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Human-robot interaction (HRI) plays an important role in future planetary exploration mission, where astronauts with
extravehicular activities (EVA) have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded
in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the
astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM) is employed to recognize hand
gestures and particle swarm optimization (PSO) algorithm is used to optimize the parameters of SVM to further improve its
recognition accuracy. Various hand gestures from American Sign Language (ASL) have been selected and used to test and validate
the performance of the proposed system.

1. Introduction

When astronauts conduct EVA missions on the surface of
other planets, they generally need to collaborate with some
agents or some systems to complete the missions smoothly
and efficiently. Reducing the crew workload is a primary
concern, particularly during EVA. The robot’s autonomy
can make the robot finish some tasks independently and
allow the robot to complete certain tasks with little crew’s
attention. The robot used in the space exploration always
has a high level of autonomy (LOA). However, in current
real operations, a human operator has a better insight in the
task completion than the robot system. Autonomous systems
are not yet as efficient as humans in modeling the richness
of interactions and balancing the trade-off between the
various crewmembers and their mission requests. Therefore,
astronautsmust interact with the robot at various levels, from
high level goal commands to detailed activity sequences and
then to direct teleportation, to cope with the full spectrum
of situations expected. This creates significant challenges
with regard to communication, human-robot interface, and
human-understandable state representation.

As for the HRI problem, considerable effort has been
made to the development of intelligent and natural interfaces

between users and computer systems, and HRI has been
developed by leaps and bounds [1–6]. Now there are many
mature ways of HRI; among those ways, voice recognition
and gesture recognition are two major developing directions.
Speech recognition system now is developing towards two
important directions: one is the large vocabulary continuous
speech recognition system and the other is the applica-
tion of miniaturization, portable audio products. The large
vocabulary and continuous speech recognition system is now
generally based on one or more PCs.The portable processing
chip for recognition usually has limitations in computing
speed and storage capacity. In planetary explorationmissions,
these limitations indicate that there is still a long way to
go to apply speech recognition in this area. Hand gestures,
which have been addressed in the sign language for the deaf
people for many years, can represent rich language and have
also attracted a lot of attention. Gesture recognition is a
technology often used in HRI applications, and there are
lots of methods for hand gesture recognition, such as the
methods based on image recognition, curvature, and surface
electromyography (EMG) signal.

This paper proposes a way of using hand gestures of
astronauts to intervene in the autonomy of the agent. An
example of astronauts cooperating with agents to complete a
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Figure 1: Schematic diagram of astronauts collaborating with agent
[3].

mission is shown in Figure 1.Though recent image processing
techniques have achieved a fascinating development [2], they
are not suitable for the space applications, because the clumsy
suit may bring some of themost difficult problems in the field
ofmachine vision [7]. For surface EMGsignals, there is a large
gap in the space suits and the atmospheric pressure inside
spacesuit is only 40 percent of the standard atmosphere,
so whether the EMG signals in this case change or not is
unknown.

Increasing numbers of industrial and service robots [8, 9]
have focused on designing the HRI technology in order to
increase robot efficiency and effectiveness. HRI refers to a
process of conveying operators’ intentions and interpreting
the sequence of robot motions and working requirements
in task descriptions. The complement of HRI through the
application of suitable interactionmethods and interfaces has
been an essential factor as well as a challenge in the robot
industry. Recent development of robotics has introduced
haptic interaction, through which the users can feel both
virtual and real environments, such as in teleoperations and
telesurgeries [10]. There have been many works providing
technical and theoretical support for HRI to be more effi-
cient and suitable. Now commonly used methods include
multimodal interaction, teaching model, virtual reality, and
augmented reality.

Nowadays, the space activity is still in the early stage,
and the technology needs further improvement. In the near
future, with the development of aerospace technology, the
astronauts will not be limited to the technical personnel;
other people, such as engineers, physicists, biologists, sur-
geons, and even philosophers, also have the opportunities
to become astronauts in the space exploration and carry
out relevant scientific experiments. Therefore, the individual
agent or multiagent system, which collaborates with astro-
nauts, requires a higher LOA and friendly HRI. Making HRI
more effective, efficient, and natural is crucial to the success
of sustained space exploration. In particular, we assume
that humans and robots must be able to (1) communicate
clearly about their goals, abilities, plans, and achievements;
(2) collaborate to solve problems, especially when situations
exceed autonomous capabilities; and (3) interact via mul-
tiple modalities (dialogue, gestures, etc.), both locally and
remotely. To achieve these goals, a number of HRI challenges
must be addressed.

