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Sustained levels of antibodies are the corner-
stone of long-term immunity against infection 
by many pathogens, and induction of durable 
antibody titers is an essential characteristic of 
effective vaccines. As the half-life of immuno-
globulin is on the order of days to weeks but 
protective levels of antibody may be sustained 
for a lifetime, continued antibody production 
by plasma cells (PCs) is required. How these 
PC populations are maintained over a lifetime 
remains unclear; however, two models have 
been proposed. The first involves continuous dif
ferentiation of antigen-specific memory B cells 
into short-lived PCs (SLPCs; which survive 
for weeks), driven by endemic/persistent  
antigen or by polyclonal antigen-independent 
B cell activators (Amanna and Slifka, 2010). 
However, this mechanism as the exclusive 
means to sustain antibody levels long term has 
been called into question because antibody ti-
ters can persist despite decades elapsing before 
antigen reexposure or with no reexposure at all 
(Amanna et al., 2007). Additionally, sustained 
antibody titers after immunization in humans 

does not appear to require memory B cell acti-
vation (Amanna et al., 2007), and vaccine- 
induced antibodies in mice are maintained over 
prolonged periods even in the absence of a re-
plenishing B cell compartment (Slifka et al., 
1998; Ahuja et al., 2008). To account for these 
observations, a second model has been pro-
posed in which long-term antigen-specific 
antibody levels are maintained in an antigen-
independent manner by a subset of PCs that are 
long lived and, in some instances, would be 
predicted to survive the lifetime of the host 
(Slifka et al., 1998; Ahuja et al., 2008; DiLillo 
et al., 2008). BM-resident nonproliferating PCs 
have been implicated as the long-lived PCs 
(LLPCs; Slifka et al., 1998; Manz and Radbruch, 
2002), and in this model, BM LLPCs and 
SLPCs (in the spleen and other secondary lym-
phoid organs) are intrinsically distinct subsets 
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Sustained long-term antibody levels are the cornerstone of protective immunity, yet it 
remains unclear how they are durably maintained. A predominant theory implicates  
antigen-independent antibody production by a subset of long-lived plasma cells (LLPCs) that 
survive within bone marrow (BM). Central tenets of this model—that BM LLPCs constitute a 
subset defined by intrinsic biology distinct from PCs in other tissues and contribute to 
long-term antibody titers—have not been definitively demonstrated. We now report that 
long-term humoral immunity depends on the PC-intrinsic function of CD28, which selec-
tively supports the survival of BM LLPC but not splenic short-lived PC (SLPC). LLPC and 
SLPC both express CD28, but CD28-driven enhanced survival occurred only in the LLPC. In 
vivo, even in the presence of sufficient T cell help, loss of CD28 or its ligands CD80 and 
CD86 caused significant loss of the LLPC population, reduction of LLPC half-life from 426 
to 63 d, and inability to maintain long-term antibody titers, but there was no effect on 
SLPC populations. These findings establish the existence of the distinct BM LLPC subset 
necessary to sustain antibody titers and uncover a central role for CD28 function in the 
longevity of PCs and humoral immunity.
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tion–Noncommercial–Share Alike–No Mirror Sites license for the first six months 
after the publication date (see http://www.rupress.org/terms). After six months  
it is available under a Creative Commons License (Attribution–Noncommer-
cial–Share Alike 3.0 Unported license, as described at http://creativecommons 
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IL-6 [Minges Wols et al., 2002], and APRIL/
BAFF [Benson et al., 2008]) appear to be impor-
tant for all PCs, and none selectively affects the 
generation or survival of the putative PC subsets 
in the spleen or BM. There are specific charac-
teristics associated with BM homing and resi-
dency by PCs, such as the expression of the 
chemokine receptor CXCR4 (Tokoyoda et al., 
2004), reliance on the adhesion molecule CD93 
(Chevrier et al., 2009), and association with re-
ticular CXCL12+ stromal cells (Tokoyoda et al., 
2004), eosinophils (Chu et al., 2011), basophils 
(Rodriguez Gomez et al., 2010), and megakaryo-
cytes (Rodriguez Gomez et al., 2010; Winter  
et al., 2010). However, it is not known whether 
all newly differentiated PCs can home to the BM 

and become long-lived by stochastically finding a BM niche, 
or whether the LLPC subset a priori has unique intrinsic 
competency to access/use the BM niche for long-term sur-
vival (Radbruch et al., 2006). And, in the latter case, it is also 
unknown what the molecular basis is for this competency to 
interact with the BM niche and how it is different from SLPC 
interactions in the spleen/secondary lymphoid organs.

