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Enzymes have been used for the production and processing of fish and seafood for 
several centuries in an empirical manner. In recent decades, a growing trend toward a 
rational and controlled application of enzymes for such goals has emerged. Underlying 
such pattern are, among others, the increasingly wider array of enzyme activities and 
enzyme sources, improved enzyme formulations, and enhanced requirements for 
cost-effective and environmentally friendly processes. The better use of enzyme action in 
fish- and seafood-related application has had a significant impact on fish-related indus-
try. Thus, new products have surfaced, product quality has improved, more sustainable 
processes have been developed, and innovative and reliable analytical techniques have 
been implemented. Recent development in these fields are presented and discussed, 
and prospective developments are suggested.
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iNTRODUCTiON

Enzymes are key tools in biotechnology and related areas because of their catalytic nature (Fraatz 
et al., 2014; Jemli et al., 2016). Accordingly, they have been extensively used in food production 
and processing for centuries, albeit in a rather empirical manner, which has been superseded by a 
rational approach in the last decades (Whitaker, 1994; Whitaker et al., 2002; Fraatz et al., 2014). In 
recent years, the focus has been on technical and scientific issues (enzyme formulations, molecular 
improvement of enzyme, screening for new/improved enzymes through traditional and metagen-
omics approaches, process improvement) as well as on legal and regulatory matters (definition of 
enzymes and technological purposes, procedures for safety assessment, harmonization of regula-
tions, among others), all of these abridging the food industry (Fraatz et al., 2014; Li and Cirino, 
2014; Alma’abadi et al., 2015; Jemli et al., 2016). Within this latter area, fish and seafood comprise 
a significant market (Morrissey and DeWitt, 2014), where enzyme action plays an effective role. 
In particular, and somehow not surprisingly, the use of enzymes from the marine environment 
has gradually been emerging as a relevant tool for fish and seafood processing (Diaz-López and 
García-Carreño, 2000; Shahidi and Janak Kamil, 2001; Venugopal, 2005; Sana, 2015), although this 
is sometimes overshadowed by other applications in food production and processing, e.g., bakery, 
beverages, and starch processing (Fraatz et al., 2014). This paper aims to provide an overview on the 
current status on the relevant uses of enzymes for fish and seafood processing and analysis. These 
are illustrated in Figure 1.
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FigURe 1 | A schematic overview of enzyme applications in fish and seafood processing.
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eNZYMe SOURCeS

When considering the enzymatic processing of fish and seafood, 
the role of both endogenous and added enzymes has to be con-
sidered. In the latter case, the enzymes used are from mammalian, 
plant, or microbial sources. Ease of manipulation and cultivation 
of the latter makes them the preferred source of enzymes. These 
are typically from terrestrial organisms, yet given the wide pool 
of marine microorganisms, the trend toward the use of these as 
enzyme sources has been increasing (Trincone, 2011, 2013). In 
particular, they are often adapted so as to display high activity 
at relatively low temperatures, unlike many of enzymes from 
terrestrial sources, thereby making them more effective in many 
processes that require often a low-temperature environment 
(Simpson, 2012).

PROCeSS APPLiCATiONS

Traditional use of enzymes in seafood processing involves the use 
of proteases, namely bacillolysin (Neutrase®), ficin, papain, pep-
sin, subtilisin (Alcalase®), trypsin, and a mixture of bacillolysin 
and subtilisin (Protamex®), of both endogenous and exogenous 
nature, for descaling and deskinning, peeling of shrimp, produc-
tion of caviar and fish sauce, recovery of diverse molecules, and 
tenderization of squid, as reviewed by several authors (Haard 
and Simpson, 1994; Vilhelmsson, 1997; Diaz-López and García-
Carreño, 2000; Suresh et al., 2015).

Proteases
Proteases are widely used in fish and seafood processing (Diaz-
López and García-Carreño, 2000; Suresh et al., 2015), covering a 
wide array of applications.

Deskinning and Descaling
Deskinning involves the removal of fish skin without causing 
damage to the flesh, a process currently performed by rough 
mechanical procedures, imparting considerable risk of damag-
ing the flesh and producing excessive waste. Moreover, enzy-
matic deskinning can improve the edible yield. Several specific 

applications have been implemented, specifically for processing 
herring, pollock, squid, skate, shrimp shells, and tuna, occasion-
ally combined with physical treatment (Haard and Simpson, 
1994; Rasika et  al., 2013). Several of these methods involve 
the use of enzymes from marine organisms, for example, acid 
proteases from cod viscera for herring, protease extracts from 
minced arrowtooth flounder for pollock, and enzymes from 
squid for squid itself (Simpson, 2012). Recently, commercial 
proteases (Proleather FG-F® and Protease N®) and collagenase 
(CLS1®) were tested for the deskinning of catfish nuggets. 
Proleather FG-F® proved effective, and operational conditions 
(enzyme concentration, time, and temperature of incubation) 
were identified that optimized removal of the peritoneal mem-
brane (Kim et  al., 2014). Descaling can also be performed by 
mechanical methods, but again it is a harsh treatment and may 
result in tearing of the skin and lower filet yield. Thus, the milder 
enzyme approach is favored, particularly if mixtures of fish 
digestive proteases that enable operation at low temperatures, 
are used (Svenning et al., 1993; Gildberg et al., 2000; Gildberg, 
2004). This approach has been assessed for scale removal of had-
dock and redfish (Haard and Simpson, 1994) in Japanese sashimi 
restaurants and fresh-fish markets (Simpson, 2012).

Proteases have also been used for the removal of raw meat 
from the head-shell of crustaceans, by immersing the latter in an 
enzyme solution (Gallant et al., 2001), although the reliability of 
the method has been questioned (Jabbour and Hognason, 2007). 
Early efforts for shrimp peeling and de-veining and for shuck-
ing clams have been reported, involving a mixture of ficin and 
amylase in the former case and ficin, amylases, and cellulases in 
the latter (Venugopal et al., 2000).