Table 1: Main parameters of the device.

Items Properties
Bend
sensors

Temperature range: −35∘C∼+80∘C; resistance
tolerance: ±30%

Stm32
controller

Cores: Cortex-M3 32-bit RISC, 512 K Flash, 64K
RAM; operating frequency: 72MHz,
1.25DMIPS/MHz

NRF24L01 Transmission distance: 150m; digital interface (SPI)
speed: 0∼10Mbps; on the air data rate 1 or 2Mbps

Servos
Power supply range: 7∼10V; operating temperature:
−5∘C∼+85∘C; communication speed:
7343 bps∼1Mbps

Using gestures to convey information has become an
important part of human computer interaction [4–7]. Hand
gesture recognition is widely used in many applications, such
as computer games, machinery control (e.g., crane), and
household electrical appliance remote control. Hand gesture
analysis can be divided into three main approaches, namely,
glove-based methods, vision-based methods, and methods
for drawing gestures [5]. For approaches based on the data-
glove, the relative position of a finger is captured by an
additional sensor, which is normally a magnetic or acoustic
sensor attached to a glove. A lookup table software toolkit
is usually provided for hand gesture recognition [7]. The
secondway is based on the image processing, which is stricter
with the image background, and thus it is not suitable for
applications in a complexworking environment [6].The third
method involves the analysis of gesture drawing [5], using
a stylus as an input device. This method is often used for
identifying written words, which has problems of reliability,
accuracy, and electromagnetic interference noise.

The paper is organized as follows. In Section 2, the
interactive astronaut-robot system is introduced in detail,
including the system devices, the overall plan and the main
functions, and the snake-like robot. In Section 3, we intro-
duce the application of SVM and PSO for the hand gesture
recognition. In Section 4, we designed two experiments to
verify the reliability and robustness of the proposed system.
Conclusions and future work are discussed in Section 5.

2. Interactive Astronaut-Robot System

The system integrates bending sensors in a glove to capture
the bending angles of all the fingers. Then the finger angles
are classified through the model trained by the SVM, and
corresponding instructions generated control the snake-like
robot, so that the snake-like robot can assist astronauts to
complete themission.Themain components include bending
sensor system, STM32 controller, wireless communication
module, and themodular snake robot composed with servos.
The main parameters of each device are shown in Table 1.

2.1. The Control System. The main function of this control
system is designed to achieve themodular robot moving with
the planned movement according to the instructions from
the gesture recognition system. Detailed implementation is
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Figure 2: Outline of the control system.

shown in Figure 2. After the controller gets the signal F
𝑠

from the bend sensors mounted on the glove, the signal
goes through a filter and a normalization preprocessing stage,
and O

𝑠
is sent to the controller mounted in the snake-like

robot through wireless module. This controller processes O
𝑠

by SVM and gets the predicting label. Then corresponding
operation instructions are sent to the snake-like robot. Finally
the snake-like robot executes the corresponding movement.

2.2. Snake-Like Robot. Snakes could do very well in the rough
terrain like Mars, by going over and through broken ground
and sand, and squeeze through tight spaces. Thus, great
interest in the snake-like robot research has been generated.
The European Space Agency is developing snake-like robots
aiming at providing robot with more mobility during space
exploratory activities. The snake-like robot applied in the
mission of lunar exploration and Mars exploration will be
helpful for the rover to travel over the complex rugged surface
and narrow gaps on the ground.

During some missions where a wheeled rover collabo-
rates with a snake-like robot, the wheeled rover can be used to
travel long distances, while the snake robot could detach and
reach places where the rover cannot reach. And if the rover
gets stuck, the snake robot could conceivably be used to help
pull it away.

