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A Novel Deep Learning Approach with a 3D Convolutional Ladder  
Network for Differential Diagnosis of Idiopathic Normal Pressure 

Hydrocephalus and Alzheimer’s Disease
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Purpose: Idiopathic normal pressure hydrocephalus (iNPH) and Alzheimer’s disease (AD) are geriatric 
diseases and common causes of dementia. Recently, many studies on the segmentation, disease detection, or 
classification of MRI using deep learning have been conducted. The aim of this study was to differentiate 
iNPH and AD using a residual extraction approach in the deep learning method.
Methods: Twenty-three patients with iNPH, 23 patients with AD and 23 healthy controls were included in 
this study. All patients and volunteers underwent brain MRI with a 3T unit, and we used only whole-brain 
three-dimensional (3D) T1-weighted images. We designed a fully automated, end-to-end 3D deep learning 
classifier to differentiate iNPH, AD and control. We evaluated the performance of our model using a leave-
one-out cross-validation test. We also evaluated the validity of the result by visualizing important areas in 
the process of differentiating AD and iNPH on the original input image using the Gradient-weighted Class 
Activation Mapping (Grad-CAM) technique.
Results: Twenty-one out of 23 iNPH cases, 19 out of 23 AD cases and 22 out of 23 controls were correctly 
diagnosed. The accuracy was 0.90. In the Grad-CAM heat map, brain parenchyma surrounding the lateral 
ventricle was highlighted in about half of the iNPH cases that were successfully diagnosed. The medial tem-
poral lobe or inferior horn of the lateral ventricle was highlighted in many successfully diagnosed cases of 
AD. About half of the successful cases showed nonspecific heat maps.
Conclusion: Residual extraction approach in a deep learning method achieved a high accuracy for the dif-
ferential diagnosis of iNPH, AD, and healthy controls trained with a small number of cases.
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Introduction
Idiopathic normal pressure hydrocephalus (iNPH) and Alz-
heimer’s disease (AD) are geriatric diseases and common 
causes of dementia.1–3 iNPH is treated by surgical interven-
tion of cerebrospinal fluid (CSF) shunting,4–6 and known as a 
treatable dementia. AD is mainly treated by medication such 
as an acetylcholinesterase inhibitor.7 Their treatment 
approaches are quite different, so it is necessary to differen-
tiate iNPH and AD at an early stage. MRI is often used for 
morphological evaluation of the brain in iNPH and AD. In 
the diagnosis, selective atrophy of the medial temporal lobe 
is an important feature of AD.8 iNPH is characterized by  
ventricular enlargement with a disproportionately enlarged  
subarachnoid-space hydrocephalus (DESH),9 which includes 
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dilated lateral ventricle and Sylvian fissure, narrow high-
convexity sulci and a small callosal angle. However, cogni-
tive decline and ventriculomegaly are seen in both iNPH and 
AD, it is difficult to make correct diagnosis in some cases.

Computer-aided diagnosis could be helpful in a daily 
clinical practice. There have been some reports that aimed to 
distinguish between iNPH and AD using three-dimensional 
(3D) T1-weighted images by measuring the hippocampal 
volume, lateral ventricle size, the corpus callosum angle, or 
the whole gray matter and white matter volumes.10–12 Even 
though segmental volume measurements can now be per-
formed automatically, these techniques still require manual 
steps and some expertise. Brain deformation is severe in 
iNPH patients, so standardization or segmentation failure 
may frequently occur. We need other approach to achieve an 
automatic diagnosis.