Fish Protein Hydrolyzate
One of the major established applications is the production 
of fish protein hydrolyzates (FPHs). FPH is the result of the 
enzymatic (endo- and/or exo-peptidases) or chemical hydrolysis 
of protein-rich byproduct waste of the fish processing industry, 
such as bones, head, liver, skin, trimmings, and viscera of fish 
flesh and of minces, leading to peptides with 2–20 amino acids, 
depending on the enzymes used, the fish used as source, the time 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


3

Fernandes Enzymes in Fish and Seafood

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2016 | Volume 4 | Article 59

of incubation, and concomitantly the degree of hydrolysis (Dh), 
defined as the ratio of the number of broken peptide bonds (p) to 
the total number of peptide bonds per mass unit (ptot).

 
D p

ph
tot

   x100          =
 

Thus, a free α-amino group is formed for each hydrolyzed pep-
tide bond (Nguyen et al., 2011; Chalamaiah et al., 2012; Benjakul 
et al., 2014; He et al., 2015; Suresh et al., 2015).

Traditional FPH hydrolysis was promoted either by acid or 
alkali action. Acid hydrolysis involves the use of concentrated 
hydrochloric acid, or occasionally sulfuric acid, operation at high 
temperatures and pressures, and neutralization of the hydrolyz-
ate. Accordingly, the hydrolyzate contains large amounts of 
sodium chloride, which impairs its functionality. Moreover, 
tryptophan, a key amino acid, is destroyed in the process. 
Alkali hydrolysis also involves relatively high temperatures and 
concentrated sodium hydroxide. Moreover, during the process, 
several unwanted reactions occur, which lead to the formation of 
toxic compounds and impair the functionality of the hydrolyzate 
(Kristinsson and Rasco, 2000). The enzyme approach, although 
complex, occurs under mild conditions of temperature, pressure, 
and pH and involves the use of proteolytic enzymes, typically 
available at low cost, and deleterious reactions are virtually non-
existant. Hence, this approach is technically and economically 
attractive (He et al., 2013). FPHs display functional properties of 
interest for food formulation, namely emulsification and foam-
forming ability, gelling activity, protein solubility, oil-binding 
capability, and water-holding capacity (Kristinsson and Rasco, 
2000; Chalamaiah et  al., 2010; He et  al., 2015). FPHs compare 
favorably with poultry byproducts and protein hydrolyzate, both 
obtained by proteolysis with Alcalase, an outcome ascribed to 
the difference in amino acid composition (Taheri et  al., 2013). 
Moreover, FPHs are envisaged as effective source of proteins for 
human nutrition, given their balanced amino acid composition 
and easier gastrointestinal adsorption when compared to free 
amino acids (Clemente, 2000). FPHs also exhibit antioxidant, 
antihypertensive, immunomodulatory, and antimicrobial activi-
ties, hence their incorporation in nutraceuticals and functional/
health foods has recently emerged, as evidenced by the presence 
of several commercially available products (Chalamaiah et  al., 
2012; Hu et al., 2015). FPHs have a bitter taste, which is one of the 
key issues that prevents its dissemination in food products, East 
Asian condiments, and sauces (Kristinsson and Rasco, 2000). 
Moreover, excessive hydrolysis is likely to impair some functional 
properties or cause off-flavors in the final product (Balti et  al., 
2010). Several approaches for de-bittering have been tested, with 
different advantages and limitations. Among these, the enzymatic 
action of exopeptidases and concomitant removal of free amino 
acids has emerged as the most promising (Sujith and Hymavathi, 
2011). Recently, the possibility of using FPHs as cryoprotective 
agents to preserve frozen fish, as an alternative to commonly used 
carbohydrate-based agents, was suggested, given the positive 
results obtained when hydrolyzates from Pacific hake (Merluccius 
productus) were obtained upon proteolysis using either Alcalase 
or Flavourzyme. FPHs were used for frozen storage of minced cod 

samples and displayed similar or better cryoprotective properties 
than a standard sucrose–sorbitol mixture (Cheung et al., 2009).

The production of FPHs typically requires the addition of 
enzymes from different sources, namely plants (papain, bro-
melain), microorganisms involving both commercial formula-
tions (Alcalase, Flavourzyme, Neutrase, Protamex) and crude 
enzyme preparations (orientase, papain, trypsin, thermolysin), 
and fish digestive enzymes (pepsin, trypsin, chymotrypsin) 
(Kristinsson and Rasco, 2000; Benjakul et al., 2014; Jridi et al., 
2014; Yarnpakdee et  al., 2015). The production of FPHs using 
either endogenous enzymes such as cathepsin L in autocatalytic 
processes or endogenous enzymes combined with exogenous 
enzymes has also been performed (Kristinsson and Rasco, 2000; 
Samaranayaka and Li-Chan, 2008; Ovissipour et al., 2013). Still, 
processes based only on the use of endogenous enzymes lead to 
low protein content and recovery (Samaranayaka and Li-Chan, 
2008; Ovissipour et al., 2013).

Efforts have been recently made to optimize the process of 
FPH production and to make better use of wastes in order and 
obtain products with relevant activity (Table 1). Further details 
on the use of enzymes for this application can be found in a recent 
review (Benjakul et al., 2014).

Fish Sauce
Fish sauce is the outcome of enzyme-solubilized and digested 
fish protein. The preparation is preserved in salt and used as 
an ingredient and condiment on vegetable dishes. Currently 
associated with Southeast Asia, fish sauce was quite popular 
in Roman culture, but since then it has almost vanished from 
Europe (Gildberg et al., 2000; Tanasupawat and Visessanguan, 
2014). Protein hydrolysis takes place by autolysis, mainly 
involving trypsin and chymotrypsin, alongside cathepsins. 
As the pH of fish sauce decreases during fermentation, from 
around 7 to 5, the role of the enzymes in protein digestions is 
complementary because, while the two former ones are active at 
pH ~7, the latter are active in acidic environments (Lopetcharat 
et al., 2001; Turk et al., 2012). The extent of proteolysis is typi-
cally characterized by Dh.