Hirose has proposed the serpentine curve early in 1993
[11]. The curvature of the serpenoid curve is given by

𝜌 = −𝛼𝑏 sin (𝑏𝑠) , (1)

where 𝛼 is amplitude angle (rad); 𝑏 is constant of proportion-
ality (rad/m); 𝑠 is length of serpentine curve (m).

The snake-like robot is composed ofmodular units, which
are connected by active revolute joints, and the change of
position between relativemodules results in themovement of
the robot. The flexible architecture of snake-like robot makes

J1J2

J3J4J5J6J7J8J9

5 cm

Figure 3: Structure of the snake-like robot.

it hard to make a turning movement like other legged robots.
To ensure the snake-like robot can achieve high efficiency in
turning movement, Ye et al. proposed several methods for
the turning motion of snake-like robot [12]. The snake-like
robot used in this paper is shown in Figure 3 and made up of
ten serial joints and each joint has one degree of freedom. A
camera (the one encircled by the blue circle) is arranged on
the head and a control module (the one encircled by the red
circle) is fixed at the tail. Its physical connection is shown in
Figure 4.

In the design of the communication system in a snake-
like robot, a half-duplex asynchronous serial communication
(8 bits, 1 stop, no parity) is utilized. Transmission speed is up
to 1Mbps. Link (physical) is TTL level multidrop (daisy chain
type connector) considering minimizing physical cable.

The protocol of each modular unit communicating with
the main controller is shown in Figure 5. Two 0XFF are the
start code, ID is the number for the corresponding actuator,
LENGTH is the length of the instruction, instruction is the
instruction for the actuator to perform, PARAMETER is
additional information needed to be sent other than the
instruction, and the checksum is used to verify the signal.
Distributed feedback compensation control is used as the
control method. The specific control block diagram is shown
in Figure 6.
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3. Motion Recognition and
Parameter Optimization

Machine learning based on data is an important aspect of
modern intelligence technology. Statistics study begins with
the observation of data to conclude a model, which is the
base of the forecast for future data or the data cannot be
observed. Traditional statistics study the asymptotic theory
when the number of samples tends to infinity. Existing learn-
ing methods are mostly based on this assumption. But, in
practical problems, the number of samples is often limited, so
they usually have an unsatisfactory performance. Compared
with the traditional statistics, Statistical Learning Theory
(SLT) is a specialized theory, which systematically studies
the relationship between experiences risk and actual risk for
various types of sets of functions, namely, the generalization
bounds [5]. Vapnik and Kotz began to dedicate themselves to
researching this theory from the 1960s [13]. In the mid-90s,
because of the development of Vapnik’s theory and the lack of
substantive progress in the theory of neural network learning
methods, SLT began to receive more appreciation. SLT was
based on a solid theory and provided a unified framework
for solving the learning problem with the small samples. It
incorporates many of the existing methods, expected to help
solve many difficult problems, for example, the selection of
neural network architecture and the local minima problem.
Based on this theory, there is a new universal learning
method; support vector machine (SVM), using geometry
classification method to find the optimal hyperplane and get
themaximummargin classifier, has shown a lot of superiority
compared to the existing method [14, 15].

SVM is a more practical part of statistical theory, which
was originally proposed by Vapnik et al. in 1992 to 1995 [14,

16–18]. It is currently still in the development stage. SVM is a
structure of risk minimization strategies, which compromise
the empirical risk and confidence interval to obtain the actual
minimum risk [19]. A SVM approaches problems by search-
ing for the MaximumMarginal Hyperplane (MMH) where a
hyperplane has an equal distance from the hyperplane to both
sides of its margin to ensure the hyperplane is more accurate
at classifying future data tuples [20]. Compared with the new
algorithms like Extreme LearningMachine (ELM) [21], SVM
is committed to using less parameters to express a complex
model; it still has its advantage in methodology and is more
plausible.

SVM classifies linear data directly. When the data is
linearly inseparable, it transforms the original data into a
higher dimensional space by using a nonlinear mapping, and
then searches for a linear separating hyperplane in the new
space. Nonlinear data processing steps are shown in Figure 7.

There are several modes of SVM, which can be used
for data classification, regression, and distribution estimation
[22]. This paper uses the C-Support Vector Classification (C-
SVC) [17, 23] to classify the data.

