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Abstract: The cloning, purification, and initial characterization of the β-carbonic anhydrase (CA,
EC 4.2.1.1) from the genome of the opportunistic pathogen Malassezia restricta (MreCA), which
a fungus involved in dandruff and seborrheic dermatitis (SD), is reported. MreCA is a protein
consisting of 230 amino acid residues and shows high catalytic activity for the hydration of CO2 into
bicarbonate and protons, with the following kinetic parameters: kcat of 1.06 × 106 s−1 and kcat/KM of
1.07 × 108 M−1 s−1. It is also sensitive to inhibition by the sulfonamide acetazolamide (KI of 50.7 nM).
Phylogenetically, MreCA and other CAs from various Malassezia species seem to be on a different
branch, distinct from that of other β-CAs found in fungi, such as Candida spp., Saccharomyces cerevisiae,
Aspergillus fumigatus, and Sordaria macrospora, with only Cryptococcus neoformans and Ustilago maydis
enzymes clustering near MreCA. The further characterization of this enzyme and the identification of
inhibitors that may interfere with its life cycle might constitute new strategies for fighting dandruff

and SD.
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1. Introduction

Carbonic anhydrases (CA, EC 4.2.1.1) catalyze the simple but physiologically crucial
interconversion of carbon dioxide and water into bicarbonate and protons: CO2 + H2O
HCO3

− +

H+ [1–5]. These metalloenzymes are indispensable for maintaining the physiological equilibrium of
the dissolved CO2, H2CO3, HCO3

−, and CO3
2−, which are metabolites essential for the biosynthesis

and energy metabolism of organisms [5–9]. Thus, the survival of a microbe will be compromised by
restricting the access of a pathogen to these metabolites. Interference with pH regulation, as well
as metabolic pathways connected with the inhibition of CA activity, has begun to be considered for
obtaining new anti-infective agents [10–14], in addition to applications of such agents for antitumor
therapies [14–17]—the field in which this approach was validated after more than a decade of strenuous
research efforts [6,7,18–21]. Indeed, the 21st century has been affected by the spread of antibiotic
resistance, and consequently, the improvement of the pharmacological arsenal against pathogens is
needed [22–26]. Most of the existing antibiotics target a microorganism’s cellular functions, such as
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the synthesis of proteins, nucleic acids, cell walls, or folate [27–29]. Generally, the identification
of novel drug targets follows criteria pointing to pathogen survival and absence from the human
genome [30–32]. Recently, it has been demonstrated that the CA superfamily represents a valuable
member of new macromolecules affecting the growth of microorganisms or making them vulnerable
to host defense mechanisms [32–34]. Targeting CAs from pathogens belonging to various species of
bacteria, fungi, and protozoans may lead to anti-infectives with new mechanisms of action different
from the clinically used agents [34–37]. Among the fungal pathogens investigated in detail, Malassezia
globosa (MgCA) represents a particular case [38–41], because the β-CA encoded in the genome of this
fungus was shown to be a druggable target [41]. Indeed, several effective in vitro MgCA inhibitors
belonging to the sulfonamide type were also shown to have significant antifungal effects in vivo, in an
animal model of dandruff [42–44]. Thus, after considering the significant drug resistance problems
with azoles and other antifungals [45–49], MgCA was validated as a possible antifungal target.

Recently, it has been demonstrated that, rather than one particular Malassezia sp. being involved,
a complex bacterial and fungal equilibrium is involved in dandruff [50–56]. Another Malassezia
species, Malassezia restricta is also involved in triggering the disequilibrium between the commensals
Cutibacterium acnes (formerly named Propionibacterium acnes) and Staphylococcus sp., both of which
contribute to dandruff and seborrheic dermatitis symptoms [50–52,57]. Furthermore, the genome of
this pathogen was recently decoded and was published [57], making it possible to search for potential
drug targets and the corresponding agents that may interfere with them. For this reason, we decided
to investigate the analogous enzyme from MgCA, which should also be present in the genome of
M. restricta. here, we report on the cloning, purification, and characterization of the β-CA from the
pathogenic fungus, M. restricta (MreCA).