The traditional process, which relies solely on autolysis 
involving fermentation and endogenous enzymes, is quite 
time consuming because it takes several months up to 3 years 
for full completion (Lopetcharat et  al., 2001; Gildberg et  al., 
2007; Faisal et  al., 2015; Lee et  al., 2015). Therefore, the use 
of exogenous enzymes, such as bromelain, ficin, or papain, as 
well as the commercial preparations Protamex and particularly 
Protex 51FP and Neutrase, has been also shown to speed up fish 
fermentation (Beddows and Ardeshir, 1979; Ooshiro et al., 1981; 
Chuapoehuk and Raksakulthai, 1992; Aquerreta et  al., 2001; 
Himonides et al., 2011a; Le et al., 2015). The use of exogenous 
enzymes can increase significantly the pace of fish fermentation 
(Aquerreta et al., 2001), yet their application should be carefully 
assessed in order not to tamper with the required functional and 
organoleptic properties and quality of the final product (Ooshiro 
et al., 1981; Himonides et al., 2011a; Ghaly et al., 2015). On the 
other hand, the use of exogenous enzymes can lead to a final 
product that fulfills the intended role and displays adequate 
features and even promising nutraceutical properties. This is 
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TAbLe 1 | Recent developments on the production of FPHs with application in food and feed.

goal/summary Dh (%) Reference

Optimization of Alcalase-catalyzed hydrolysis of cobia frame using response surface methodology (RSM). Dh was maximized with an enzyme 
concentration of 8.3%, temperature of 58°C, hydrolysis time of 134 min, and pH of 9.4. The hydrolyzate contained 88.8% protein, 0.58% fat, 
and 5.05% ash

96 Amiza et al. 
(2014)

Optimization of shrimp waste protein hydrolyzate using Alcalase and RSM. A model equation was developed that correlated temperature, pH, 
enzyme/substrate ratio, and time with Dh

33 Dey and Dora 
(2014a)

Use of Alcalase for the production of shrimp waste protein hydrolyzate with antioxidative properties n.d. Dey and Dora 
(2014b)

Optimization of the production of carotenoids and protein hydrolyzate with antioxidative properties through RSM applied to the hydrolysis of 
shrimp waste using Alcalase. Optimal temperature, enzyme concentration, and time of incubation depended on the targeted product

n.d. Sowmya  
et al. (2014)

Assessment of the validity of hydrolyzing the byproducts resulting from processing of tilapia fish into filets using Alcalase. The final product 
had a high protein content (62.71%), contained 199.15 mg essential amino acids per gram, and displayed high angiotensin converting 
enzyme inhibitory activity

20 Roslan  
et al. (2014)

Optimization of the papain-catalyzed hydrolysis of byproducts from catfish filet production. Optimal operational conditions were identified as a 
temperature of 60°C, pH 5, enzyme concentration4% (w/w), and time of hydrolysis of 48 h

n.d. Utomo  
et al. (2014)

Optimization of Neutrase-catalyzed hydrolysis of FPH from fish muscle using RSM, aiming at the highest content of sweet and umami taste 
amino acids. Optimal temperature, pH, and enzyme/substrate ratio were established as 40.7°C, 7.68, and 0.84%, respectively

17 Shen  
et al. (2012)

Production of FPH in a batch process at 50 l pilot plant scale, through papain-catalyzed hydrolysis of cod and haddock fish frames. Almost 
complete hydrolysis could be achieved in 1 h, at 40°C, and 0.5% enzyme/substrate ratio. FPH products were fit for both human and animal 
consumption

≈ 100 Himonides  
et al. (2011b)
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due to the presence of polyunsaturated fatty acids, lower level 
of salt, and higher protein content than currently produced 
fish sauces in Southeast Asia. The preparation obtained with 
exogenous enzymes was also considered to be more similar to 
the fish sauce produced in classical Roman age (Aquerreta et al., 
2001). Moreover, and besides process conditions, the functional 
and organoleptic properties and the nature of the final product 
are noticeably influenced by the starting material, as reported by 
Gildberg et al., who compared fish sauces obtained from several 
cold-water and tropical species. Thus, not only the overall con-
tent of proteins but also the profile of amino acids differs, and 
possibly that of fatty acids, which is likely the result of the diverse 
endogenous microbial and enzymatic activity (Gildberg et  al., 
2007). Different contents of protein and lipidic components were 
also observed when sardines and anchovy as raw materials were 
compared (Le et al., 2015). The ratio of salt to fish also conditions 
enzyme activity, with impact on the characteristics of the final 
product (Gildberg et al., 2007; Tanasupawat and Visessanguan, 
2014; Le et  al., 2015). Hence, the detailed characterization of 
catalytic activity requires chemical, physical, and sensorial 
evaluation, alongside microbiological analysis (Aquerreta et al., 
2001; Gildberg et  al., 2007; Tanasupawat and Visessanguan, 
2014; Faisal et al., 2015).

Ripening
Proteases are also involved in the ripening of salted fish such as 
herring, anchovy, cod, and salmon, a complex biochemical process 
mostly characterized by the degradation of muscle proteins with 
endogenous enzymes, with increase of peptides and free amino 
acids. The activity of enzymes from the digestive tract, namely 
chymotrypsin and trypsin, is typically the most significant in the 
ripening process, although muscle proteases, namely cathepsins, 
also play a non-negligible role (Sikorski, 2007; Bjørkevoll et al., 
2008; Rahaman, 2014).

