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Abstract

Protein language models, trained on millions of biologically observed sequences, generate feature-rich numerical representations of
protein sequences. These representations, called sequence embeddings, can infer structure-functional properties, despite protein
language models being trained on primary sequence alone. While sequence embeddings have been applied toward tasks such as
structure and function prediction, applications toward alignment-free sequence classification have been hindered by the lack of studies
to derive, quantify and evaluate relationships between protein sequence embeddings. Here, we develop workflows and visualization
methods for the classification of protein families using sequence embedding derived from protein language models. A benchmark of
manifold visualization methods reveals that Neighbor Joining (NJ) embedding trees are highly effective in capturing global structure
while achieving similar performance in capturing local structure compared with popular dimensionality reduction techniques such as t-
SNE and UMAP. The statistical significance of hierarchical clusters on a tree is evaluated by resampling embeddings using a variational
autoencoder (VAE). We demonstrate the application of our methods in the classification of two well-studied enzyme superfamilies,
phosphatases and protein kinases. Our embedding-based classifications remain consistent with and extend upon previously published
sequence alignment-based classifications. We also propose a new hierarchical classification for the S-Adenosyl-L-Methionine (SAM)
enzyme superfamily which has been difficult to classify using traditional alignment-based approaches. Beyond applications in sequence
classification, our results further suggest NJ trees are a promising general method for visualizing high-dimensional data sets.

Keywords: protein language models, sequence classification, hierarchical clustering, manifold visualization, deep learning, represen-
tation learning

Introduction
Recent advances in natural language processing have yielded
deep learning models capable of parsing and understanding
human language. Adapting these methods toward biological data,
protein language models are trained on millions of biologically
observed protein sequences in a self-supervised manner, without

annotations [1, 2]. Despite being trained on sequences alone,
these models are capable of learning protein representations
which encode structural, functional and evolutionary features [3].
These representations are stored in the hidden states—typically
referred to as embedding vectors, a representation of raw protein
sequences as large numerical matrices. Taking advantage of
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these feature-rich representations, protein language models can
be applied toward a wide variety of tasks such as secondary
structure prediction, contact prediction, homology detection
[4], and sequence conservation [ID: BIB-22-2012, 5]. However,
applications toward unsupervised sequence clustering have not
been systematically explored.

With the growing diversity of protein sequence databases,
there is a need for new unsupervised methods for protein clas-
sification alongside traditional alignment-based methods [6, 7]
to overcome the unique challenges in accurately aligning large
divergent sequence datasets. Within the protein kinase family, for
example, while alignment-based methods have provided a robust
classification of the ∼500 protein kinase sequences encoded in
the human genome, their connection to distantly related Atypical
kinases has been difficult to infer due to uncertainty in aligning
regions of high structural divergence. Likewise, the relationships
connecting different phosphatase enzymes which adopt differ-
ent folds as well as the structurally diverse radical S-Adenosyl-
L-Methionine (SAM) enzymes have been difficult to study due
to the challenges in aligning divergent sequences. Recent deep
learning methods for protein classification have shown promising
results in enzyme class prediction [8, 9]; however, broader applica-
tions are limited due to the necessity for supervised training and
curated labels. Unsupervised models for classification have been
proposed for individual families, but these family-centric models
are not generalizable across the proteome [10, 11]. Overcoming
these drawbacks, protein language models, pre-trained at the pro-
tein universe scale, provide unbiased representations for any pro-
tein sequence and offer new possibilities with embedding-based
sequence classification. However, to more broadly apply these
representations for sequence classification, new benchmarks and
workflows need to be developed.