Recently, many studies on deep learning for medical 
images have been conducted. Deep learning recognizes pat-
terns in images well and makes a diagnosis immediately 
(usually less than several seconds). It can be applied to the 
diagnostic imaging of dementia.13–16 In general, we need 
thousands of data samples to construct a deep learning model, 
though few samples are available in actual clinical practice. 
So, it is waited to develop a model based on a small number 
of samples. Herein, we use a novel “residual extraction 
approach” in the deep learning method to effectively train a 
model even with a limited number of subjects. “Residual” is 
based on anomaly detection techniques, where the image is 
compressed and reconstructed. Difference between original 
image and reconstructed image is defined as a residual. This 
method has been applied to a detection of abnormal lesion in 
brain MRI of relatively small datasets.17 In the residual 
extraction approach, first we extract the residual, and then 
input that to a convolutional neural network. Extracted 
residual image is the essence of anomaly, so we expected that 
it would enhance model training and increase the diagnostic 
accuracy between iNPH and AD. The aim of this study was 
to automatically differentiate iNPH and AD using deep 
learning by a residual extraction approach.

Materials and Methods
Subjects
This study was approved by the Institutional Review Board 
of our hospital. This was a retrospective study and all persons 
gave their written informed consent prior to the MRI scan.

Twenty-three patients with iNPH (11 male and 12 
female: mean age 74.6 years), 23 patients with AD (11 male 
and 12 female: mean age 75.0 years) and 23 age-matched 
healthy controls (11 male and 12 female: mean age 74.2 
years) were included in this study. The patients with iNPH 
were consecutive cases from November 2010 to February 
2012 suspected of iNPH and performed a CSF tap test, and 
thereafter diagnosed with probable iNPH. AD patients were 
randomly selected to match the age of iNPH patients whose 

MR images were taken during the same period. Diagnosis of 
iNPH was made according to the criteria of probable iNPH 
proposed by the Japanese Clinical Guidelines for Idiopathic 
Normal Pressure Hydrocephalus,18 and that of AD was made 
according to the criteria of probable AD dementia by the 
National Institute on Aging and Alzheimer’s Association 
workgroups.19

MRI data acquisition
All patients and volunteers underwent brain MRI with a  
3T unit (Achieva; Philips Healthcare, Best, The Netherlands) 
and we used only whole-brain 3D T1-weighted images in 
this study. The images were obtained using a 3D 
magnetization- prepared rapid gradient-echo sequence with 
the following parameters: effective TR = 15 ms; effective 
TE = 3.4 ms; resolution = 0.8125 × 0.8125 × 0.86 mm3; 
field of view = 260 × 260 mm2; and total scan time = 400 s.

Case characteristics
The mean Mini-Mental State Examination score of iNPH 
and AD patients was 23.2 ± 4.1 and 19.8 ± 3.4, respectively. 
All iNPH patients underwent MRI before treatment interven-
tion. Although it was difficult to clearly define the onset of 
AD, the mean time from symptom recognition to MRI was 
2.6 ± 1.5 years.

Regarding image findings, ventricle enlargement (Evans 
index > 0.3) was observed in all iNPH cases and four AD 
cases, and not in healthy controls (HCs). Moderate to severe 
temporal lobe atrophy was seen in 13 AD patients and two 
NPH patients. The mean Fazekas grade of the periventricular 
white matter lesions evaluated with T1-weighted images was 
2.57 ± 0.66 in iNPH, 2.13 ± 0.76 in AD, and 1.22 ± 0.67 in 
HC, respectively.

Interpretation experiments by radiologists
As a pilot study, two radiologists (experience of 9 and 5 
years) conducted interpretation experiments. They were 
given only 3D T1-weighted images and diagnosed whether 
the case was iNPH, AD, or HC without referring to clinical 
symptoms. Images were shuffled between patients and the 
radiologists were blinded to the diagnosis of the patients.

Idiopathic normal pressure hydrocephalus was compre-
hensively evaluated with emphasis on the findings of dilated 
lateral ventricle and Sylvian fissure, narrow high-convexity 
sulci and a small callosal angle.18 Although morphological 
changes are not essential in the diagnostic criteria of Alzhei-
mer’s disease, it is widely known that disproportionate 
atrophy of the medial temporal lobe is useful for diagnosis,8 
so that was used as index findings. Since iNPH is a disease in 
which diagnostic imaging can be a clue for diagnosis, radi-
ologists prioritized iNPH diagnosis when both iNPH and AD 
findings coexisted in a case.