Transglutaminase
Transglutaminases (TGAs), protein-glutamine γ-glutamyl-
transferase (EC 2.3.2.13), promote acyl transfer reactions. These 
involve the γ-carboxyamide group of a peptide-bound glutamine 
residue as acyl donors and several primary amines as acyl accep-
tors, for example, the ɛ-amino group of lysine. Concomitantly, 
intra and intermolecular covalent bonds are formed, namely ɛ-(γ-
glutamyl)–lysine, resulting in the cross-linking of peptides and 
proteins and polymerization. When primary amines are absent, 
water acts as acyl receptor, and the γ-carboxyamide groups of 
glutamine residues are deaminated into glutamic acid residues 
(Diaz-López and García-Carreño, 2000; Sikorski, 2007; Zilda, 
2014). TGAs are available form mammalian, plant, and microbial 
sources, the two former being Ca2+ dependent (TGase), unlike 
the latter (microbial TGA; MTGase). This feature, along with 
the facile and more cost-effective production of enzymes from 
microbial sources, makes these the source of the diverse com-
mercial formulations of TGAs (Sikorski, 2007; Serafini-Fracassini 
and Del Duca, 2008; Kieliszek and Misiewicz, 2014; Zilda, 2014).

Given their cross-linking ability, MTGases are used for the 
modification/improvement of the functional and mechanical 
properties of fish and seafood products, and therefore are used 
as binding ingredients for the restructuration of raw meats and 
in the production of surimi (Mariniello et  al., 2008; Kieliszek 
and Misiewicz, 2014; Zilda, 2014). Also, TGAs are used in 
formulations of fish meat mince, modification of finfish texture, 
processing of shark fin, formation of collagen and gelatin bonds, 
and minimization of drip after thawing (Diaz-López and García-
Carreño, 2000; Zilda, 2014; Suresh et  al., 2015). Most of these 
processes involve the use of added MTGases; still, endogenous 
TGases account for ɛ-(γ-glutamyl)–lysine cross-linking in dried 
fish, frozen-stored surimi, and the polymerization of myosin 
heavy chains in the manufacture of kamaboko (Sikorski, 2007). 
The cost of enzymes may still limit the extention of this strategy to 
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TAbLe 2 | examples of recent application of MTgs in fish and seafood 
processing.

goal/summary Ref.

Treatment of extruded fish feed with a commercial MTGase to 
improve the physical quality of the product

Wolska  
et al. (2015)

Addition of MTGase to improve the textural properties of Pacific 
whiting surimi, to allow the production of high-quality fish balls

Yin and Park 
(2015)

Assessment of the effect of adding MTGase and fish gelatin 
on the textural, physical, and sensory properties of surimi from 
threadfin beam 

Kaewudom 
et al. (2013)

Use of MTGase combined with cold gelation technology to 
obtain different raw products from minced and/or chopped fish 
muscle

Moreno  
et al. (2013)

Improvement of the film-forming properties of Channel Catfish 
(Ictalurus punctatus) skin gelatin by cross-linking with a 
commercial MTGase preparation, Activa®

Oh (2012)

Improvement of rheological and film-forming properties of fish 
gelatin using Activa®

Liu et al. (2011)

Optimizations of MTGase concentration for the production 
of fish restructured boneless filet from white croacker 
(Micropogonias furnieri)

Gonçalves and 
Passos (2010)
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enhance the mechanical properties of these products. Still, their 
environmentally friendly nature, high activity, and specificity 
provide a promising alternative or complementary nature to the 
use of protease inhibitors (which can lead to unwanted changes 
in color and flavor), phosphates (which have a negative environ-
mental impact), or oxidizing agents (Martín-Sánchez et al., 2009). 
The application of TGAs in fish and seafood has been reviewed 
recently (Kieliszek and Misiewicz, 2014; Zilda, 2014; Suresh et al., 
2015), yet some illustrative examples of the mentioned applica-
tions are given in Table 2.

Lipases and Miscellaneous  
Process Applications
Lipases, triacylglycerol acylhydrolases (EC 3.1.1.3), promote the 
hydrolysis of tri-, di-, and monoglycerides to glycerol and fatty 
acids, in the presence of excess water, while in water-limiting 
conditions they promote ester synthesis. They often express other 
activities, namely phospholipase or other esterase type of activity, 
all of which have acknowledged industrial relevance (Venugopal 
et al., 2000; Verma et al., 2012). Lipases are of particular inter-
est for the isolation of oil and fats from seafood byproducts as 
well as in the preparation of ω-3-poly-unsaturated fatty acids 
(ω-PUFAs) and enriched marine oils, given the nutritional value 
of these compounds (Chen et al., 2012; Walker et al., 2015). The 
enrichment performed chemically requires temperature and pH 
conditions harmful for the labile substrates, and hence the mild 
conditions required by lipases to promote transesterification are 
favored (Diaz-López and García-Carreño, 2000). Examples of 
applications can be found in a recent published review (Chaurasia 
et al., 2016).

Other applications of enzymes in fish and seafood processing 
include the production of caviar, the recovery of chitin, collagen, 
flavor molecules, minerals, and pigments from seafood byprod-
ucts, the removal of unwanted odors, and the improvement of 
shelf-life and color retention (Suresh et al., 2015).

Proteolytic enzymes, namely pepsins, have been used as alter-
native to mechanical and manual methods in the production of 
caviar. Extraction of caviar from roe sacs by enzymes minimizes 
damage to the eggs and results in a product free from connective 
tissue, as compared to the other methods, thereby leading to 
higher process yields (Martin et al., 2000; Venugopal, 2009).