Here, we define standard methods for deriving, quantifying
and evaluating relationships between fixed-size protein sequence
embeddings. Inspired by techniques in phylogenetic inference,
we show that tree-based visualizations facilitate highly accurate
depictions of high-dimensional manifolds—outperforming widely
used dimensionality reduction methods in preserving global
structure while providing comparable performance in preserving
local structure. Trees also inherently propose hierarchical
clustering schemes. Using a variational autoencoder (VAE), we
further developed a resampling strategy for assigning confidence
values to each hierarchical cluster. We also defined multiple
methods for representing unaligned protein sequences as
fixed-size vectors. When applied to the human phosphatases
and human protein kinase superfamily, our embedding-based
clustering remains consistent with and extends upon previous
alignment-based classifications. For the radical SAM superfamily,
an embedding-based clustering corroborates many structure-
functional similarities noted in previous experimental studies
while also suggesting new groupings.

Materials and Methods
Sequence datasets
We benchmark the performance of various manifold visualization
methods using protein domain sequence datasets from Pfam
(retrieved 10 April 2022) [12]. First, we downloaded all Pfam align-
ments which were labeled as ‘Domain’ for a total of 6909 align-
ments. Then, we filtered each alignment to 90% similarity to
reduce redundancy and removed all alignments with less than
100 sequences. Afterwards, each alignment was randomly sub-
sampled to contain a maximum of 500 sequences each. Finally,
we revert all protein sequences in each dataset to unaligned

sequences. After filtering, we were left with 2685 566 sequences
across 6048 protein domain datasets. These unaligned sequences
were later converted into embedding vectors using a protein
language model.

After benchmarking, we demonstrate our methods using case
studies on three enzyme groups. The human protein kinase data
consist of 558 catalytic domain sequences [13]. The human phos-
phatase dataset consists of 204 catalytic domain sequences [13].
The radical SAM enzyme dataset consists of 179 catalytic domain
sequences curated from a representative set of model organ-
isms [14]; core domain segments were manually identified and
trimmed based on available crystal structures and AlphaFold2
[15] models.

Protein sequence embeddings
Protein language models learn the underlying grammar of biologi-
cal sequences by training on large, universal proteome databases
such as UniProt [16]. These models are trained by masked lan-
guage modeling in which a random subset of residues in each
sequence is replaced with blanks and the model is trained to fill in
these blanks using contextual information. While general protein
language models have been shown to infer structure, functional
and evolutionary information from primary sequences alone [17,
18], they typically require prohibitively expensive computational
resources to train.

Given a protein sequence of any size, a protein language model
can generate an embedding vector of size (t, e) where each residue
is represented by a token and the contextual information for
each residue is encoded in (e) dimensions. In addition to ‘residue
tokens’, most protein language models also add additional ‘spe-
cial tokens’ which can be used to denote the beginning or end
of the protein sequence. These are commonly referred to as
the beginning-of-sequence and end-of-sequence tokens. For a
sequence embedding of size (t, e), (t) represents the total number
of residue tokens and special tokens. The number and usage
of special tokens may vary depending on the specific protein
language model.

Benchmarks show that ESM-1b [1] demonstrates superior per-
formance in generating feature-rich embeddings which capture
diverse structure-function properties [19]. All embeddings were
generated from ESM-1b, unless noted otherwise. All sequence
embeddings generated from ESM-1b have two special tokens,
while contextual information for each token is encoded in 1280
dimensions.

Evaluating methods for quantifying embedding
distance
In order to facilitate comparisons, embeddings must be reduced
to a standard fixed-size. This is accomplished by representing the
full-size embedding of size (t, e) as a smaller fixed-size embed-
ding of size (e). The most common strategy for quantifying the
similarity between two embeddings is to calculate the cosine
distance between the beginning-of-sequence tokens of the two
full-size embedding (Figure 1 B). This strategy uses the beginning-
of-sequence token as a common frame of reference because the
token appears in all sequence embeddings and can be used to
represent the full-size embedding.