2. Results and Discussion

2.1. MreCA Features

The genome of M. restricta contains a region of 690 bp encoding for a polypeptide chain of
230 amino acid residues and is homologous to the β-CA identified in the genome of M. globosa (MgCA).
To show the relevant degree of homology existing between these enzymes, MreCA was aligned with
MgCA and Cryptococcus neoformans CA (Can2) [58,59], as shown in Figure 1.

MreCA contains all the typical features of β-CAs, including the three residues that are involved
in the catalytic mechanism of the enzyme, acting as zinc ligands (two cysteines and one histidine).
It also contains amino acid residues, including the catalytic dyad that consists of an aspartate and an
arginine, which are involved in the activation of the zinc-coordinated water molecule responsible for
nucleophilic attack [38–45,58,59] (Figure 1). To better investigate the relationships between MreCA
and the β-CAs identified in other species, such as insects, plants, fungi, algae, and bacteria, the most
parsimonious phylogenetic tree has been constructed (Figure 2), which takes into account all the amino
acid substitutions that differentiate β-CAs from various organisms indicated in Table 1.
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Figure 1. Multiple sequence alignment of selected β-carbonic anhydrase (β-CAs) from three fungal
species. The Cryptococcus neoformans CA (Can2) numbering system was used. Zinc ligands are indicated
in red, and amino acids involved in the enzyme catalytic cycle are indicated in blue. Multiple sequence
alignment was performed with the program Clustal W, version 2.1. Legend: Malassezia restricta (MreCA),
Malassezia globosa (MgCA), and Cryptococcus Neoformans (Can2). Conserved residues are indicated with
an asterisk (*), while (:) and (.) indicate conservative and semi-conservative substitutions, respectively.
The sequence accession numbers are reported in Table 1.

From the dendrogram reported in Figure 2, MreCA appears to be closely related to the β-CAs
identified in the genome of the other Malassezia species. Intriguingly, the MreCA and MgCA clusters
included the β-CA encoded by the genome of the pathogenic fungus Ustilago maydis, which is
responsible for a plant disease known as common corn smut [60]. It has been reported that the genomes
of M. restricta and globosa encode for many extracellular hydrolases, such as lipases, phospholipases,
aspartyl proteases, and acid sphingomyelinases, which are phylogenetically close to those encoded
by the U. maydis genome [60]. The dendrogram in Figure 2 also shows that the Malassezia β-CAs
are neighbors to the β-CA from Cryptococcus neoformans (Can2). They are clustered distinctly away
from the other β-CAs found in the genome of fungi, such as Candida albicans, Saccharomyces cerevisiae,
Dekkera bruxellensis, Ogataea parapolymorpha, Aspergillus fumigatus, Sordaria macrospora, Trichosporon
asahii, and Schizosaccharomyces pombe. This result may be the consequence of a gene duplication event
indicating an ancestral β-CA gene in these two groups of fungi. Furthermore, Malassezia CAs are in
the same cluster as the β-CAs from plants (Figure 2).
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2.2. Expression, Purification, and Protonography

IPTG (Isopropyl β-D-1-thiogalactopyranoside) induction of Escherichia coli BL21 (DE3) cells
transformed with the plasmid pET100D-Topo/MreCA resulted in the production of the recombinant
MreCA as a fusion protein containing a His-tag tail at its N-terminus. After sonication and centrifugation,
most of the CA activity was recovered in the soluble fraction of the E. coli cell extract. Using an affinity
column (His-select HF (High Flow) nickel affinity gel), MreCA was purified to homogeneity, as shown
by the appearance of the SDS-PAGE results (material not intended for publication). Samples of the
purified MreCA were loaded onto the gel and subjected to protonography to investigate its hydratase
activity via SDS–PAGE. Protonography is a powerful technique, which allows the detection of pH
variation on polyacrylamide gel due to the CA-catalyzed conversion of CO2 into bicarbonate and
protons [61,62]. The production of ions (H+) during the CO2 hydration reaction can be visualized as a
yellow band on the polyacrylamide gel (Figure 3). The developed gel is called a protonogram.
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Figure 3. Protonography of MreCA with bovine CA (bCAII) as the standard enzyme.