The distinguished hyperplane of the sample set X =

{x
1
, x
1
, . . . , x

𝑁
} can be shown by the formula

W𝑇x + 𝑤
𝑑+1

= 0, (2)

whereW is the weight vector and the direction of hyperplane.
𝑑 is the dimension of the feature space. 𝑤

𝑑+1
is the offset of

the hyperplane. During the course of looking for the best
W∗ to maximize the interval between the hyperplane and the
closest sample, Lagrange multiplier method can be used to
solve the problemof inequality constraint.The corresponding
Lagrange function is

𝐿 (W, 𝑤
𝑛+1

, 𝜆) =
1

2
W𝑇W

−

𝑁

∑

𝑘=1

𝜆
𝑘

[𝑦
𝑘

(W𝑇x
𝑘

+ 𝑤
𝑑+1

) − 1] ,

(3)

where 𝜆
𝑘

≥ 0 and 𝑘 = 1, 2, . . . , 𝑁 is the Lagrange coefficients
to be determined.
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To obtain a necessary condition for the extreme value
in Lagrange function, the course of seeking the partial
derivatives equaling zero ofW and 𝑤

𝑑+1
is shown below:

𝜕

𝜕W
𝐿 (W, 𝑤

𝑛+1
, 𝜆)

W=W∗
= W∗ −

𝑁

∑

𝑘=1

𝜆
𝑘
𝑦
𝑘
x
𝑘

= 0,

𝜕

𝜕W
𝐿 (W, 𝑤

𝑛+1
, 𝜆)

𝑤
𝑑+1
=𝑤
𝑑+1

∗

= −

𝑁

∑

𝑘=1

𝜆
𝑘
𝑦
𝑘

= 0.

(4)

Namely,

W∗ =

𝑁

∑

𝑘=1

𝜆
𝑘
𝑦
𝑘
x
𝑘
,

𝑁

∑

𝑘=1

𝜆
𝑘
𝑦
𝑘

= 0.

(5)

Convert it to the dual form:

𝐿
𝐷

(𝜆) = −
1

2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
𝑦
𝑖
𝑦
𝑗
x𝑇
𝑖

x
𝑗

+

𝑁

∑
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𝜆
𝑘
. (6)

To ensure distinguished hyperplane has the smallest risk
of classification,

Maximise 𝐿
𝐷

(𝜆)

= Maximise
{

{

{

𝑁

∑
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𝜆
𝑘
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Subject to 𝜆
𝑘

≥ 0, 𝑘 = 1, 2, . . . , 𝑁,

𝑁

∑

𝑘=1

𝜆
𝑘
𝑦
𝑘

= 0.

(7)

The function showed above is the simple quadratic pro-
gramming problem, which has standard solving algorithm.
Once the problem is solved under the condition of 𝜆

𝑘
≥ 0,

𝑘 = 1, 2, . . . , 𝑁, the optimal weight vector W∗ will be got
based on the formula shown in (5). Solutions meeting the
requirements are called support vector.

When it comes to nonlinear classification, the data is
usually mapped to a high-dimensional linear space by the
kernel function in Figure 7. In this way the linearly insep-
arable data can be converted into linear separable data in
a high-dimensional space. Three kinds of kernel functions
are commonly used, namely, polynomial kernel of degree ℎ,
Gaussian radial basis function kernel, and Sigmoid kernel.
Three kernel functions are as follows.

Polynomial kernel of degree ℎ is

𝐾 (x
𝑖
, x
𝑗
) = (x

𝑖
⋅ x
𝑗

+ 1)
ℎ

. (8)

Gaussian radial basis function kernel is

𝐾 (x
𝑖
, x
𝑗
) = 𝑒
−‖x
𝑖
⋅x
𝑗
−1‖

2

/2𝜎

2

. (9)

Sigmoid kernel is

𝐾 (x
𝑖
, x
𝑗
) = tanh (𝜅x

𝑖
⋅ x
𝑗

− 𝛿) . (10)

There are no golden rules for determining which admis-
sible kernel will result in the most accurate result in SVM. In
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practice, the kernel chosen does not generally make a large
difference in the resulting accuracy. SVM training always
finds a global solution, unlike neural networks, such as
backpropagation, where many local minima usually exist.