Although CD28 has been almost entirely characterized as 
the prototypic T lymphocyte receptor that provides the essen-
tial costimulatory signal that, in conjunction T cell receptor/
CD3 signaling, results in T cell activation (Sharpe and Freeman, 
2002; Friend et al., 2006), enhanced function (Shapiro et al., 
1997; Friend et al., 2006), and survival (Boise et al., 1995; 
Frauwirth et al., 2002), it is also expressed on the surface of 
PCs (Kozbor et al., 1987). Interestingly, CD28 expression in 
the B cells is specifically repressed by the B cell master regulator 
Pax-5 and de-repressed during differentiation to PC (Delogu 
et al., 2006). Little, however, is known about what function 
CD28 has in the normal B cell lineage, as its role in humoral 
immune responses has been predominantly attributed to helper 
T cell co-stimulation and germinal center formation (Shahinian 
et al., 1993; Ferguson et al., 1996) even though the absence 
of CD28 diminishes short-term primary antibody responses 
even with adequate T cell help (Delogu et al., 2006). For the 

that do not interconvert into one another (Radbruch et al., 
2006) and differ in their generation, biology, longevity, and 
anatomical localization. It has been hypothesized that one dis-
tinction between these subsets is the ability of LLPC to use a 
limited number of specific BM stromal niches that are essential 
for their survival (Manz et al., 1997; Radbruch et al., 2006) 
and thus access to, competition for, and maintenance within 
these niches are predicted to be major determinants of the 
long-lived protective antibody repertoire (Moser et al., 2006).

However, although long-lived PCs have been identified 
in the BM, careful review of the literature reveals there is no 
direct evidence that BM PCs actually contribute to long-term 
antibody responses, as it has not been possible to selectively 
eliminate them while retaining other PC populations. This is 
closely tied to the fact that it is far from clear that BM PCs are 
actually a distinct PC subset as predicted by the model. No 
intrinsic molecular or cellular characteristics have been iden-
tified that clearly define the putative LLPC or SLPC subset, 
and certainly none that account for the differences in longev-
ity. Factors involved in PC differentiation (e.g., Blimp-1 
[Shapiro-Shelef and Calame, 2005; Martins and Calame, 
2008], Aiolos [Cortés and Georgopoulos, 2004], and Ets-1 
[John et al., 2008]), adhesion (e.g., LFA-1/VLA-4 [DiLillo  
et al., 2008]), and survival (e.g., FcRIIb [Xiang et al., 2007], 

Figure 1.  CD28 is expressed on splenic and BM PCs. 
(A and B) CD28 expression was determined in BM (A) or 
splenic (B) CD138+ PCs, CD3+ T cells, and CD19+ B cells 
purified from WT mice. Gray lines represent isotype con-
trols; black lines represent anti-CD28 staining. Results 
shown are one representative experiment of four.  
(C and D) Total PC numbers in BM (C) or spleen (D) of WT 
and CD28/ mice were determined from total mono-
nuclear cells by multiparametric flow cytometry using 
CD138+B220 to identify PC (representative plots are 
shown). (E and F) PCs in BM or spleen of CD80/, 
CD86/, and CD80/86/ mice were determined as in  
C and D. Mean ± SD of 10 mice (C and D) or of three mice 
(E and F) is shown. ns, not significant. **, P < 0.01; ***, P < 
0.001; ****, P < 0.0001.
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PC numbers after immunomagnetic 
purification from spleen or BM yielded  
the same significant differences (un-
published data). Similarly, unvacci-
nated mice lacking the CD28 ligands 
(CD80/, CD86/, and CD80/

CD86/) had a selective loss of BM PC (Fig. 1 E) but a com-
parable number of splenic PC (Fig. 1 F) versus WT. Interest-
ingly, the loss of BM PC in the CD80/ or CD86/ single 
knockouts indicates that even though either ligand can bind 
CD28, they are not redundant in the context of maintaining the 
BM PC population. And although PCs express low levels of 
CD86, they do not express CD80 (unpublished data), suggesting 
that BM PC interaction with CD80-expressing stromal cell in 
the BM niche is required to sustain this PC subset (see Fig. 4).

CD28-dependent maintenance of the BM PC population  
in vivo is PC intrinsic
Potential reasons for the decrease in BM PC in the CD28/, 
CD80/, CD86/, and CD80/CD86/ mice include an 
intrinsic PC defect or extrinsic causes as a result of lack of T cell 
help or other alterations in the host microenvironment. To 
more definitively determine if CD28 was affecting BM PC di-
rectly in a cell-intrinsic manner, or if the selective loss of BM 
PC was a result of extrinsic factors, competitive repopulation 
studies were performed. Congenic BM chimeras were gener-
ated by transplanting 106 CD28+/+ SJL (CD45.1) + C57BL/6J 
WT (CD45.2) or SJL + CD28/ (CD45.2) BM cells at a 1:1 
ratio into lethally irradiated SJL hosts (Fig. 2 A). After reconsti-
tution, equal chimerization of CD3+ T cells and CD138+B220 
PC was seen in the spleens of both chimeras (Fig. 2, B [repre-
sentative plots from SJL:CD28/ chimeras] and D [left]). 
However, in the BM of the SJL:CD28/ chimeras both the 
percentage of PC contributed by the CD45.2 CD28/ BM 
(Fig. 2 C) and the total number (Fig. 2 D, right) was substantially 