The diagnostic accuracy of the two readers were 0.79 
and 0.83 and the Cohen’s kappa coefficient between them 
was 0.80. We compared the sensitivity and specificity of 
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the deep learning model and each radiologist simultaneously 
by McNemar c2-test.20

Deep learning procedure
We designed a fully automated, end-to-end 3D deep learning 
classifier to differentiate iNPH, AD and controls. The 
number of samples (a total of 69) was too small to build and 
train a convolutional neural network using a general setup 
because of the risk of overfitting. Hence, we introduced a 
residual extraction phase followed by a neural network clas-
sifier. For the residual extraction phase, we built a 3D convo-
lutional ladder network to reconstruct the 3D volume to be 
extracted from the original 3D volume. The residual volume 
was then fed again into the encoder to obtain a residual fea-
ture map. In the original study proposing the ladder net-
work,21 the network was designed using neural networks 
without convolution layers. In the present study, the original 
ladder network was naturally extended to 3D convolutional 
networks. The feedforward path (X z Y→ → →1 � ) or 
“clean encoder” shared the mappings with the corrupted 
feedforward path (X z Y→ → →1 � � ) or “corrupted 
encoder”. The decoder (z z X6 5

� � � �→ → → ) consisted of 
de-noising function g, which was the same function as used 
in the previous study,21 and had cost function Cd on each 
layer to minimize the absolute difference between z�  and z 
(Fig. 1). Model training for each neural network classifier 
was performed separately from the following neural network 

classifier using the same training dataset for each trial of a 
leave-one-out test. The hyper-parameter settings for the 
training were as follows: the mini batch size was 23; the 
Adam optimization parameters a, b1, and b 2 were 0.002, 
0.9, and 0.999, respectively; and the number of training 
epochs was 1000.22 Because the loss function is calculated 
during the training, the model is expected to learn “common 
features” preferentially to minimize the mean absolute error 
between the original and reconstructed images generated 
through the encoder and decoder. After the 3D convolutional 
ladder network learned common features in the training 
datasets, the model extracted reconstructed common fea-
tures from the input image. In brief, X is input to the clean 
encoder, Y is generated, and Y is input to the decoder, which 
outputs Z (= reconstructed X). We then created a residual 
image by subtracting Z from X, and the X − Z image was fed 
into the clean encoder to generate R, which we call the 
residual feature map (128ch × 5 × 3 × 5). The R map is input 
to the following fully connected neural network classifier. 
The residual images theoretically indicate specific features 
in each patient’s volume.

In the neural network classifier part, we designed a rela-
tively old-fashioned simple fully connected neural network 
classifier that has one hidden layer consisting of seven nodes, 
whose activation functions are all logistic sigmoids. The 
output layer includes three nodes activated by softmax func-
tion that represents the probability of iNPH, AD and controls 

Fig. 1 Architecture of the 3D convolutional ladder network. The first line is the “corrupted encoder”, the second line is the decoder, and 
the third line is the “clean encoder”. Each arrow in the encoder/decoder consists of 3 × 3 × 3 convolution/deconvolution with stride 2, 
batch normalization, and an exponential linear unit. g: de-noising function, Cd: cost function, N[0, s 2]: random sample from normal dis-
tribution with mean = 0 and variance = s 2.
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respectively ranging from 0 to 1. Model training was per-
formed separately from the above ladder network, i.e., we 
treated the residual feature map (128ch × 5 × 3 × 5) as a fixed 
input. The hyper-parameter settings for the training were as 
follows: the mini batch size was 34 (= a half of total number 
of training data); Adam parameters a, b1, and b2 were 
0.0005, 0.9, and 0.999, respectively; and the number of 
training epochs was 200. The classification loss was defined 
to be hard-labelled softmax cross-entropy.