Chitin, a linear heterogeneous polysaccharide of N-acetyl-
d-glucosamine and d-glucosamine, linked by β(1,4) glycosidic 
bonds, present in crustaceans and mollusks, is the most abun-
dant and renewable polysaccharide on Earth, next to cellulose 
(Gortari and Hours, 2013). Overall, 10 billion tons of chitin is 
produced yearly (Zargar et  al., 2015). Given its environmental 
friendliness, biocompatibility, biodegradability, and the relative 
ease of functionalization, chitin has a wide array of applications. 
These include food and feed, where chitin can be used as anti-
oxidant, emulsifier, and thickening agent and for clarification 
of fruit juices, stabilization of color, reduction of lipid adsorp-
tion, and the preparation of dietary fibers. In addition, chitin is 
widely used in biomedical, pharmaceutical, tissue engineering, 
cosmetics, and wastewater sectors (Zargar et al., 2015). For this 
byproduct of the crustacean processing industry to be of use, the 
removal of minerals (demineralization), proteins (deproteiniza-
tion), and pigments (decolorization) is required (Suresh et  al., 
2015; Zargar et  al., 2015). The conventional process for chitin 
recovery and purification requires the use of strong alkali and 
acid solutions and relatively high temperatures. This involves an 
energy-consuming and environmentally hazardous process and 
leads to a product of relatively low quality. Moreover, the alkali-
based deproteinization process prevents the use of the protein 
in animal feed (Synowiecki and Al-Khateeb, 2000; Gortari and 
Hours, 2013; Younes and Rinaudo, 2015; Zargar et  al., 2015). 
Several proteolytic enzymes have been used for protein removal 
from chitin, such as Alcalase, pancreatine, papain, pepsin, and 
trypsin. Still, and despite enzyme screening and operational con-
dition optimization, the enzymatic process is less effective than 
the conventional chemical method, as 5%–10% residual protein 
remains attached to the purified chitin when the former method 
is used (Younes and Rinaudo, 2015). In order to overcome this 
limitation, the use of a mild alkali treatment upon enzymatic 
proteolysis has been suggested (Younes and Rinaudo, 2015). 
Moreover, it has been reported that the order of demineraliza-
tion and deproteinization is largely irrelevant in the yield and 
quality of chitin purification when chemical methods are used, 
whereas the presence of minerals may hamper the access of 
proteolytic enzymes to the substrate (Gortari and Hours, 2013; 
Younes and Rinaudo, 2015). This may be the reason underlying 
the data reported by Valdez-Peña and coworkers (Valdez-Pena 
et al., 2010). These authors reported an ecofriendly process for 
purifying chitin, with a sequential combination of enzymatic 
deproteinization and microwave irradiation for demineraliza-
tion, where despite screening for enzyme activity, the residual 
protein was roughly half of the initial value (Valdez-Pena et al., 
2010). Implementation of enzymatic deproteinization at the 
commercial scale is also limited by the cost of commercially 
available enzymes. An alternative approach, eventually more cost 
effective, involves the use of crude protease preparations from 
supernatants of microbial fermentations (Paul et al., 2015).
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Collagen is a fibrous protein found in animal skin, bone, and 
connective tissue, accounting for about 30% of total protein con-
tent (Pal and Suresh, 2016). Collagen is widely used in the food 
and beverages industry as antioxidants, emulsifiers, thickeners, 
and preservatives, but also as edible films and coatings. Moreover, 
collagen is also used in biomedical, pharmaceutical, tissue engi-
neering, and cosmetics areas (Benjakul et al., 2012; Hashim et al., 
2015; Pal and Suresh, 2016). The outbreak of bovine spongiform 
encephalopathy and bird flu resulted in an increasing demand 
for collagen from fish, where it can be extracted from the skin, 
scale, swim bladder, fins, and bones (Benjakul et al., 2012; Pal and 
Suresh, 2016). Extraction of collagen must be performed at a tem-
perature of ~ 4°C to minimize collagen degradation. Pepsin is the 
most common enzyme used for collagen extraction, occasionally 
used together with acetic acid. This enzymatic method displays 
particular features that are of interest, namely the hydrolysis of 
non-collagenous proteins, the hydrolysis of the telopeptides of 
collagen, enhancing its solubility in acid and concomitantly the 
extraction yield, and simultaneously reducing the antigenicity 
caused by telopeptides. Despite these advantages, acid extraction 
is by far the most widely used method for collagen extraction, 
possibly because of it low cost and ease of implementation 
(Benjakul et al., 2012; Hashim et al., 2015; Pal and Suresh, 2016).

The recovery of flavor molecules from seafood byproducts 
relies mostly on the use of commercial protease preparations, for 
example, Flavourzyme (leucyl aminopeptidase) and Protamex 
(Suresh and Prabhu, 2013). More recently, the effective use of 
bromelain has also been reported for the recovery of seafood-like 
flavor from byproducts of seaweed (Laohakunjit et  al., 2014). 
Despite the limited availability of technical information, the 
selection of the most adequate enzyme for flavor recovery from 
seafood byproducts is largely casuistic and depends on the nature 
of the raw material (Suresh and Prabhu, 2013). Proteases are also 
used for the recovery of minerals form seafood byproducts, such 
as fishbone, which is rich in calcium and phosphorus (Suresh and 
Prabhu, 2013; Suresh et al., 2015).

Carotenoids and melanin are the major pigments found 
in the byproducts of seafood processing (Suresh and Prabhu, 
2013). Carotenoids are used as additives in feed, to convey skin 
pigmentation in fish, suggestive of high quality and freshness 
to the consumer (Suresh and Prabhu, 2013; Malaweera and 
Wijesundara, 2014). The unstable carotenoids are typically 
extracted from crustaceous waste using organic solvents, which 
is environmentally hazardous and requires solvent recycling 
(Malaweera and Wijesundara, 2014). Enzymatic extraction relies 
on the use of proteases, mostly trypsin, to recover carotenoids in 
the form of carotenoproteins (Suresh and Prabhu, 2013). Recently, 
the use of crude protease extracts from the hepatopancreas of 
Pacific white shrimp allowed the extraction of carotenoproteins 
from shrimp waste rich in astaxanthin and displaying significant 
antioxidant activity. The crude nature of the active enzyme extract 
may underlie the development of a cost-effective methodology 
(Senphan et al., 2014).