In addition, we also defined alternative strategies for generat-
ing fixed-size representations for a full-sized embedding. These
included using the beginning-of-sequence special token, using the
end-of-sequence special token, taking the mean of both special
tokens and taking the mean of all residue tokens. In order to
compare fixed-size embeddings, we also tried a diverse range
of distance metrics, namely cosine distance, Euclidean distance,
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Figure 1. A graphical overview shows our pipeline for generating manifold visualizations for protein sequence embeddings. (A) Scatter plots and trees
can both be used as general strategies for visualizing manifolds. (B) A dataset of unaligned protein sequences is encoded into embedding vectors using the
ESM-1b protein language model. The dimensions of the full embedding vector, and the direct output of the encoder, depend on the length of the encoded
sequences. In order to facilitate comparisons between sequences, we generated fixed-size embeddings using the beginning-of-sequence special token
of each full-sized embedding. Finally, we calculated an all-versus-all distance matrix between each sequence representation which was subsequently
used to generate manifold visualizations.

Manhattan distance, Jensen–Shannon divergence and Triangle
Similarity-Sector Similarity (TS-SS) [20].

Overall, embedding-based comparisons between protein
sequences depend on three major parameters: (1) the protein
language model used to generate full-sized embeddings, (2) the
method of deriving fixed-size embeddings and (3) the distance
metric used to compare between fixed-size embeddings. In order
to evaluate different methods of calculating embedding distances,
we quantify the degree to which the calculated distances are
biologically meaningful. We quantified this using the silhouette
score [21] given a set of classification labels. Although the
silhouette score is highly dependent on user-defined labels, it is
a useful heuristic for identifying parameters that are more likely
to produce biologically meaningful results. We apply this method
for identifying the optimal parameters for three case studies.

Manifold visualizations
High-dimensional datasets typically adopt complex structures
which are difficult to capture [22]. Thus, it is challenging to gen-
erate a visualization that accurately depicts these complex rela-
tionships in a human-readable way with minimal distortion. For
instance, the underlying structure of two- or three-dimensional
data may be discerned using a scatter plot; however, this method
does not scale to higher dimensional data. Consequently, many
methods have been developed toward creating simplified depic-
tions of high-dimensional data which preserve the underlying
structure.

Dimensionality reduction-based methods: These (non)linear
methods project high-dimensional data into low-dimensional
linear space while typically prioritizing the preservation of
local neighborhood structures. The low-dimensional embedding
is subsequently visualized using a scatter plot (Figure 1 A).
We tested widely used algorithms such as Uniform Manifold
Approximation and Projection (UMAP) (umap-learn v0.5.1) [23]
and t-Distributed Stochastic Neighbor Embedding (t-SNE) (sklearn
v0.24.2) [24]. UMAP projections shown in the main text utilize the
DensMAP algorithm [25]. In order to test various distance metrics,
we set the distance metric to "precomputed" which allows us to
use precomputed distance matrices as input. Otherwise, default
parameters were used.

Tree-based methods: These methods can model the (non)linear
relationships between high-dimensional data using an acyclic,
bifurcating tree structure where each data point is modeled as
a leaf node. Although trees are typically used for hierarchical
clustering, they also excel at depicting the underlying structure
of high-dimensional datasets. While relationships between
data points in a scatter plot are interpreted by Euclidean
distance, relationships within a tree are interpreted by cophenetic
distance (Figure 1 A). Tree-based methods directly model the
distances between data points, avoiding the need for dimen-
sionality reduction. We tested widely used algorithms such
as the Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) (sklearn v1.5.4) [26] and Neighbor Joining (NJ) [27].
Both algorithms do not require specification of parameters
(Figure 1 B).

Evaluating manifold visualization accuracy
The performance of a given manifold visualization method can
be quantified by how well it preserves pairwise distances between
the original data points [28]. We quantify how well each manifold
visualization method preserves local structure using trustworthi-
ness, a metric that measures how well the nearest neighbors of
each data point are retained in the visualization.

