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ABSTRACT

We present ‘dcGO’ (http://supfam.org/
SUPERFAMILY/dcGO), a comprehensive ontology
database for protein domains. Domains are often
the functional units of proteins, thus instead of
associating ontological terms only with full-length
proteins, it sometimes makes more sense to asso-
ciate terms with individual domains. Domain-centric
GO, ‘dcGO’, provides associations between onto-
logical terms and protein domains at the superfam-
ily and family levels. Some functional units consist
of more than one domain acting together or acting
at an interface between domains; therefore, onto-
logical terms associated with pairs of domains,
triplets and longer supra-domains are also
provided. At the time of writing the ontologies in
dcGO include the Gene Ontology (GO); Enzyme
Commission (EC) numbers; pathways from
UniPathway; human phenotype ontology and
phenotype ontologies from five model organisms,
including plants; anatomy ontologies from three or-
ganisms; human disease ontology and drugs from
DrugBank. All ontological terms have probabilistic
scores for their associations. In addition to associ-
ations to domains and supra-domains, the onto-
logical terms have been transferred to proteins,
through homology, providing annotations of >80
million sequences covering 2414 complete
genomes, hundreds of meta-genomes, thousands
of viruses and so forth. The dcGO database is
updated fortnightly, and its website provides down-
loads, search, browse, phylogenetic context and
other data-mining facilities.

INTRODUCTION

Scientists are increasingly confronted with the grand chal-
lenge: how to convert sequenced genome information into

higher-order knowledge on function (1), phenotype (2)
and even human disease (3).

The domain-centric Gene Ontology (dcGO) database at
http://supfam.org/SUPERFAMILY/dcGO is a compre-
hensive ontology resource that contributes to the afore-
mentioned challenge through a new domain-centric
strategy. Our method, dcGO (4), annotates protein
domains with ontological terms. Ontologies are hierarch-
ically organized controlled vocabularies/terms defined to
categorize a particular sphere of knowledge (5). For
example, ‘Gene Ontology’ (GO) was created to describe
functions of proteins (6). Ontological labels are already
available for full-length proteins, derived from experimen-
tal data for that protein. The dcGO approach takes the
terms attached to full-length sequences, and combines
them with the domain composition of the sequences on
a large scale, to statistically infer for each term which
domain is the functional unit responsible for it. The
method has been formulated in a general way, enabling
it to be applied to numerous ontologies. The dcGO
database now contains a panel of ontologies from a
variety of contexts: functions such as GO (6,7), enzymes
(8), pathways (9) and keywords used by UniProt (10);
phenotype and anatomy ontologies across major model
organisms, including mouse (11), worm (12), yeast (13),
fly (14), zebrafish (15), Xenopus (16) and Arabidopsis (17);
human phenotypes (18), diseases (19) and drugs (20). In
addition to complete sets of ontological terms, a collapsed
subset (slim version) is also provided for each ontology.
The automatically generated slim version of each ontology
is based on annotation frequency (4), and it provides the
user with a manageable and more coarse-grained list. This
is analogous to the ‘GO slim’ provided by the Gene
Ontology consortium, which has proven useful for enrich-
ment analyses (21).

The domain definitions used in dcGO are taken from
the structural classification of proteins (SCOP) (22) clas-
sified at both the superfamily and family levels. SCOP
groups domains at the superfamily level if there is struc-
ture, sequence and function evidence for a common evo-
lutionary ancestor. Some superfamilies are sub-divided
into families, which often share a higher sequence
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similarity and a related function. In addition to individual
domains at these two different levels, dcGO also offers
annotations for combinations of domains. We use the
concept of supra-domains to describe combinations of
two or more successive domains of known structure. In
addition to providing ontology for SCOP domains, the
generality of the method has enabled us to also include
Pfam (23) domains in dcGO.