We evaluated the accuracy of our model at differenti-
ating iNPH, AD and controls using a leave-one-out cross-
validation test and presented the confusion matrix and the 
probability charts.

All model training was performed on a computer with 64 
GB of CPU memory, a Xeon E5-2670 v3 CPU (Intel, Santa 
Clara, CA, USA), and a TITAN Xp graphics processing unit 
(NVIDIA, Santa Clara, CA, USA). The computer program 
was coded with Python 3.6 and the deep learning framework 
of Chainer 5.1.0 (http://chainer.org/).

Visual validation of deep learning diagnosis
We evaluated the validity of the result by visualizing impor-
tant areas in the process of differentiating iNPH, AD and con-
trols on the original input image using the Gradient-weighted 
Class Activation Mapping (Grad-CAM) technique.23 Grad-
CAM uses the class-specific gradient information flowing 
into the final convolutional layer of a convolutional neural 
network to produce a coarse localization map of the impor-
tant regions in the image. The present study focused on the 
third convolutional layer, which includes the 16 channels of 
the feature map needed to produce the Grad-CAM heat map 
image. The precise procedure was as follows: First, we per-
formed backpropagation from true class activation (i.e., if the 
true class of the patient is AD, we start backpropagation from 
class AD). Then, we obtained the mean gradient of each 
channel and multiplied each of them by the post-activated 
values on the feature map, the absolute values of the gradient-
weighted feature map are summed, and finally we obtained a 
coarse localization map. The map was thresholded and 
resized back to its original image resolution. To demonstrate 

the important regions in the differential diagnosis, we trans-
lated this localization map into a heat map by applying a color 
map that appears in the plot as a color bar.

Results
Twenty-one out of 23 iNPH cases, 19 out of 23 AD cases and 
22 out of 23 controls were correctly diagnosed (Table 1). 
The accuracy was 0.90. The probability of the deep learning 
diagnosis in each subject was shown in the triangular radar 
charts (Fig. 2).

The sensitivity of our deep learning model for iNPH was 
0.91 and the specificity was 0.91. Meanwhile, the sensitivity 
of the first radiologist for iNPH was 0.96 and the specificity 
was 0.96, and the sensitivity of the second radiologist for 
iNPH was 0.96 and the specificity was 0.98. There were no 
significant differences between the deep learning model and 
two radiologists in sensitivity or specificity (McNemar c2 = 
1.7, P = 0.43 for radiologist 1 and c2 = 2.1, P = 0.34 for radi-
ologist 2). The sensitivity of the deep learning model for AD 
was 0.83 and the specificity was 0.98. The sensitivity of the 
first radiologist for AD was 0.61 and the specificity was 0.89, 
and the sensitivity of the second radiologist for AD was 0.74 
and the specificity was 0.87. There were no significant differ-
ences between the deep learning model and two radiologists 
in sensitivity or specificity (McNemar c2 = 5.9, P = 0.052 for 
radiologist 1 and c2 = 4.0, P = 0.14 for radiologist 2).

In the Grad-CAM heat map, the brain parenchyma sur-
rounding the lateral ventricle was highlighted in the 10 cases 

Table 1 Confusion matrix of deep learning diagnosis

Deep learning diagnosis

HC iNPH AD

Clinical diagnosis

HC 22 1 0

iNPH 1 21 1

AD 1 3 19

AD, Alzheimer’s disease; HC, healthy controls; iNPH, idiopathic  
normal pressure hydrocephalus.