For the using of SVM, although the choosing of kernel
generally does not make a large difference in result accuracy,
when a kernel is chosen, there are still a number of parameters
that should be optimized. In this paper, after selecting the
Gaussian radial basis function, there are two parameters 𝑐 and
𝑔 that need to be optimized, where 𝑐 is the penalty coefficient
that means error tolerance; the higher the value is, the
smaller the error can be tolerated. Parameter 𝑔 determines
the distribution of data after mapping to the new feature
space.

There is no best way to select the SVM parameters. The
most common way is to let 𝑐 and 𝑔 be within a certain range.
In this paper, cross-validation method based on grid-search
was used for the parameter optimization. Cross-validation
is one of the more classic solutions [22]. The algorithm is
conducted according to a basic idea that in the inner loop
of cross-validation, once the recognition rate for the first
time appears to be a local maximum, the parameter values
are recorded and the inner loop ends. Finally, estimate the
optimal parameters by calculating the arithmetic mean of the
entire local maximum.

PSO is a new Evolutionary Algorithm (EA) developed
in recent years [24]. The particle swarm is more than just a
collection of particles. A particle by itself has almost no power
to solve any problem. Progress occurs only when the particles

interact. Particle swarm follows the optimal particle to search
the solution space; each particle obtains a search direction
and speed in next loop by comparing with the individual
optimum value and global optimum value respectively with
random perturbations distributed uniformly in a certain
range. Compared with other EAs, the advantages of PSO
are being simple, being easy to achieve, and few parameters
to be adjusted. Using PSO with appropriate parameters can
significantly improve the accuracy of SVM [25–28]. The
formulas to update the primitive velocity and location are
shown as follows:

V⃗
𝑖

← 𝜔V⃗
𝑖

+ �⃗� (0, 𝜙
1
) ⊗ (�⃗�

𝑖

− �⃗�
𝑖
) + �⃗� (0, 𝜙

2
)

⊗ (�⃗�
𝑔

− �⃗�
𝑖
) ,

�⃗�
𝑖

← �⃗�
𝑖

+ V⃗
𝑖
,

(11)

where �⃗�
𝑖
is the current location; �⃗�

𝑖

is the previous personal
best position; �⃗�

𝑔

is the previous global best position; V⃗
𝑖
is

velocity and 𝜔 is inertia weight; �⃗�(0, 𝜙
𝑖
) represents a vector

of random numbers uniformly distributed in [0, 𝜑
𝑖
] which is

randomly generated at each iteration and for each particle; ⊗

is componentwise multiplication
In the original version of PSO, velocity of each particle is

limited to [−𝑉max, +𝑉max].
The programflowusing the SVM,whose parameters were

chosen by the PSO to obtain a classification model, is shown
in Figure 8.
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4. Experiment

In this paper, we focus on the planet surface EVA, where
the autonomous robots need assistance on path planning,
mission guidance, and so forth. In the process of classification
of HRI instructions, the above learning method, SVM, with
a small number of learning samples is used to classify the
instructions. For the SVM parameter optimization, PSO
algorithm was used to optimize SVM parameters 𝑐 and 𝑔 by
the way of cross-validation. The found optimal parameters
will be used to find the best SVM model. The software
package LIBSVM we used was developed in [22].

In order to verify the accuracy and robustness of the
proposed method, two experiments are conducted. First,
the proposed methods are evaluated on 16 hand gestures
selected from 36 hand gestures in the ASL. Second, the hand
recognition algorithm has been integrated into a snake-like
robot, and validation is then made with a space suit.

4.1. Hand Gesture Recognition. ASL has 36 hand gestures, 26
letters, and 6000 words. Although most of the ASL alphabet
letters depend on finger bending, some of them also depend
on hand orientation and two of them are dynamic. There
are some similarities between 𝑔 and 𝑞, ℎ and 𝑢, and 𝑘 and

𝑝. These couples have basically the same hand shape, but
their hand orientation differs from the others.There are hand
shape similarities between 𝑖 and 𝑗 and 𝑥 and 𝑧, but 𝑗 and 𝑧 are
dynamic characters.