T(k) = 1 − 2
nk(2n − 3k − 1)

n∑
i=1

∑
j∈N k

i

max(0, (r(i, j) − k)) (1)

We quantify how well each method preserves the global struc-
ture in each data set by calculating the Spearman rank correlation
of all pairwise distances (d) between data points (n) in the original
dataset versus all pairwise distances in the visualization.

ρ = 1 − 6
∑

d2
i

n(n2 − 1)
(2)

Evaluating tree clustering confidence
Tree-based manifold visualizations also inherently propose hier-
archical clustering schemes. We developed a method to quantify
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Figure 2. A graphical overview shows our VIBE pipeline for evaluating tree clustering confidence. The top row shows our general procedure for calculating
a tree-based visualization given a dataset of fixed-size representation vectors. We train a VAE to learn the latent distribution of the representations,
allowing us to resample the representation vectors which are subsequently used to calculate replicate trees. These replicate trees are used to assign
branch support values to the original tree.

the confidence of each unique cluster (denoted by each branch)
by resampling the original data set using a generative model,
then measuring how frequently each cluster is observed across
replicate trees generated from resampled data. This process is
conceptually similar to bootstrap resampling used in phylogenetic
inference.

In order to assign clustering confidence to each branch of a
given tree, we propose a method called VAE Implemented Branch
support Estimation (VIBE) (Figure 2). Given a high-dimensional
dataset of protein sequence embedding, the VAE was trained for
15 000 epochs where the loss term was defined as a weighted
combination of mean squared error (MSE), Kullback–Leibler diver-
gence (KLD) and TS-SS Error (TSE), where KLD weight was con-
trolled by a cosine annealing scheduler [29].

MSE =
D∑

i=1

(xi − yi)
2 (3)

KLD =
∑
x∈χ

P(x) log
(

P(x)

Q(x)

)
(4)

TSE = 1
720

· (|A| · |B| · sin(θ ′) · θ ′ · π ·

⎛
⎜⎝

⎛
⎝

√√√√ k∑
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(A(n) − B(n))2) +
∣∣∣∣∣∣

√√√√ k∑
n=1

A2
n −

√√√√ k∑
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n

∣∣∣∣∣∣
⎞
⎠

2⎞
⎟⎠ (5)

Loss = α · MSE + β · KLD + γ · TSE

where β = cos
(

mod(Iteration − 1, Max Iteration)

Max Iteration

)
(6)

The trained VAE model was used to generate 500 replicates of
the original datasets which were subsequently used to generate
replicate trees. For a given tree, each branch corresponds to a
bipartition which defines a unique split for data points inside or
outside of the branch. For each branch of the original tree, the

confidence score is measured by the percentage of replicate trees
which exhibited the same corresponding bipartition.

Results and Discussion
Trees enable faithful depictions of
high-dimensional data
We compare the performance of various manifold visualization
methods in generating faithful depictions of high-dimensional
data. Each data point will be a fixed-size protein sequence
embedding containing 1280 dimensions. From the Pfam sequence
database of curated protein domains, we sampled 6048 unique
datasets containing a total of 2685 566 protein sequences across
all datasets. Sequences were converted into embedding vectors
using a pLM. As a result, each dataset is a matrix of size (n, 1280),
where (n) is the number of sequences in a given dataset.

Utilizing our sequence embedding datasets, a comparison of
manifold visualization methods reveals that tree-based methods
outperform popular dimensionality reduction methods such as
UMAP, t-SNE and UPGMA in accurately preserving global dis-
tances (Figure 3A, top), also showing comparable accuracy in pre-
serving local neighbors (Figure 3A, bottom). These results suggest
that these dimensionality reduction-based algorithms may some-
times yield misleading visualizations which do not reflect the
underlying data. Example cases are demonstrated in the follow-
ing sections. While the performance of dimensionality reduction
methods could potentially be improved by optimizing parameters
for each individual dataset, this is not feasible given the number
of benchmark datasets.