Our domain-centric ontology derived from proteins
with experimental evidence can be turned and used as
a predictor on proteins of unknown function but where
the domain content is known. The ‘dcGO Predictor’
provides pre-computed functional annotation [using
SUPERFAMILY hidden Markov models (24)] of all se-
quences in UniProt (25), 2414 completely sequenced
genomes, thousands of viral genomes and hundreds of
meta-genomes. The dcGO website also has a facility for
the user to submit their own sequences for function pre-
diction. The dcGO Predictor took part in the recent
Critical Assessment of Functional Annotation experiment
(http://biofunctionprediction.org); hence, for comparison
with other non-domain-centric predictors, we refer the
reader to this independent evaluation of its performance.
A key result from the experiment, however, was that
dcGO performs significantly better than the most
commonly used method for GO annotation, Basic Local
Alignment Search Tool searches against UniProt (25).

In the main body of the article later we describe the
database contents in detail, doing so separately for GO
and for other biomedical ontologies (collectively denoted
as ‘BO’ hereinafter). Then, we provide an overview of
various utilities available through the website that may
interest users. Finally, we conclude with planned future
developments.

DATABASE CONTENTS

Algorithm summary

To fully understand the content of the dcGO database
(Table 1), it is necessary to give a description of the algo-
rithm that is used to build it. Without loss of generality,
we take the GO as an exclusive example, but in principle,
the applications to other ontologies are the same. For
more detail, the reader is referred to a previous publica-
tion of the algorithm (4).

The GO is designed to annotate full-length proteins in a
species-independent manner for generality. The most com-
prehensive protein-level annotations are maintained by
the Gene Ontology Annotation (GOA) project (7).
Motivated by a domain-centric viewpoint, we developed
a general algorithm (4) for revealing functional signals
carried by protein domains (and supra-domains in the
multi-domain proteins). Using protein domain architec-
tures from SUPERFAMILY and protein GO annotations
from UniProKB-GOA (respecting the GO hierarchy), we
first prepare a correspondence matrix between domains/
supra-domains and GO terms. Each entry has the
observed number of UniProt proteins that contain a
domain/supra-domain (columns) and that can be
annotated by a GO term (rows). With this correspondence

matrix, we then use Fisher’s exact test to infer associations
between the rows and columns. On top of this, we take
advantage of the true path rule of the directed acyclic
graph of the GO to determine the optimal level at which
to make an association. We achieve this by comparing the
significance of each term using two different backgrounds,
one background using all analysable UniProt proteins
(being annotatable by the GO), and one background
using only those UniProt proteins annotated to direct
parents of the term. If a GO term and its parent term
are both significantly associated with a domain/
supra-domain using the first background, and if the term
is not significantly different from the parent term using the
second background, then it is desirable to only associate
the parent term. As a result of these dual constraints, only
the most significant GO term associations to domains/
supra-domains will be retained.
The significance of association is assessed by the method

of false discovery rate (FDR) to account for multiple
hypothesis tests, whereas the strength of association is
measured by a hypergeometric distribution-based score.
For a domain/supra-domain, the associated GO terms
(i.e. direct annotations) are propagated to all ancestor
terms (i.e. inherited annotations); together they constitute
a complete GO annotation profile. Based on the informa-
tion content of a GO term (i.e. negative logarithmic trans-
formation of frequency of domains/supra-domains
annotated to that term), a search procedure is applied to
partition the directed acyclic graph structure of the GO,
each partition reflecting the same or similar specificity but
located in distinct paths. With four seeds of increasing
information content, the procedure produces the ‘GO
slim’ that contains GO terms classified into four levels of
increasing granularity. These are highly general, general,
specific and highly specific (Supplementary Table S1). The
use of information content (as a measure of how specific
and informative a term is) adds great value to the existing
GO hierarchy for the user. The GO was created for
annotating proteins, so some parts of GO structure are
less valid for annotating domains/supra-domains than
others. Rather than merely relying on the ontology
graph depth to define the term specificity, our approach
has taken into account actual usage of terms when
determining the four-level depth classification of
domains/supra-domains.

Domain-centric GO

Using the algorithm described earlier in the text, dcGO
provides the user with two alternative versions of the GO
associations with domains (Table 1). The high-quality
version of associations includes only those that are sup-
ported by the unambiguous evidence (in terms of the
causal domain) that comes from single-domain proteins
of known function. The high-coverage associations also
include those that are supported through statistical disam-
biguation from multi-domain proteins of known function.
The high-quality associations are more reliable in their
domain-centricity, but high-coverage associations are
reliable enough for large-scale studies and provide a
much greater coverage of function. Enrichment analyses
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are improved more by annotation coverage than by anno-
tation quality; hence, there is a strong justification for
using the high-coverage version in such studies.
Restricting the annotations to GO slim (described earlier
in the text) is also highly recommended for domain-based
enrichment analyses.