Fig. 2 Probability charts of the deep learning diagnosis. The triangular radar graph shows the probability of healthy controls (HC, a), idio-
pathic normal pressure hydrocephalus (iNPH, b) and Alzheimer’s disease (AD, c) in each subject ranging from 0 to 1.

a b c
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of iNPH that were successfully diagnosed (Fig. 3a). The 
medial temporal lobe or inferior horn of the lateral ventricle 
was highlighted in 12 of the successfully diagnosed cases of 
AD (Fig. 3b). However, about half of the successful cases 
showed nonspecific heat maps (Fig. 3c and 3d). One iNPH 
case had enlarged Sylvian fissure and strong atrophy of the 
hippocampus and was misdiagnosed as AD, it is possible that 
AD coexisted in that patient (Fig. 4a). Another iNPH case 
was thought to be a typical iNPH with DESH but misdiag-
nosed as HC (Fig. 4b). The three cases misdiagnosed as 
iNPH (Fig. 4c) and the one case misdiagnosed as HC  
(Fig. 4d) in the AD group visually seemed to be typical AD 
with strong hippocampal atrophy. One HC case without 
hydrocephalus was misdiagnosed as iNPH (Fig. 4e).

Discussion
In this study, we proposed the usage of residual extraction 
approach for deep learning based on a small number of sub-
jects, and successfully developed a model that differentiates 
iNPH and AD with high accuracy. One of the main problems 

of image classification using deep learning is overfitting. The 
cause of overfitting is data noise, which can be categorized 
into pure noise and any features that are unrelated or margin-
ally related to the estimation. For example, the skull or eye-
ball features are assumed to be unrelated to the classification 
of iNPH and AD. Such unrelated features are further catego-
rized into a common feature and a non-related feature of the 
individual patient. The residual extraction phase of our model 
subtracts this common feature from the original image using 
bottleneck-shaped convolutional networks such as a ladder 
network to reconstruct the original image. Because the model 
was trained to minimize reconstruction loss, the model should 
have learned a way to efficiently minimize that loss. In other 
words, common features should have been preferentially 
learned. In the present study, although the basis was not clear 
in some cases, approximately 90% of iNPH and AD were 
correctly diagnosed. The residual extraction approach seems 
to be an effective method in a small number of samples.

In the current study, optimization of hyperparameters 
including model design was not comprehensively performed. 
However, some important hyperparameters were determined 

Fig. 3 Representative images of successfully diagnosed cases. The 3D T1-weighted image is on the left and the Gradient-weighted Class 
Activation Mapping heat map overlaid on the 3D T1-weighted image is on the right in each case. Brain parenchyma surrounding the lat-
eral ventricle is highlighted in an idiopathic normal pressure hydrocephalus (iNPH) case (a). Medial temporal lobe or inferior horn of the 
lateral ventricle is highlighted in an AD case (b). About half of the successful cases show nonspecific heat maps (c: iNPH, d: AD).

a b

dc
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Fig. 4 Representative images of misdiagnosed cases. One idio-
pathic normal pressure hydrocephalus (iNPH) case with enlarged 
Sylvian fissure and strong atrophy of the hippocampus was mis-
diagnosed as AD (a). Another iNPH case showing typical dispro-
portionately enlarged subarachnoid-space hydrocephalus was 
misdiagnosed as HC (b). Three apparently typical AD cases with 
strong hippocampal atrophy were misdiagnosed as iNPH (c) and 
one typical AD case was misdiagnosed as HC (d). One HC case 
without hydrocephalus was misdiagnosed as iNPH (e).

as follows. Adam parameter is an important parameter that 
determines the length of the optimization step. The default 
value was a = 0.001, but it had been confirmed that it did not 
significantly affect the convergence of the loss function that 
was in the range of 0.0001–0.002 in the preliminary model 
setup phase. In the optimization of the ladder network, since 
many voxels were involved in the loss function and hence the 
convergence was relatively stable, Adam a was set to 0.002. 
On the other hand, for the training of neural network  
classifier, we set it to 0.0005 to prioritize the stability of 

convergence. Number of epochs is also an important hyper-
parameter. In training the ladder network, the number of 
epochs was set to 1000 as the loss function (= least square 
error) did not become any smaller when monitoring loss-
epoch curve. In training the neural network classifier, the 
number of epochs was set to 200 after obtaining the loss-
epoch curve that gave the maximum prediction performance 
for the test data in the preliminary model setup phase. In 
order to eliminate arbitrariness, the number of epochs was 
fixed in all leave-one-out tests.