We further investigate the worst-performing datasets and find
that the performance of dimensionality reduction-based methods
almost monotonically decreases as the dataset size increases
(Figure 3B). Dimensionality reduction methods do not scale well
with dataset size, while tree-based methods maintain stable per-
formance across variable dataset sizes.

Embedding trees capture functional similarities
in phosphatases
In order to demonstrate how new insights can be gained from tree-
based manifold visualizations, we performed sequence embed-
ding analyses on the human phosphatase enzymes—a diverse
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Figure 3. We benchmark the performance of various manifold visualization methods using 6048 protein domain sequence datasets from Pfam. (A)
Boxplots show the accuracy of manifold visualization methods shown across the y-axis. The top graph shows Spearman rank correlation which measures
how well global distances are preserved in the visualization. The bottom graph shows trustworthiness which measures how well local neighborhoods
(k=10) are preserved in the visualization. Expanded benchmarks are provided in Supplemental Figure S1. (B) We show the effect of dataset size on three
poorly performing datasets across dimensionality reduction methods.

Table 1. Phosphatase folds and families included in this study.

Name Description

CC1 Cysteine-based class 1
DSP Dual-specific protein phosphatases (part of CC1)
PTEN Phosphatase and tensin homologs (part of CC1)
PTP Protein tyrosine phosphatases (part of CC1)
CC2 Cysteine-based class 2
CC3 Cysteine-based class 3
RTR1 Rtr1 homologs
HAD Haloacid dehalogenases
HP Histidine phosphatases
PHP Protein histidine phosphatases
AP Alkaline phosphatases
PPPL Phosphoprotein phosphatase (PPP)-like
PPM Metal-dependent protein phosphatases

class of proteins that regulates cellular signaling. A sequence-
structural clustering study has shown that phosphatases are
classified into 10 distinct structural folds (Table 1) which sub-
divide into families [30]. We compare these results against our
embedding-based classification.

We generated equivalent manifold visualizations using a
UMAP scatterplot (Figure 4A) and NJ tree (Figure 4B). Embedding
distances were quantified using the cosine distances between the
averages of all residue tokens within each full-size embedding.
We measured the global accuracy of these visualizations and
found that distances between tree leaves are highly correlated
with the original embedding distances (R=0.885), while the dis-
tances between points in the scatterplot are modestly correlated
(R=0.429).

Although both visualizations show separation between
phosphatases which adopt different protein folds, the tree visu-
alization captures more nuances from the original embeddings.
For example, CC1, CC2 and CC3 phosphatases share a conserved
cysteine-based catalytic motif despite adopting three different

structural folds [30]. The UMAP visualization splits the CC1
phosphatases into three separate clusters, each corresponding to
different families, and places CC2 and CC3 phosphatases near
the CC1 cluster which contains the DSP and PTEN families. Given
the same data, the NJ tree places all CC1-3 phosphatases into
a single cluster which further subdivides into distinct families.
Not observed in the UMAP projection, the NJ tree clusters PPPL,
PPM and AP phosphatases together. We speculate that this is
a biologically meaningful grouping that reflects similarities in
functions such as substrate binding—PPPL and PPM phosphatases
are specific to phosphoserine and phosphothreonine [31], while
AP can bind phosphoserine and phosphothreonine substrates [32]
but catalyzes phosphotyrosine dephosphorylation [33].

Trees simultaneously depict distances between data points and
a hierarchical clustering scheme. While the distances are eval-
uated by global and local accuracy, we evaluate the robustness
of a given clustering scheme using VIBEs which show the fre-
quency in which each unique cluster appears across 500 replicate
trees. We observed high clustering confidence upon removing
three outliers—a divergent CC1 phosphatase, as well as RTR1
and PHP which contained only one sequence each (Figure 5). For
instance, the filtered tree places all CC1 phosphatases on a single
branch, whereas the original tree places them in a paraphyletic
group. These results indicate that outlier sequences can nega-
tively impact clustering.