In addition to individual domains, dcGO also associates
GO terms with supra-domains (Table 1). In general,
supra-domains are defined as recurring combinations of
two or more successive domains that could function
together. In dcGO, we only include completely assigned
supra-domains, without any significant gaps between
domains, that is, supra-domains with regions not
assigned to a known domain are excluded (26). GO asso-
ciations to supra-domains hold great promise for under-
standing how domain combinations contribute to
functional diversification and also in predicting the func-
tions of multi-domain proteins.

Domain-centric BO

In dcGO, the ‘BO’ refers to all other Biomedical
Ontologies that are not GO. They mainly consist of
phenotype ontologies that have been developed to
classify and organize information on model organisms
and human. Similarly to GO, the BO is hierarchical
going from general terms at the top to more specific
terms at the bottom. As with domain-centric GO, dcGO
has the associations of the BO terms to individual
domains and supra-domains; each has its own slim
version of the ontology at four levels of increasing granu-
larity based on information content. Unlike the GO, the
BO does not have the high-quality version of the associ-
ations. This is largely because of an insufficient number of
single-domain proteins with annotations, especially for
species-specific ontologies. As listed in Table 1, currently
dcGO has eight phenotype and/or anatomy ontologies
covering seven major model organisms. They include
Mouse/Mammalian Phenotypes (MP) from Mouse
Genome Informatics (MGI) (11), Worm Phenotypes
(WP) from WormBase (12), Yeast/Ascomycete
Phenotype (YP) from Saccharomyces Genome Database
(SGD) (13), Fly Phenotype (FP) and Fly Anatomy (FA)
from FlyBase (14), Zebrafish Anatomy (ZA) from ZFIN
(15), Xenopus Anatomy (XA) from Xenbase (16) and
Arabidopsis Plant (AP) ontology from TAIR (17). In
addition to model organisms, dcGO also contains three
ontologies with specific relevance to humans, including
Human Phenotype (HP) (18), Disease Ontology (DO)
(19) and DrugBank ATC codes (DB). The remaining
ontologies have a fixed-length or much-simplified hier-
archy. These include Enzyme Commission (EC) (8),
UniProtKB UniPathway (UP) (9) and UniProtKB
KeyWords (KW) (10).

DATABASE WEBSITE

Downloading data

The underlying data summarized in Table 1 are available
for download on the dcGO website. For each ontology,
the full and slim versions are provided separately for

individual domains (i.e. superfamilies and families) and
supra-domains. In addition, the user can download the
MySQL relational database tables along with detailed
documentation. All downloadable files are free for
academic or commercial use and are automatically
updated fortnightly.

Searching dcGO

The faceted search on the dcGO website (Figure 1) is a
mining hub for users, with additional bioinformatics tools
hyperlinked from the search results. Full-text query is sup-
ported for SCOP domains, ontologies and genomes.
Identifier or accession number lookup is supported for
sequences. Ontologies and SCOP domains are linked to
pages for browsing their respective hierarchies. Every
genome is presented within its phylogenetic context by
linking to a species tree of life (called sTOL, see
‘Analysing GO terms over the species tree of life’
section). There are also links from domains and onto-
logical terms to the tree of life (to see their distribution
across species). Search results returning BO terms are
linked to a cross-ontology comparison tool, the phenotype
similarity network (PSnet, see ‘Cross-linking similar
phenotypes’ section). PSnet searches for terms from
other ontologies with a similar profile of associations.
For lookups returning a specific genome sequence, the
user is provided with the facility to submit it automatically
to the ‘dcGO Predictor’ for function, phenotype and
disease prediction. In conclusion, the faceted search is
designed for multi-tasking; it does not just provide
search results but is intended to interconnect all the
tools and cross-referencing abilities of dcGO.