The MreCA protonogram in Figure 3 shows a band corresponding to a monomer with an apparent
molecular weight of about 27.0 kDa. The predicted molecular mass of the enzyme fused to the
His-tag tail resulting from its amino acid sequence was 27.0 kDa. It is interesting to note that, as was
found for other CA classes belonging to prokaryotic and eukaryotic organisms, MreCA was able to
correctly refold, generating the active enzyme after removing SDS from the gel before developing the
protonogram. Commercial bovine CA was used as a positive control.

Table 1. The accession numbers of the β-CA sequences used in the phylogenetic analysis. Groups,
organism names, and acronyms are reported.

Group Organism Name Acronym Accession Number

Bacteria
Porphyromonas gingivalis PgiCA_bacterium YP_001929649.1
Acinetobacter baumannii AbaCA_bacterium YP_002326524

Myroides injenensis MinCA_bacterium ZP_10784819
Methanobacterium

thermoautotrophicum Cab_bacterium GI:13786688

Helicobacter pylori HpyCA_bacterium BAF34127.1
Legionella pneumophila LpnCA_bacterium YP_003619232

Escherichia coli EcoCa_bacterium ACI70660
Burkholderia thailandensis BthCA_bacterium ZP_02386321

Brucella suis BsuCA_bacterium NP_699962.1

Fungi
Malassezia globosa MgCA_fungus XP_001730815.1

Malassezia pachydermatis MpaCA_fungus XP_017991749.1
Malassezia vespertilionis Mve_fungus PKI85431.1
Malassezia sympodialis Msy_fungus XP_018739548.1

Malassezia restricta MreCA_fungus PRJNA474956
Cryptococcus neoformans Can2_fungus GI:219109194

Candida albicans Cal_fungus XP_721792.1
Saccharomyces cerevisiae ScCA_fungus GAA26059

Dekkera bruxellensis DbrCA_fungus EFW97556
Ogataea parapolymorpha OpaCA_fungus EFW97556

Aspergillus fumigatus AfuCA_fungus XP_751704
Sordaria macrospora SmaCA_fungus CAT00781
Trichosporon asahii TasCA_fungus EKD04029

Schizosaccharomyces pombe SpoCA_fungus CAA21790
Ustilago maydis UmaCA_fungus XM_011388340.1
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Table 1. Cont.

Group Organism Name Acronym Accession Number

Algae
Coccomyxa sp. CspCA_alga AAC33484.1

Chlamydomonas reinhardtii CreCA_alga XP_001699151.1

Insect
Drosophila melanogaster DmeCA_insect NP_649849

Musca domestica Mdo_insect XP_005191496.1
Aedes aegypti Aae_insect XP_021707077.1

Plant
Vigna radiata VraCA_plant AAD27876

Pisum sativum PsaCA_plant AAA33652
Flaveria bidentis FbiCA_plant AAA86939.2

Arabidopsis thaliana AthCA_plant AAA50156
Zea mays ZmaCA_plant NP_001147846.1

Oryza sativa OsaCA_plant AAA86943

2.3. Determination of the Kinetic Constants

Using stopped-flow techniques, the kinetic parameters were determined for the purified
recombinant MreCA using CO2 as a substrate. The data in Table 2 demonstrate that MreCA shows a
catalytic activity higher than that of MgCA, with the following kinetic parameters: kcat of 1.06 × 106 s−1