Overall, we observed high confidence for clusters associated
with the major folds (Figure 5). For example, 120 CC1 phos-
phatases were placed into the same group in 76% of replicates.
The clustering of CC1, CC2 and CC3 phosphatases was observed
in 82% of replicates, while the clustering of PPPL, PPM and AP
phosphatases was observed in 73% of replicates.

Embedding trees capture evolutionary
relationships in protein kinases
We further demonstrate sequence embedding analyses on an evo-
lutionarily related superfamily—protein kinases, a structurally

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac619#supplementary-data
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Figure 4. Comparison of two manifold visualizations for embeddings generated from catalytic domain sequences of human phosphatases. Phosphatase
abbreviations and names are described in Table 1. Visualizations were generated using (A) UMAP and (B) neighbor joining. The global and local accuracy
of these visualizations is quantified by Spearman correlation and trustworthiness, respectively. The colors denote the structural fold as indicated by
the legend, while the light gray text indicates a distinct family within a structural fold group. The full tree is provided in Supplemental Figure S3.

Figure 5. A condensed tree shows a hierarchical clustering scheme for
human phosphatase enzymes. The black circles at each tip indicate the
number of sequences within each phosphatase fold. The clustering con-
fidence of each branch was quantified using VIBEs (500 replicates) shown
as percentages in red. The unlabeled branches indicate paraphyletic
groups. The full tree is provided in Supplemental Figure S4.

conserved and biomedically relevant class of cell signaling
enzymes. Multiple sequence-structure clustering studies and
evolutionary studies have shown that protein kinases are classi-
fied into distinct groups [13, 34]. The canonical protein kinases
broadly fall within major groups (TK, TKL, STE, AGC, CAMK,
CK1, CMGC, NEK, RGC) (Table 2) and these canonical protein
kinases are distantly related to Atypical and eukaryotic-like
kinases such as lipid and aminoglycoside kinases [35–37]. For the
purposes of this analysis, we collectively refer to these distantly
related kinases as Atypical. We compare these results against
our embedding-based classification. Using a dataset of all human
protein kinases, we generated equivalent manifold visualizations
using UMAP (Figure 6A) and NJ (Figure 6B). Embedding distances
were calculated using the TS–SS distances between the averages

Table 2. Protein kinase groups were included in this study.

Name Description

Atypical Atypical and eukaryotic-like kinases
CK1 Casein kinase 1
CMGC CDK, MAPK, GSK3 and CLK-related families
CAMK Calmodulin/calcium-regulated kinases
AGC Protein kinase A, G, and C related families
STE STE homologs
NEK NimA-related kinases
RGC Receptor guanylate cyclases
TKL Tyrosine kinase-like
TK Tyrosine kinases

of the beginning-of-sequence and end-of-sequence special tokens
within each full-size embedding.

Similar to the previous section, the tree visualization is more
faithful to the original data in that it captures known relationships
by grouping closely related kinases together, while the UMAP
projection proposes false neighbors. For example, the UMAP pro-
jection intersperses Atypical kinases with protein kinases, while
the NJ tree correctly separates the two. We speculate that this
behavior results from the Atypical kinases being less densely
populated compared with the protein kinase data points.

Within the protein kinase superfamily, both methods are able
to distinguish the major groups. However, the NJ tree further
defines two hierarchical clusters RGC-TKL-TK and AGC-CAMK,
both of which are evolutionary groups observed in phylogenetic
studies [34]. Our tree also places CK1 closest to the Atypical

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac619#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac619#supplementary-data
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Figure 6. Comparison of two manifold visualizations for embeddings generated from catalytic domain sequences of human protein kinases. Kinase
abbreviations and names are described in Table 2. Visualizations were generated using (A) UMAP and (B) neighbor joining. The global and local accuracy
of these visualizations is quantified by Spearman correlation and trustworthiness, respectively. The colors denote the kinase group as indicated by the
legend. The uncategorized protein kinases in the ‘Others’ category are not colored (white). The full tree is provided in Supplemental Figure S5.

kinases. Given that our embedding tree corroborates known evo-
lutionary relationships, this suggests CK1 as the most ancestral
protein kinase group that connects distantly related Atypical
kinases with canonical protein kinases. Consistent with this view,
CK1 lacks some of the canonical protein kinase conserved motifs
in the substrate binding lobe [38] and displays substrate promis-
cuity and constitutive activity [39] similar to Atypical kinases such
as aminoglycoside kinases [40].