Browsing the hierarchies

The ‘BROWSE’ navigation on the website (aforemen-
tioned) provides browsing for the SCOP, GO and
various BO hierarchies. The hierarchy-like structure of
the SCOP (or ontology) has a domain (or term) as a
node and its relations to parental nodes as directed
edges. To navigate this hierarchy, we display all the
paths from the current node upwards to the root
ordered by the shortest distances. Also, all direct
children of the current node are listed underneath to
enable browsing downwards. In addition to the hierarchy
itself, a tabbed interface is used to aid the display of
domain-centric annotations in a subject-specific manner.
The SCOP-orientated hierarchy shows terms used to
annotate a domain, and vice versa, the ontology-
orientated hierarchy shows domains/supra-domains
annotated by a term.

Analysing GO terms over the species tree of life

The dcGO website is integrated with a species tree of life
(called sTOL), which is provided by SUPERFAMILY
(27). The sTOL is a fully resolved binary tree of species
of completely sequenced organisms providing a phylogen-
etic context. Within the sTOL, the presence/absence of
domains and supra-domains are pre-computed and
stored, both for extant genomes and for reconstructed an-
cestral genomes in eukaryotes. The integration enables
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cross-comparison between both resources for understand-
ing the evolutionary context of the functional associations.
The distribution of GO terms can be explored over the
sTOL tree, which can be accessed either by links from
the GO hierarchy pages or from the faceted search. GO
term enrichment for extant and ancestral genomes (using
domain-based GO enrichment analysis) can also be
explored when browsing the tree. Thus, the sTOL adds
an extra dimension to the dcGO resource utility.

Cross-linking similar phenotypes

Traditionally, phenotype ontologies are developed for
within-species comparisons. Recently, many attempts
have been made at cross-species comparisons (28–30),
these studies mostly focusing on text mining and formal
definitions. Within dcGO is a tool called ‘PSnet’ that
cross-references terms between ontologies (mostly
phenotypes in different model organisms). Given one
phenotype, PSnet can be used to search for a similar can-
didate phenotype on the basis of their shared domain an-
notations (both at superfamily and family levels). The
statistical significance of the shared domains versus the
expected overlap by chance is evaluated by Fisher’s
exact test. PSnet reports a Z-score for the strength of
the overlap, and a P-value and false discovery rate

(accounting for multiple hypothesis tests) for the signifi-
cance. An information content-based similarity metric is
used to rank the phenotype similarities; if a certain
domain is more frequently annotated (less informative)
than others, then its contribution to the phenotype simi-
larity is less. In this way, for any given phenotype, PSnet
will suggest the best-correlated terms from other
ontologies.

As a proof of principle, we consider the disease term
‘immune system cancer’ [DOID: 0 060 083] from the
Disease Ontology (19). In Figure 2, we illustrate with
this example, how PSnet displays cross-links between
correlated terms, which facilitates the development of
hypotheses. In dcGO, 10 superfamilies and 13 families
are associated to this term (Figure 2A). Supplementary
Figure S1B shows the numerical pathway of associating
immune system cancer with the immunoglobulin super-
family, following the general procedure shown in
Supplementary Figure S1A. Given this disease and its
domain-centric annotation profile in Figure 2A, PSnet
searches for phenotypes with similar domain annotations.
As shown in Figure 2B, PSnet cross-references this disease
term with closely related terms from the Human
Phenotype ontology (18), suggests possible links to the
abnormal counterparts in the Mouse Phenotype
ontology (11), reveals the mechanisms by listing top

Figure 1. The dcGO website has the ‘Faceted Search’ interface as a hub to mine the resource. By searching against keywords of interest, the user can
access the resource in an organized manner and can link to additional analysis tools.
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enzymes from the Enzyme Commission (8) and implicates
the treatment agents through DrugBank ATC codes (20).
The multiple layers of information revealed by PSnet
provide a powerful tool for hypothesis generation. PSnet
brings additional understanding to the essential roles that
protein domains can play in functions, phenotypes and
diseases.

