervention other names

Outcome analysis groups Ipd information types

Outcomes Keywords

Participant flows Links

Reported events Overall officials

Result groups Pending results

Studies Provided documents

Study references Responsible parties

Result agreements

Result contacts

Sponsors
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•	 We removed words or phrases that specify the auxiliary information (e.g., “left”, “right”, “Baseline Phase”) or 
the time frame (e.g., “for 12 hours”) of adverse events. We observed that these words or phrases are study-
specific, and not in the MedDRA terms. For example, by removing the phrase “Baseline Phase”, the AE term 
“Throat tightness - Baseline Phase” can be normalized to the MedDRA term “Throat tightness”. The phrase 
“Baseline Phase” is given to specify the initial phase of assessment involving collection of initial data in the 
study, and thus unrelated to the adverse event itself.

•	 We removed the stop words and lemmatized AE terms using the NLTK library31, and Stanza NLP Library32, 
respectively.

•	 We mapped an AE term to its most similar MedDRA term if their edit distance is less than 4. For example, 
the adverse event term “Cholecyctitis” will be normalized to the MedDRA term “Cholecystitis”. This process 
can correct simple misspellings.

After each step above, if the normalized AE term is a MedDRA term, we will stop the normalization. With the 
above normalization, we successfully normalized 7,296 AE terms to MedDRA terms. In total, we got 15,976 unique 
MedDRA terms and had 7,393 AE terms that cannot be normalized.

In order to construct a one-to-one mapping between the adverse events and the MedDRA terms, we used the 
MedDRA dictionary to further group multiple MedDRA terms of the same adverse event into a unique MedDRA 
term. According to the definition of MedDRA , each MedDRA term is assigned to one of the five hierarchical 
levels33. Specifically, the MedDRA terms with the lowest level (i.e., level 1), which are used to communicate the 
adverse events in practice, could correspond to the same adverse event. For example, “Eye itching” and “Ocular 
itching” are two MedDRA terms with level 1 and represent the same event. Such MedDRA terms corresponding 
to the same event have a common parent, which is a MedDRA term with level 2 (e.g., “itchy eyes” in the above 
example). Therefore, we normalized each MedDRA term with level 1 to its linked MedDRA term with level 2. In 
total, we converted 15,976 MedDRA terms into 11,153 more abstract MedDRA terms. Each term among these 
11,153 MedDRA terms and 7,393 non-MedDRA terms represents an adverse event, which is further represented 
as an adverse-event node in CTKG . Note that due to the licensing restriction of MedDRA � , we didn’t specify 
which adverse-event nodes represent MedDRA terms in CTKG and only kept the terms as the attribute of adverse-
event nodes.

Drug mentions and normalization.  In AACT, the drugs used in studies (i.e., clinical trials) could be 
found in the intervention table, in which the “name” field stores the information about medicines and admin-
istrations used in each intervention. For example, we could find that the drug Naltrexone is used in the study 
NCT04322526 via its intervention “Naltrexone 50 Mg Oral Tablet.”

In CTKG , we used Medical Text Indexer (MTI)34 to automatically extract drug mentions. MTI is developed 
by the National Library of Medicine (NLM) to recognize medical entities (e.g., anatomy, drugs and conditions) 
from plain text. We used this tool to extract drug mentions following 2 steps:

•	 We used MTI to automatically recognize all the medical entities from the interventions.
•	 We found drug entities from the medical entities recognized by MTI. Specifically, for each recognized entity, 

MTI will output its MeSH code if available. MeSH is a hierarchically-organized vocabulary from NLM to 
index and categorize biomedical and health-related information35. Given the MeSH code, we first identified 
entities with MeSH codes starting with character “D”, which indicates drug entities (e.g., D02.241.223.701.430 
for Ibuprofen). After that we removed the entities not representing specific drugs by excluding those with 
the MeSH code D26.310 (drug combination), D26 (pharmaceutical preparations), D23.101 (biomarkers) 
and D26.255 (dosage forms). We also noticed that a few recognized entities were not associated with MeSH 
codes. For these entities, we did a manual check and identified the ones representing specific drugs.

After the above 2 steps, there were still 1,775 unique interventions in which MTI did not find any drug men-
tions. For these interventions, we did a manual search and identified the drugs mentioned. Eventually, from the 
intervention table, we found 3,487 mentioned drugs in total. Among these drugs, 860 (24.7%) of them are found 
manually. Most of the manually found drugs are investigational drugs (e.g., pf-06669571), or drugs mentioned 
in abbreviations (e.g., tvr and umec).

Besides the drugs in interventions, there were also drugs mentioned in the titles or descriptions of the study 
groups (e.g., event group). For example, from the title “tramadol/diclofenac 25/25”, we could find the drugs 
Tramadol and Diclofenac. We also extracted drugs mentioned in the titles or descriptions of study groups to 
generate a complete list of drug mentions. Specifically, we first used the above 2 steps to automatically extract 
the mentioned drugs in titles and descriptions of study groups. For groups that we did not find any drugs auto-
matically, we manually searched their titles and descriptions, and identified the mentioned drugs. In the end, 
we found 4585 drug mentions from the interventions and the study groups.

From the drug mentions, we observed that one drug could be represented by different names. For example, 
the drug “losartan potassium” could be represented by its brand name “cozaar” or its generic name “losartan.” 
Therefore, we normalized the drug mentions found in texts to normalized terms. Specifically, we first used MTI 
to map all the 4585 drugs to their MeSH terms. For example, MTI could automatically map the drugs “losartan 
potassium”, “cozaar” and “losartan” to the MeSH term “losartan.” For the drugs that MTI can find their MeSH 
terms, the MeSH terms were used as their normalized terms. For the other drugs, if they are in abbreviations 
(e.g., tvr), we first found their full names (e.g., Telaprevir), and used the MeSH terms of their full names for 
normalization; if they are not in abbreviations, we used their generic names for normalization. We noticed that 
investigational drugs may not have generic names. For these drugs, their identifiers mentioned in studies (e.g., 
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pf-06669571) were used as their normalized terms. After the normalization, the 4585 drug mentions were nor-
malized to 2548 normalized terms. Each of the normalized term is represented as a drug-term node in CTKG.