We next evaluated the robustness of our clustering scheme
using VIBEs. The placement of unclassified kinases in the ‘Others’
category was highly unstable across 500 replicate trees, prevent-
ing the assignment of confidence values. In other words, these
sequences would move in and out and between groups across
replicates. This behavior was expected as these are intermediates
that do not classify into any of the major evolutionary groups. The
removal of these kinases resulted in a high confidence tree with
the same overall relationships between groups (Figure 7).

Embedding trees propose a novel classification
for radical SAM enzymes
Finally, we demonstrate how embedding trees may be applied
toward a functional classification of enzyme superfamilies. Rad-
ical S-Adenosyl-L-Methionine (SAM) enzymes are present in all
domains of life, catalyzing radical chemistry toward a wide variety
of essential biological functions [14]. The catalytic core domain
of radical SAM enzymes adopts a TIM barrel (α/β barrel) fold
with varying numbers of α/β pairs, and a conserved iron–sulfur
cluster binding motif [41]. Family-specific insertions and deletions
add additional structural variance—all factors which introduce
challenges in defining a reliable large-scale alignment. Thus, we
utilize embeddings to perform alignment-independent hierarchi-
cal clustering.

Figure 7. A condensed tree shows a hierarchical clustering scheme for
human protein kinase enzymes. The black circles at each tip indicate the
number of sequences in each kinase group. The clustering confidence
of each branch was quantified using VIBEs (500 replicates) shown as
percentages in red. The unlabeled branches indicate paraphyletic groups.
The full tree is provided in Supplemental Figure S6.

We curated a dataset of diverse radical SAM enzyme families
(Table 3), then established a common frame of reference
by trimming each sequence to the core catalytic domain,
removing any domain extensions or accessory domains. Curated
sequences were converted to embedding vectors and embedding
distances were calculated using the cosine distances between the
beginning-of-sequence tokens of each embedding.
Despite only utilizing the core domain sequence, the embedding

tree groups functionally related enzymes together (Figure 8B).
Families which specialize in methyl or sulfur transfer (B12-
binding, MTaseA, LipA and MTTase families) [41] were placed
in a single cluster. On the neighboring cluster, some HemN
enzymes also catalyze methyl transfer [42, 43]. The HemN and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac619#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac619#supplementary-data
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Figure 8. Manifold visualizations for radical SAM enzymes using embeddings generated from the core catalytic domain. Radical SAM abbreviations and
names are described in Table 3. (A) Comparison of visualizations generated from UMAP (top) and NJ (bottom). The global and local accuracy of these
visualizations are quantified by Spearman correlation and trustworthiness respectively. Colors denote the structural fold as indicated by the legend.
(B) A condensed tree shows a hierarchical clustering scheme. The black circles at each tip indicate the number of sequences within each family. The
clustering confidence of each branch was quantified using VIBEs (500 replicates) shown as percentages in red. Unlabeled branches indicate paraphyletic
groups. The full tree is provided in Supplemental Figure S7.

Table 3. Radical SAM enzyme families were included in this
study.