Predicting functions, phenotypes and diseases for
>80 million sequences

Using domain-centric GO annotations as a functional pre-
dictor, we entered the Critical Assessment of Function
Annotation competition and came in the top 10 of >50
methods. Considering that only domain information is
involved and natively used as a single direct prediction,
its relative success validates the quality of this resource for
widespread use. We provide pre-computed annotations
for >80 million sequences (at the time of writing) stored
in the SUPERFAMILY database that includes 2414
genomes, UniProt and hundreds of meta-genomes.
Through the dcGO Predictor (Figure 3), functions and
other higher-order knowledge (phenotypes, diseases and
more) can be predicted for user-submitted sequences.
The implementation is fairly straightforward: first the
domain architecture of the query protein is determined,
and then the ontological terms associated with its compo-
nent domains/supra-domains are transferred to the query
protein. A score is provided for ranking the confidence of
such predictions/transfers. In addition to access through
the faceted search, a batch query mode is provided, which
allows the submission of up to 1000 sequences at a time
(Figure 3A). The prediction results are summarized to give
an overview of the prediction content and are also avail-
able for download (Figure 3B). Figure 3C shows the
results for the example input sequence ‘Q01826’, i.e.
special AT-rich sequence-binding protein 1 (SATB1). As

a chromatin regulator, this protein has been reported to
promote tumour growth and metastasis (31), which is
consistent with the prediction. For a sequence to receive
annotation, first there must be domains detected by the
SUPERFAMILY hidden Markov model library search,
and then those domains/supra-domains must have onto-
logical associations in dcGO. Our coverage will improve
as new structures are deposited in the Protein Data Bank
(32) and as more sequences have ontological terms experi-
mentally determined.

CONCLUSION AND FUTURE DEVELOPMENTS

With the rate of growth of biological (e.g. sequence) data
increasing rapidly, the only realistic way to analyse biology
in a holistic way is computationally. Gene Ontology has
become a widely adopted medium for handling biological
concepts in a structured way that can be processed compu-
tationally. With this unique database ‘dcGO’, treating
domains and supra-domains as functional units, we
provide GO plus a growing number of other ontologies in
a probabilistic framework. The results of the Critical
Assessment of Function Annotation experiment show
that this domain-centric approach performs significantly
better than simple whole-sequence pair-wise homology on
the task of labelling sequences of unknown function with
GO terms; by ‘simple whole-sequence homology’, we mean
the strategy of annotating a sequence with GO terms by
searching it against UniProt using Basic Local Alignment
Search Tool and transferring anyGO terms associated with
significant hits. Thus, the dcGO database, in providing full
functional annotations of all completely sequenced
genomes in addition to the domain-ontology associations
themselves, makes a massive contribution to the body of
computer-readable biological knowledge. In the future,
the intention is to expand the ontologies included in the

Figure 2. Using ‘PSnet’ to cross-link phenotypes and other ontologies based on shared domain-centric annotations. (A) A list of superfamilies and
families annotated by a disease term ‘immune system cancer’. (B) The top well-correlated ontological terms are returned for the disease term in this
query.
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Figure 3. Converting genome sequences to knowledge about function, phenotype and disease using the ‘dcGO Predictor’. (A) A batch query facility
allows the user to upload up to 1000 sequences for the prediction on function, disease, phenotype and other information, such as enzyme classi-
fication, drugs and pathways. (B) The result page provides a summary of the prediction content. New predictions are supported by instantly
switching to other ontologies. In addition to the download, the user can also explore predictions for each of the input sequences, such as
Q01826 (human SATB1 protein; see next). (C) The domain architecture of the human SATB1 protein is graphically displayed using the SCOP
domains at the superfamily level, whereas the bottom panel shows the predicted Disease Ontology terms.
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database, expand the domain collection as more domains
are classified, and expand the collection of functionally
annotated sequences as new genomes, meta-genomes and
so forth are released.

In addition to the value of the large-scale raw annota-
tions in the dcGO database, the anticipated potential for
comparative analyses is already reflected in the sTOL evo-
lutionary context and PSnet cross-referencing tools. Other
than the data expansion aforementioned, other future de-
velopments will focus on introducing more comparative
tools and increasing the use cases of the existing ones.
These will include network-based infrastructures, for
example, of domains and of terms spanning different
ontologies. The construction of functional domain
networks with respect to GO is already on the agenda.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figure 1.
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