a b

dc

e
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In this study, some cases were misdiagnosed, even 
though the image was apparently characteristic. Deep 
learning may identify various factors such as edges, texture, 
and signal intensity as well as brain atrophy. It is fundamen-
tally a black box. To reveal the basis of diagnosis by deep 
learning, we used the Grad-CAM approach. There is no spe-
cific rule as to which convolutional layer should be used for 
Grad-CAM to produce heat map images. Each voxel in the 
feature maps of each layer basically reflects simple image 
features in the shallower layers and complex features in the 
deeper layers based on the range of the original image, the 
number of processes performed so far, and the number of 
convolutions. Therefore, it is necessary to arbitrarily select 
one layer to produce heat map images that is visually or 
scientifically meaningful. In this model, the real-world 
coordinate range in the input image corresponding to one 
voxel from first layer to sixth layer was as follows: first, 2.4 
× 2.4 × 2.6 mm; second, 5.7 × 5.7 × 6.0 mm; third, 12.2 × 
12.2 × 12.9 mm; fourth, 25.2 × 25.2 × 26.7 mm; fifth, 51.2 
× 51.2 × 54.2 mm; and sixth, 103.2 × 103.2 × 109.2 mm. 
Based on the typical size of tissue which was likely to be 
conspicuous in the Grad-CAM output, we first determined 
third, fourth, and fifth layer as primary candidates for Grad-
CAM heat map. On the fourth and fifth layer, the resolution 
of the heat map was too low to identify the hippocampus. 
Therefore, we selected the third layer for producing Grad-
CAM heat map images.

The findings of Grad-CAM heat map suggested that 
atrophy of the medial temporal lobe is useful in distin-
guishing between iNPH and AD in our model. In contrast, 
the high convexity area in iNPH was not as emphasized as 
medial temporal lobe in AD. It is possible that our deep 
learning model was trained to diagnose AD cases by their 
characteristic medial temporal lobe atrophy. This model gave 
a high correct diagnosis rate without referring to the high-
convexity area, which is usually useful in the diagnosis of 
iNPH. That suggests that in the future, it may be possible to 
find unknown diagnostic features from the analysis results of 
deep learning using Grad-CAM approach.

In previous studies, comparison of the volumes of brain 
gray matter and white matter by automated segmentation 
was able to differentiate between NPH and AD with accuracy 
of 94–96%,11,12 and comparison of the callosal angle and 
Evans index demonstrated the accuracy of 90–93%.12 
Although the result of the present study was slightly inferior 
to those of the previous reports, our model based on the deep 
learning has the advantage that post-processing is unneces-
sary and the diagnosis can be obtained in 1–2 s per case by 
simply inputting 3D T1-weighted images. Although there 
was no statistically significant difference between the results 
of our model and the interpretation of the radiologists, the 
diagnostic accuracy of our model was higher than those of 
the radiologists who conducted the reading study: the radi-
ologists tended to be more accurate for iNPH diagnosis, 

whereas the deep learning-based model tended to be more 
accurate for AD. Deep learning may be more accurate than 
radiologists for diagnosis of AD, by capturing information 
that is invisible to human’s eyes.

There are some limitations in our study. First, the sample 
size was small. To overcome this limitation, we used residual 
extraction approach. Even though our model achieved high 
accuracy, the results should be validated using another cohort in 
the future study. Another limitation is the uncertainty of the clin-
ical diagnosis of iNPH. iNPH is a clinical entity without a basis 
of histology, and there are some cases in which iNPH and AD 
coexist.10,24 Amyloid-positron emission tomography can reli-
ably exclude the diagnosis of AD,25 and will be helpful to create 
a highly reliable dataset for deep learning in the future study.

Conclusion
Residual extraction approach in a deep learning method 
achieved a high accuracy for the differential diagnosis of 
iNPH, AD, and HC. This method may help differential diag-
nosis even when a small number of cases are trained.
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