Name Description

LipA Lipoyl synthases
MTTase Methylthiotransferases
MTaseA Class A Methyltransferase
B12-binding B12-binding domain containing
HemN HemN (Coproporphyrinogen III oxidase) homologs
Elp3 Elp3 (Elongator complex subunit) homologs
BATS BATS domain containing
Viperin Antiviral proteins
SPASM SPASM or twitch auxiliary domain containing
Activating Enzyme Activating enzymes
QueE QueE (7-carboxy-7-deazaguanine synthase)

homologs
TYW1 TYW1 homologs
PLP-dependent Pyridoxal 5’-phosphate dependent

Elp3 families have reported sequence similarity [44], while Elp3
and BATS families both conserve extended TIM barrel folds.
Additionally, many Elp3 and BATS enzymes contain alterations
to the canonical iron–sulfur cluster binding motif [41]. Viperin
and SPASM families both conserve a C-terminal extension which
facilitates family-specific functionalities [45]. Viperin is placed
closest to the MoaA subfamily (within the SPASM family), both of
which act on nucleotide substrates [46]. Activating enzymes and
QueE family members sometimes adopt a ‘Tiny TIM’ minimal
core fold [47]. QueE and TYW1 families are also closely grouped
together, both families are involved in tRNA biosynthesis and
hypermodification [48].

Conclusion
In this work, we develop and demonstrate new strategies lever-
aging sequence embedding for hierarchical protein classification.

Sequence embeddings were generated using a pre-trained protein
language models without fine-tuning. Not only does this make
our methods more computationally accessible and generalizable
to any protein superfamily, but also avoids potential biases which
may arise from training on a small region of the larger protein
universe [49]. Based on our analyses, our alignment-independent
classification broadly captures known relationships while also
revealing new insights such as (1) suggesting functional similarity
between PPPL, PPM and AP phosphatases, (2) inferring CK1 as
the most ancestral protein kinase and (3) proposing the first
hierarchical classification of the radical SAM superfamily. The
quality of embedding-based methods for sequence clustering will
continue to improve with the development of more advanced
protein language models.

Beyond applications in sequence classification, NJ trees can
also be used as a general method for analyzing and visualizing
high-dimensional data—typically accomplished with (non)linear
dimensionality reduction such as UMAP. For example, dimension-
ality reduction methods are widely used for visualizing single-cell
transcriptomics data [50]. Tree-based visualizations may provide
additional insights by more accurately capturing global relation-
ships. Although the tree-based algorithms outperform dimen-
sionality reduction methods in terms of global accuracy, tree-
based algorithms are also more computationally expensive [23,
51]. Consequently, tree-based methods may not scale as well to
larger datasets.

Tree-based methods are already widely used in data science;
however, they are typically viewed as a hierarchical clustering
method [52] with little mention of applications in manifold visu-
alization. In contrast, phylogenetics utilizes trees as a frame-
work for both clustering sequences and visualizing evolutionary
space. Consequently, many methods have been developed for
analyzing evolutionary trees [53, 54] which can be generalized
toward describing complex structures within high-dimensional
manifolds. The further adaptation of existing methods in phylo-
genetic tree analysis will provide new avenues for analyzing and
visualizing relationships within data.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac619#supplementary-data
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Key Points

• Protein sequence embeddings generated from pre-
trained protein language models can be used for
alignment-independent sequence clustering without
fine-tuning.

• In addition to applications in hierarchical clustering,
Neighbor Joining (NJ) trees are a general method for
visualizing high-dimensional datasets.

• Generative models can be used to generate replicate
samples for the purposes of evaluating clustering con-
fidence within a given dataset.

• When analyzing representations, it is important to con-
sider (1) how the fixed-size embedding vector is derived,
(2) what distance metric is used to quantify relationships
between fixed-size embeddings and (3) how these rela-
tionships are visualized (e.g. dimensionality reduction or
tree-based methods).

• The accuracy of manifold visualizations methods such
as UMAP, t-SNE and NJ can be assessed using Spearman’s
correlation (global accuracy) and trustworthiness (local
accuracy).

Supplementary Data
Supplementary data are available online at https://academic.oup.
com/bib.
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