The improvement of the shelf-life of fishery products depends 
on the development of strategies that prevent the action of delete-
rious agents such as endogenous enzymes, microbial contamina-
tion, and oxidation of lipid compounds. In alternative or alongside 

methodologies such as active packaging, controlled-atmosphere 
packaging, and natural preservatives such as plant materials, the 
use of glucose oxidase and catalase has been reported to prevent 
lipid oxidation (Campos et al., 2012; Erkmen, 2012; Siró, 2012; 
Khalafalla et al., 2015). Glucose oxidase has been also used for 
color retention in cooked shrimp and crab, as the enzyme pre-
vents the oxidation of carotenoids (Venugopal et al., 2000).

Off-odors and fishy taste, mostly due to the presence of urea in 
the meat of sharks and rays, have been tackled by the use of mate-
rials rich in urease, such as soybean flour (Suresh et al., 2015).

ANALYTiCAL APPLiCATiONS

Aquaculture and fish production has grown considerably in the 
last decades (FAO, 2014), but occasional toxic episodes, typically 
caused by toxins and involving shellfish, raises public health con-
cerns and presents challenges for marketing those goods (FAO, 
2011; Rodríguez et al., 2015). Several methods have therefore been 
developed for toxin screening, among which are enzyme-based 
methods such as enzyme-linked immunosorbent assays (ELISA). 
Briefly, this method involves the immobilization of the target 
antigen to a solid surface and its subsequent complexation with 
an antibody linked to an enzyme. The detection is carried out by 
incubating the enzyme, often peroxidase or alkaline phosphatase 
(Alp), in the presence of substrate, and assessing the formation 
of an easily measurable product (Rustad, 2010). Hence, commer-
cially available ELISA kits have been successfully tested for the 
determination and quantification of antimicrobials (e.g., crystal 
violet, chloramphenicol, gentamicin, fluoroquinolone enrofloxa-
cin, malachite green, metabolites of furaltadone and furazolidone) 
in fish from aquaculture, to assess illegal use of the compounds 
(Jester et al., 2014; Conti et al., 2015). These kits have also proved 
effective in the detection of toxins [e.g., paralytic shellfish poi-
soning (PSP), diarrhetic shellfish poisoning, neurotoxic shellfish 
poisoning, and amnesic shellfish] in shellfish and seafood (Garet 
et al., 2010; Huazhang et al., 2011; Eberhart et al., 2013; Turner 
and Goya, 2016) and pesticides in fish (Sapozhnikova et al., 2015). 
Still, when ELISA method was compared to a phosphatase 2A 
inhibition assay, the latter displayed more promising results as a 
screening tool for diarrhetic shellfish toxins, given the sensitivity 
and low level of false results (Eberhart et al., 2013).

Alongside commercial ELISA kits, researchers have developed 
setups based on ELISA methods anchored in horseradish peroxi-
dase (Hrp). These have been assayed

 (a) for the determination of anisakis larvae in seafood, with lower 
limits of detection within 5 to 250 parasites per kg of sample, 
depending on the specific features of the method and of the 
allergen targeted (Arilla et al., 2008; Xu et al., 2010);

 (b) for the detection and quantification of malachite green, a 
dye with antimicrobial and antiparasitic properties, that has 
been illicitly used as an antifungal agent in aquaculture. The 
compound is rapidly metabolized to leucomalachite green, 
both compounds having putative carcinogenic activity. The 
setup developed allowed a limit of quantification (LOQ) and 
a limit of detection (LOD) for mixtures of the two compounds 
of 0.3 and 0.1  μg/kgfish, respectively, which are below the 
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concentration of 2 μg/kgfish imposed by the EU as LOD and 
1  μg/kgfish imposed by Canadian legislation as the limiting 
threshold above which fish is not allowed into the market 
(European Commission, 2004; Singh et al., 2011);

 (c) for the detection of Vibrio parahaemolyticus, a pathogen that 
causes gastroenteritis, in seafood, resulting in a methodology 
that matched results obtained with a PCR (polymerase chain 
reaction)-based approach, while requiring less expertise and 
specialized and costly equipment (Kumar et al., 2011).

A peroxidase-based ELISA for the rapid and sensitive 
monitoring of PSP toxins in shellfish was recently presented. Data 
obtained with the new method correlated well with the reference 
mouse bioassay, but showed higher sensitivity, as the LOD was 
lower than the reference method. Moreover, when positive and 
negative results were compared based on the regulatory limit, 
the peroxidase-based ELISA method displayed a sensitivity of 
100% and a specificity of 90% compared to the reference method 
(Kawatsu et al., 2014).

Once established that they allow for adequate response, LOD, 
and LOQ, the simplicity, high throughput capability, speed, 
and the relatively low cost of ELISA methods are competitive 
advantages when compared to costly, time- and man-power-
demanding chromatographic or PCR-based methods. Still, 
ELISA methods depend heavily on the quality of antibodies, the 
preparation of which is time consuming. Alternatively, the use 
of aptamers has emerged. Aptamers are small-molecular-weight, 
single-stranded DNA or RNA molecules with high affinity and 
selectivity for proteins, which can be synthesized by chemical 
methods and are more stable than antibodies. An immunoassay 
based on aptamers, ELAA (enzyme-linked aptamer assay), was 
developed for the quantitative detection of Vibrio parahemolyti-
cus, a pathogen related to seafood poisoning. The setup involves 
the use of Hrp immobilized onto gold nanoparticles. In the 

presence of the pathogen, down to 10  CFU/mL, the enzyme 
promotes a reaction involving 3,3′,5,5′-tetramethylbenzidine 
and H2O2, and an optical signal is produced in a linear manner 
in a logarithm plot within 10–106  CFU/mL (Wu et  al., 2015). 
Also relying on the aptamer-based approach and on Hrp’s ability 
to catalyze the formation of colored products out of different 
substrates, an aptasensor for the detection and quantification 
of chloramphenicol in fish was developed. The sensor has a 
linear range 0.05–100  ngchloramphenicol/mL, which is within the 
range of the different methods already available, but displays an 
LOD of 0.015 ngchloramphenicol/mL, which is only surpassed by an 
electrochemical immunoassay. Moreover, when tested in real 
fish samples, the detection of chloramphenicol matched that 
obtained with a standard ELISA test (Miao et al., 2015).