and kcat/KM of 1.07 × 108 M−1 s−1. Therefore, when compared with the high-activity human isoform
hCA II, it is only slightly less effective as a catalyst for CO2 hydration. Furthermore, the activity
is highly inhibited by acetazolamide, the clinically used sulfonamide inhibitor, with an inhibition
constant of 50.7 nM, as seen in Table 2. Thus, the two Malassezia enzymes, MgCA and MreCA, show
a net difference in their sensitivity to this sulfonamide, with the first one being quite resistant to the
inhibitor and the second one being quite sensitive. It is interesting to stress the fact that β-CAs are
missing in the genome of Cutibacterium acnes and Staphylococcus epidermidis, the two most abundant
bacteria found on the human scalp. Thus, the synthesis of new drugs capable of interfering with
MreCA and MgCA activity will not influence the catalytic mechanism of the CAs encoded by the scalp
microbes, preserving not only the integrity of the human skin, but also avoiding interference with
human CAs, because the human genome only encodes CAs belonging to the α-class.

Table 2. Kinetic parameters for the newly obtained enzyme from MreCA, compared with the human
hCA II (α-class) and the β-class enzyme from MgCA at 25 ◦C, pH 8.3 in 20 mM Tris buffer and 20 mM
NaClO4, for the CO2 hydration reaction.

Isozyme kcat (s−1) KM (mM) kcat/KM (M−1 s−1) KI (AAZ) (nM)

hCA II 1.4 × 106 9.3 1.4 × 108 12
MgCA 9.2 × 105 11.1 8.3 × 107 74,000

MreCA * 1.06 × 106 10.1 1.07 × 108 50.7

* The kinetic/inhibition parameters are the mean from 3 different assays. Errors are in the range of 10% of the
reported values (material not intended for publication).

3. Materials and Methods

3.1. Cloning and Purification of MreCA

The genome of M. restricta used in this study to retrieve the amino acid sequence was recently
published [57]. The amino acid sequence of MreCA is shown in Figure 1. It was back translated
into the nucleotide sequence and optimized for codon usage to increase its expression in E. coli cells.
The synthetic M. restricta gene, as obtained from GeneArt Company (Milan, Italy), contained four
base-pair sequences (CACC) necessary for directional cloning at the 5′ end of the MreCA DNA gene.
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The fragment was cloned into the expression vector pET100/D-TOPO (Invitrogen, Carlsbad, CA, USA),
creating the plasmid pET100D-Topo/MreCA. Competent E. coli BL21 (DE3) codon plus cells (Agilent,
Santa Clara, CA, USA) were transformed with the pET100D-Topo/MreCA. The level of expression of the
target protein was improved by varying the time and temperature of induction and the concentration
of the inducer (IPTG). After growth, the cells were harvested and disrupted by sonication at 4 ◦C in
20 mM of phosphate buffer, pH 8.0. Following sonication, the sample was centrifuged at 1200× g at
4 ◦C for 30 min. The supernatant was loaded onto a His-select HF nickel affinity column. The MreCA
was eluted with 0.02 M phosphate buffer (pH 8.3) containing 250 mM imidazole and 0.5 M NaCl at
a flow rate of 1.0 mL/min. Fractions were collected and dialyzed. At this stage of purification, the
enzyme was at least 80% pure, and the obtained recovery was of 0.1 mg of the recombinant MreCA per
liter of culture. The catalyst showed activity after undergoing the protonography test [61,62] (Figure 3)
and via a kinetic, stopped-flow CO2 hydrase assay [63] (Table 2).

3.2. Protonography

Wells of 12% SDS gel were loaded with MreCA or the commercial bovine CA (Sigma, St. Louis,
MO, USA), mixed with Laemmli loading buffer containing SDS (1% final concentration) but without
2-mercaptoethanol. In order to avoid protein denaturation the samples were not boiled. The gel was
run at 150 V until the dye front moved off the gel. Following electrophoresis, the 12% SDS gel was
subjected to protonography in order to detect the MreCA hydratase activity on the gel as described by
Capasso et al. [61,62].