In this paper, we selected 16 in 36 of ASL shown in
Figure 9 for the classification and identification experiment;
corresponding gestures in the experiment are shown in
Figure 10. For each gesture, we collected 15 sets of data, from
which we use 10 for training and other 5 for the testing.
The test data is normalized before testing the accuracy. In
addition, we collected 5 new sets of hand shapes for each
gesture to test the trained model.

For a more detailed analysis on the effect of using PSO
for SVM cross-validation, we calculated the average Cross-
Validation Accuracy (CVA) of the SVM cross-validation for
different parameters of PSO, as shown in Tables 2 and 3 (each
group has 6 experiments). At first, we fixed the maximum
generation as 5 and adjusted the size of PSO population
shown in Table 2. The parameter of PSO is the maximum
generation or the size of PSO population. Obviously, when
the size of PSO population was equal to 5, the CVA reached
its maximum. With the population as 5 and the maximum
generation, the results shown in Table 3 indicated that when
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the maximum generation is equal to 5, the CVA reached its
maximum.

From Tables 2 and 3, we can also know that using
PSO with appropriate parameters can significantly improve
the accuracy of SVM in the process of cross-validation.
Compared with the results of gesture recognition using ELM
in [29], few parameters were used in this paper, and SVMhad
more stable results than the Extreme Learning Machine.

Aswe can see, the classification accuracy can always reach
100% except the size of PSO population that is too small.
It demonstrates that the method in this paper has a high
accuracy and strong robustness.

4.2. Snake-Like Robot Remote Control with Hand Gestures. A
snake-like robot plays a powerful role in space exploratory
activities. In this paper, a snake-like robot motion control
was employed of testing the accuracy, stability, and robustness
of the proposed approach. We modeled the environment of

Table 2: Average CVA when the maximum generation is fixed.

Parameter of PSO CVA Classification accuracy
5\2 55.1968% 64.79%
5\3 77.1160% 100%
5\4 77.2569% 100%
5\5 81.3294% 100%
5\6 78.9453% 100%
5\7 77.5563% 100%

astronauts on other planets, embedded the controller in the
glove, and controlled the movement of the snake-like robot.
Overall structure of the experiment is shown in the left of
Figure 11 and a schematic diagram of control signal flow
shown in the right.

The hand gestures have been integrated into the glove-
robot control system. Various motions have been identified
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A B

C D

(a) Turning left

A B

C D

(b) Turning right

A B

C D

(c) Moving backward

A B

C D

(d) Looking up

A B

C D

(e) Looking down

A B

C D

(f) Moving forwards

Figure 12: Snake-like robot gesture control experiments.

Table 3: Average CVA when the size of PSO population is fixed.

Parameter of PSO CVA Classification accuracy

2\5 74.1435% 100%
3\5 76.9485% 100%
4\5 76.7045% 100%
5\5 81.3294% 100%
6\5 80.3364% 100%
7\5 80.2778% 100%

for the snake-like robot, such as turning left/right andmoving
forward/backward. It demonstrates that the proposed system
including the hardware and software is effective and robust. It
is a good prototype for the HRI used in the space exploration.
The corresponding hand gestures, robot movements, and
simulated motion tracks are shown in Figure 12, respectively.

5. Conclusion and Future Works

This paper proposed a gesture-type user control system
for the space exploration based on the actual application



10 Computational Intelligence and Neuroscience

environment for the purpose of utility and stability. In this
study, bending sensors were integrated with a space suit to
control a snake-like robot, which was designed for the space
exploration. SVM was used as the gesture signal pattern
recognizer, and PSO algorithm was used for optimizing the
parameters of SVM.The system classified the action sequence
and ensured the accuracy and real-time performance of the
control process. The experimental results showed that this
system was effective with a high accuracy, reliability, and
robustness.

In the future, the system will be improved with a series of
command functions so that astronauts can interrupt robot’s
operations whenever necessary to provide guidance and
assistance for the mission. Simultaneously, the collaboration
between the astronaut and the robot will be strengthened
and the interactions will be more precise and concise with
advanced nonlinearmethods [30, 31]. Finally, the HRI system
will be further improved with a natural and friendly interface
so that nontechnical astronauts can also have a barrier-free
communication with robots.
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