Enzymatic methods have also been used to establish the fresh-
ness of fish and seafood, based on the concentration of nucleotides 
present (Aristoy et al., 2010). Briefly, once death occurs, adenosine 
triphosphate (ATP) ceases to be synthesized/regenerated, and it 
is rapidly decomposed to adenosine monophosphate (AMP) and 
then to inosine monophosphate (IMP), the former accumulating 
mostly in crustaceans while the later in fish, where it is respon-
sible for conveying the pleasant fresh flavor (Luong and Male, 
1992). IMP spontaneously degrades slowly to inosine (INO), a 
process slowed by cold environments, and INO is converted to 
hypoxanthine (HX), which conveys a bitter taste in the presence 
of either nucleoside phosphorylase (Np) or inosine nucleosidase 
(In). HX is sequentially oxidized to xanthine (XA) and to uric 
acid by xanthine oxidase (Xo), with release of hydrogen peroxide 
in both steps (Nielsen and Nielsen, 2012; Kostić et al., 2015). The 
key steps of this pathway are illustrated in Figure  2. INO and 
HX are typically used as indicators of freshness, but given that 
the variability in the degradation of mononucleotides depends on 
several factors, e.g., source of material and physical methods of 
processing, often multiparametric indicators are advised, such as
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TAbLe 3 | Recent examples of enzymatic biosensors developed for assessment of fish and seafood quality and freshness.

enzymes and immobilization method Transducer Comments Reference

Xo immobilized over a copolymer of glycidyl methacrylate and 
vinylferrocene/multiwall carbon nanotubes for xanthine detection, 
based on H2O2 formed during substrate oxidation

Amperometric Linear response to xanthine within 2–86 μM and LOD of 
0.12 μM. Negligible interference from ascorbic and uric acid, 
sodium benzoate, and glucose. 

Dervisevic  
et al. (2015a)

Xo covalently immobilized on a nanocomposite film constructed 
by embedding reduced expanded graphene oxide sheets 
decorated with iron oxide nanoparticles into poly(glycidyl 
methacrylate-co-vinylferrocene) phase. Xanthine detection as 
referred for Dervisevic et al., 2015a

Amperometric Linear response to xanthine within 2–36 μM and LOD of 
0.17 μM. Negligible interference from ascorbic and uric acid, 
sodium benzoate, and glucose. The biosensor retained 70% of 
the initial activity after 15 consecutive measurements.

Dervisevic  
et al. (2015b)

Xo immobilized electrostatically on a poly(vinyl ferrocenium 
perchlorate) matrix precipitated on a Pt surface for HX detection

Amperometric Linear response to HX within 2.15 μM to 1.03 mM and LOD 
of 0.65 μM. A recovery of about 95% was observed as fish 
samples were spiked with 20 μM HX. 

Bas  
et al. (2014)

Xo and ferrocene carboxylic acid entrapped into a polypyrrole 
film during galvanostatic polymerization film formation for HX 
detection

Potentiometric Linear response to HX within 5–20 μM. Tested in fish samples 
with HX concentrations within 2.1 to 8.7 μmol/g. Decline in 
sensitivity after 5 days of storage

Lawal and 
Adeloju (2012b)

Xo and and uricase entrapped in a polypyrrole–polyvinyl sulfonate 
film by electrochemical polymerization in Pt formation for HX 
detection 

Amperometric Linear response to HX within 2.5–10 μM and 25 μM 
to 0.1 mM. The biosensor retained 74.5% of its initial 
performance after 20 assays and lost 44% of its initial 
performance after 33 days

Görgülü  
et al. (2013)

Xo and bovine serum albumin cross-linked with glutaraldehyde on 
membrane (Nafion)-coated surface of a Pt disk for HX detection

Amperometric Linear response to HX within 2–185 μM. Tested in fish samples 
with HX concentrations within 0.877 and 16.38 μmol/g

Nakatani  
et al. (2005)

Diamine oxidase (Dox) immobilized over a carbon screen-printed 
electrode modified with a thick film of platinum nanoparticles, 
graphene and chitosan for histamine detection

Amperometric Linear response to histamine within 0.1–300 μM and LOD of 
0.0254 μM. The decay in biosensor response did not exceed 
12.6% after 30 days of storage at 4°C. Interference from other 
biogenic amines, that is, cadaverine, tyramine, putrescine, and 
amino acids, was <10%

Apetrei and 
Apetrei (2016)

Dox and Hrp co-immobilized into a polysulfone–carbon 
nanotube–ferrocene membrane through phase inversion 
technique onto carbon screen-printed electrodes for histamine 
detection

Amperometric Linear response to histamine within 0.3–20 μM and LOD of 
0.17 μM. Matches to standard ELISA method results was 
reported for greater weever, mackerel and sardines. 

Pérez  
et al. (2013)

Tyrosinase immobilized on carboxyl functionalized carbon 
nanotubes thick film of screen-printed electrodes by the casting 
method, and concomitant cross-linking with glutaraldehyde for 
tyramine analysis

Amperometric Linear response to tyramine within 5–180 μM and LOD of 
0.62 μM. Good reproducibility was observed for tyramine 
concentrations within 16.7 and 61.8 mg/kg. Close to 10% of 
recovery reported upon spiking with 40 mg/kg tyramine

Apetrei and 
Apetrei (2015)
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In any case, the higher the concentration of IMP, the fresher 
the fish. Enzymatic analysis can be performed with one or more 
enzymes either in solution or immobilized, in the latter case typi-
cally as a biosensor, where the biological component is connected 
to a physical-chemical transducer and an optoelectronic interface 
(Aristoy et  al., 2010; Thakur and Ragavan, 2013). A review on 
the materials and principles underlying biosensor assembly 
and operation targeted for food analysis was published recently 
(Thakur and Ragavan, 2013).