Statistical analysis method normalization.  We observed that one statistical analysis method could 
be represented by different names in the table. For example, the method “paired t-test” could be represented as 
“paired t test”, “paired t-tests” and “paited t-test” in the table. Therefore, we normalized the names of the methods 
using the 3 steps as follows:

•	 We preprocessed the method names from the table by removing the space and punctuation in the text.
•	 We calculated the edit distance among the preprocessed names, and normalized the preprocessed names 

with edit distance less than 4 to a same normalized term. We also did a manual check to correct possible mis-
normalization. For the names that will be normalized to a same term, we used the names with the highest 
frequency as the normalized term.

•	 We further refined the normalized terms by merging the terms with the same words. We noticed that after 
the second step, there were still normalized terms that represent the same method with the same words but 
of different orders. For example, the normalized terms “pairedttest” and “ttestpaired” represent the same 
method “paired t-test” with the same words but of different orders. We manually merged such terms to the 
one with the highest frequency.

After all the steps, we normalized the 1,299 unique method names mentioned in the table to 907 normalized 
terms. Each of the normalized terms is represented as a method node in CTKG.

Outcome extraction and outcome clustering.  In AACT, the outcome measures used to test the effec-
tiveness of the interventions could be found in the “title” or the “description” fields of the outcome table. Most 
of the titles in the outcome table are long phrases and could involve multiple standard outcome measures (e.g., 
in the title “Change From Baseline in Platelet Count and White Blood Cell Count”, where “Platelet Count” and 
“White Blood Cell Count” represent standard outcome measures). These standard outcome measures are com-
mon assessment tools that are used to assess the effectiveness of an intervention. The complex relations between 
the outcome titles and the standard outcome measures make it difficult to directly represent the outcomes with 
the extracted standard outcome measures. Therefore, we incorporated the identified standard outcome measures 
as nodes into CTKG and built connections between the outcome nodes and the involved standard-outcome nodes. 
Through such connections, we can infer which standard outcome measures are used in each study to assess the 
efficacy of interventions. We observed that some popular phrases within the titles or the descriptions of outcome 
records represent standardized assessment tools used to measure the outcome of clinical trials, for example, 
“Visual Analogue Scale” is a tool widely used as a measure for pain. Incorporating such standard outcome meas-
ures into the CTKG could enable the comparison on the outcome measurements across different studies, and also 
could provide a reference regarding the choice of standardized assessment tools in the design of clinical trials. 
Therefore, we extracted the phrases that could represent standard outcome measures as below:

•	 We found the abbreviations and identified the definitions of abbreviations from the titles or the descrip-
tions of the outcomes using the Schwartz-Hearst algorithm36. We observed in the titles that many standard 
outcome measures are associated with their corresponding abbreviations. For example, we could identify 
the abbreviation “BI” and the corresponding definitions “Bleeding Index” from the outcome name “Gingival 
Health Measured by Bleeding Index (BI).”

•	 We kept only the definitions containing the following words: scale, index, score, test, questionnaire, value, 
count, inventory, assessment, level, rate. We observed that most standard outcome measures would contain 
such words (e.g., “Visual Analogue Scale”, “Social Responsiveness Scale”).

•	 We manually normalized different variants of the same standard outcome measures and removed the 
extracted phrases that are not outcome measures. We also manually added some popular standard outcome 
measures (e.g., “Overall Survival”, “blood pressure”, “triglyceride”) that do not contain the above words or 
do not have any abbreviations.

All the extracted phrases are represented as the standard-outcome nodes in the CTKG . In the end, we got 492 
standard-outcome nodes from 50,342 outcome records (i.e., 56.96% over all the 88,386 outcome records), and 
connected the standard-outcome nodes with the corresponding outcome nodes.

With the extracted standard outcome measures, there were still more than 40% of the outcome nodes not 
connected to any standard-outcome nodes. Therefore, to aggregate similar outcome nodes, we also grouped all 
the outcome titles (including those containing the standard outcome measures) into several clusters. Specifically, 
we represented each outcome title using its term frequency-inverse document frequency (TF-IDF) vectors. We 
then grouped the TF-IDF vectors of outcome titles using the CLUTO37, a clustering toolkit, into 200 clusters. 
Each cluster is presented as a cluster-outcome node and has attributes describing the cluster size, that is, the num-
ber of outcomes within the cluster, and the most representative words of these outcomes. Specifically, for each 
cluster, the representative words of outcomes include 5 descriptive words and 5 discriminating words derived by 
CLUTO that can best describe or discriminate each cluster. Each word is associated with a percentage computed 
by CLUTO (details in its manual) which indicates the importance of this word with respect to describing or 
discriminating the cluster. We converted the descriptive words and the discriminating words as two attributes 
of each cluster, by combining the words and their corresponding percentages. For example, after clustering, one 
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cluster-outcome node has these descriptive features: “circumference 56.4%, waist 43.0%, head 0.1%, abdomi-
nal 0.1%, change 0.1%”, and most outcome nodes connected with it have the titles related to “circumference” 
and “waist”, such as “Change in Waist-to-hip Ratio” and “Mean Change From Baseline in Waist Circumference”.

Data availability
The CTKG dataset and the code for the embedding analyses are released in GitHub: https://​github.​com/​ningl​
ab/​CTKG.
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