3.3. SDS-PAGE, Primary Structure, and Phylogenetic Analysis

Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) was performed using
12% gels as described previously [61,62,64]. Multiple amino acid sequence alignment of the amino
acid sequences of the β-CAs from the different species was performed with the program CLUSTAL W,
version 2.1 [65]. The phylogenetic tree of β-CAs from the selected prokaryotic and eukaryotic species
was constructed by using the program PhyML 3.0 [66].

3.4. CA Activity Measurements

An applied photophysics stopped-flow instrument was used for assaying the CA-catalyzed CO2

hydration activity [19]. Bromothymol blue (at a concentration of 0.2 mM) was used as an indicator,
working at the absorbance maximum of 557 nm, with 10–20 mM TRIS (pH 8.3) as a buffer and 20 mM
Na2SO4 for maintaining the ionic strength (this anion is not inhibitory and has a KI > 200 mM against
this enzyme), following the initial rates of the CA-catalyzed CO2 hydration reaction for a period of
10–100 s. In order to determine the kinetic parameters and inhibition constants, the CO2 concentrations
ranged from 1.7 to 17 mM. For each measurement, at least six traces of the initial 5%–10% of the
reaction were used for determining the initial velocity, working with 10-fold decreasing inhibitor
concentrations ranging from 1 nM to 10–100 µM (depending on the inhibitor potency, but at least
5 points at different inhibitor concentrations were employed for determining the inhibition constants).
The uncatalyzed rates were determined in the same manner and then subtracted from the total observed
rates. Stock solutions of inhibitor (0.1 mM) were prepared in distilled-deionized water, and dilutions up
to 1 nM were done thereafter with the assay buffer. Inhibitor and enzyme solutions were pre-incubated
together for 15 min at room temperature before assaying, in order to allow for the formation of the
E–I complex. The inhibition constants were obtained by non-linear least-squares methods using
the Cheng–Prusoff equation, and represent the mean from at least three different determinations.
The human isoforms hCA I, II, and IX were assayed in the same conditions as above except that the
working pH was 7.4, using HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer and
phenol red as an indicator [63]. All enzymes were recombinant ones produced in our laboratory as
described previously [58,59,63,67–70].
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3.5. Multiple Sequence Alignment and Phylogenetic Analysis

Multiple alignment of the amino acid sequences of β-CAs identified in the genome of organisms
belonging to different groups (bacteria, fungi, algae, insects, and plants) was performed with the
program CLUSTAL W, version 2.1 [65]. The phylogenetic tree of β-CAs from the selected prokaryotic
and eukaryotic species was constructed using the program PhyML 3.0, which searched for the tree
with the highest probability [66].

4. Conclusions

We report here on the cloning, purification, and initial characterization of the β-CA (MreCA)
from the genome of the pathogenic fungus M. restricta, responsible for dandruff, together with other
fungi and bacteria. MreCA has a high catalytic activity for the hydration of CO2 into bicarbonate and
protons, with the following kinetic parameters: kcat of 1.06 × 106 s−1 and kcat/KM of 1.07 × 108 M−1 s−1.
It is also sensitive to inhibition by the classical sulfonamide inhibitor acetazolamide (KI of 50.7 nM).
Phylogenetically, MreCA and other CAs from various Malassezia species seem to be on a different
branch, distinct from that of other β-CAs found in fungi, such as Candida spp., Saccharomyces cerevisiae,
Aspergillus fumigatus, and Sordaria macrospora, with only the Cryptococcus neoformans and Ustilago maydis
enzymes being on the same branch as MreCA. As previously reported, the closest species were of plant
origin. The further characterization of this enzyme and identification of inhibitors that could interfere
with its life cycle might constitute new strategies for fighting dandruff and seborrheic dermatitis.
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