Biogenic amines (BAs) are nonvolatile, low-molecular-
weight organic bases, such as histamine, cadaverine, putrescine, 
and tyramine, that are formed in foods as the outcome of 
microbial decarboxylation of the corresponding amino acids 
or of transamination of aldehydes and ketones by amino acid 
transaminases (Prester, 2011; Visciano et al., 2012; Zhai et al., 
2012). Since BAs are produced by spoilage bacteria, their level 

can represent the quality of food (Hosseini et al., 2013). The con-
sumption of high amounts of BAs, particularly histamine, can 
result in food poisoning; hence the maximum content in hista-
mine is regulated. In Europe, these are within 100–200 mg/kg for 
fish species, and within 200–400 mg/kg for enzyme-processed 
foods. ELISA kits and histamine-specific enzyme kits, based 
on the oxidation of histamine by histamine dehydrogenase, are 
commercially available (Köse et al., 2011; Hungerford and Wu, 
2012; Visciano et al., 2012).

The use of free enzymes, preferentially for the quantifica-
tion of IMP, INO, and HX, involves the sequential use of either 
5′-nucleotidase (Nt) or adenosinedeaminase (Ad), Np, and Xo, 
ultimately resulting in the formation of uric acid and hydrogen 
peroxide (Luong et al., 1989; Luong and Male, 1992; Cho et al., 
1999, 2000). Measurements can be carried out by polarography, 
as the response of a Clark hydrogen peroxide probe electrode 
to uric acid and hydrogen peroxide is additive (Luong et  al., 
1989), or by spectrophotometry (Luong and Male, 1992; Cho 
et  al., 1999, 2000). The combination of Alp, Np, and Xo, con-
jugated with WST-8, a color developing agent that reacts with 
hydrogen peroxide allowing spectrophotometric readings, was 
used for the colorimetric-based quantification of IMP, INO, 
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FigURe 3 | Schematic diagram of the reactions involved in the quantification of hypoxanthine as an indicator of fish freshness. The methodologies rely 
on the determination of hydrogen peroxide formed in consecutive reactions catalyzed by xanthine oxidase (solid lines) and eventually also uricase (dashed lines), 
combined with a platinum-based electrode. Further information and references as detailed in Table 3.
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FigURe 4 | Schematic diagrams of the reactions involved in the quantification of biogenic amines. (A) Quantification of histamine based on hydrogen 
peroxide formation and either direct assessment of the latter in a platinum electrode (solid line, Apetrei and Apetrei, 2016) or through the use of horseradish 
peroxidase (dashed line, Pérez et al., 2013). (b) Quantification of tyrosine through oxidation with tyrosinase to dopaquinone and reduction of the latter to dopamine 
on the surface of a carbon electrode (Apetrei and Apetrei, 2015).

and HX. Amorphous freeze-dried enzyme formulations in the 
presence of gelatin and sucrose were prepared, which allowed 
promising shelf-life, as the Ki values determined after 6 months 
of storage at 40°C were not significantly altered when compared 
to those of newly prepared formulation. Moreover, the use 
of additives enhanced the enzyme activity (Srirangsan et  al., 

2010). Developments making the methodology amenable to 
implementation in microtiter plates and spectrophotometric 
quantification, thus allowing for high throughput, have been also 
presented (Goodrich and Balakireva, 2015).

Assessment of fish and seafood freshness through the use 
of immobilized enzymes has relied on both multi-enzyme and 
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single-enzyme systems, the former mostly aiming to determine 
several metabolites of ATP degradation and Ki values (Watanabe 
et al., 1984, 1986; Luong et al., 1989). Some of these multi-enzymes 
involved the flow injection analysis approach (Carsol and Mascini, 
1998; Okuma and Watanabe, 2002). Still, enzymatic biosensors 
often rely on the quantification of HX using immobilized Xo, 
although detection of BAs has also been considered (Lawal and 
Adeloju, 2012a; Visciano et al., 2012). Immobilization strategies 
have been selected both aiming to allow for activity retention 
upon immobilization and enzyme stability and also to remove 
interferences form hydrogen peroxide, uric acid, or ascorbic acid 
that can be present in the sample for analysis (Aristoy et al., 2010; 
Lawal and Adeloju, 2012a). Specific details on the methods of 
immobilization and operation of recently developed biosensors 
are given in Table 3 and in Figures 3 and 4.

CONCLUSiON

Fish and seafood industries have a key role as providers of 
healthy food. As an outcome of the increasing public awareness 
of the significance of a balanced diet to health, the demand for 
fish and seafood concomitantly grows, a trend that is foreseen 
to continue in the near future. Given the perishable nature of 
the products and their complexity, their effective processing and 
monitoring is a challenging task. Physical and chemical pro-
cesses have been often the mainstay, with a minor contribution 
of endogenous enzymes. Advances in enzyme technology are 
turning the tide, as a result of a growing insight into the mecha-
nisms of enzyme action, access to marine sources of enzymes, 
and improvements in heterologous expression, coupled with 
the need to minimize wastes and add value to byproducts 

that typically are often discarded. Within this, the enzymatic 
approach contributes significantly to overcome the environ-
mental impact of traditional processes, thereby  contributing to 
the implementation of sustainable and  cost-effective processes. 
Moreover, enzyme technology can also contribute to the qual-
ity control of fish and seafood goods. It is a fact that the role 
of enzymes in fish and seafood industries lags behind other 
fields in food processing. Still, the combined developments in 
several complementary fields, such as heterologous expression 
of enzymes that can particularly allow for cost-effective produc-
tion of some key enzymes, computational methods for predic-
tive models, the ability to use the marine microbiota to provide 
new/improved enzymatic activities, enzyme formulations and 
immobilization methods, and materials science for enhanced 
operational stability or delivery systems, suggest that significant 
developments can be expected for enzyme applications in fish 
and seafood industries.
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