malignant BM-resident PCs in multiple myeloma, CD28 ex-
pression clinically correlates with significantly poorer prognosis 
(Almeida et al., 1999) and disease progression (Robillard et al., 
1998), suggesting that CD28 provides the myeloma cells with 
a survival advantage. Consistent with this, we and others have 
found that CD28 activation in myeloma cells induces PI3K 
and NF-B signaling (Tu et al., 2000; Bahlis et al., 2007), IL-8 
production (Shapiro et al., 2001), and a prosurvival signal that 
protects in vitro against chemotherapy-induced death (Bahlis 
et al., 2007). These observations led us to examine whether 
intrinsic CD28 function in normal PCs plays a general or sub-
set-specific role in regulating their survival and, thus, the lon-
gevity of antibody responses.

RESULTS
Mice lacking CD28 or CD80/CD86 have selective loss of BM PC
Throughout our studies, we examined splenic and BM PCs as 
the putative SLPC and LLPC subsets, respectively. In WT 
C57BL/6J mice, purified BM PC (Fig. 1 A) and splenic PC 
(Fig. 1 B) both expressed CD28 at similar levels to T cells. How-
ever, naive mice genetically deficient for CD28 (CD28/) had 
significantly fewer PCs in the BM (Fig. 1 C, right) but equiva-
lent numbers of splenic PC (Fig. 1 D, right) compared with WT 
mice as analyzed by multiparametric flow cytometry of the total 
mononuclear cell population (Fig. 1, C and D, left, representa-
tive plots for PCs based on their CD138+B220 phenotype; 
Shapiro-Shelef et al., 2003, 2005). More stringent phenotypic 
gating for PCs (CD138+B220IL-6R+MHCII; Moser et al., 
2006) in multiparametric flow analysis or direct enumeration of 

Figure 2.  BM PCs from CD28/ mice 
have a competitive repopulation dis
advantage. (A) Experimental design (D, day).  
(B) Total splenocytes from chimeras were 
analyzed by multiparametric flow cytometry 
for percentages of CD3+ T cells and 
CD138+B220 PC. CD45.1 (SJL) splenocytes 
are plotted on top and CD45.2 (CD28/) 
splenocytes on the bottom. Dot plots and 
histograms are representative of three mice. 
(C) BMs from chimeras were analyzed by 
multiparametric flow cytometry for per-
centages of CD138+B220 PC. Dot plots are 
representative of three mice. (D) Total PC 
numbers in spleen (left) and BM (right) was 
determined from total mononuclear cells by 
multiparametric flow cytometry using 
CD138+B220 to identify PC. Histograms 
are representative of three mice per group. 
Error bars represent the mean ± SD. ns, not 
significant. **, P < 0.01.
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and functionally similar (Fig. S1) and 
that there was not an excess of 
CD19+CD138+ IgM-secreting plas-

mablasts in the splenic PC population that might account for 
the differential responses (Kallies et al., 2004). Given that 
splenic PCs express CD28, the basis for this differential re-
sponse was likely a result of differences in downstream signaling. 
We confirmed that the components of the NF-B pathway 
were present, as both splenic and BM PCs express the p50 
and p65 NF-B subunits (Fig. 3 B, top). However, anti-
CD28 mAb induced NF-B signaling in BM PC (Fig. 3 B, 
bottom left) but not in splenic PC (Fig. 3 B, bottom right), 
as measured by electromobility gel shift assays. NF-B signal-
ing could be induced in splenic PC by the TLR 7 agonist 
imiquimod (Tangye and Tarlinton, 2009), demonstrating 
that there was not a global defect in NF-B signaling in these 
cells. To further validate CD28-mediated NF-B signaling 
(or lack thereof), we examined activation of NF-B respon-
sive gene elements using splenic and BM PC isolated from 
the NF-B reporter mouse strain, which is transgenic for the 
IB promoter linked to the firefly luciferase reporter gene 
(Zhang et al., 2005). After 1 h of stimulation in vitro, BM PC 
cultured with anti-CD28 mAb had a 2.3-fold increase of 
relative NF-B activity compared with BM PC cultured 
alone or with control hamster Ig (Fig. 3 C, top), whereas 
there was no effect of anti-CD28 stimulation on the NF-B 
activity in the splenic PC (Fig. 3 C, bottom). Altogether, these 

less than that contributed by the SJL CD45.1 marrow, which 
is in contrast to the equal contribution by the C57BL/6J 
WT marrow to the BM PC population in the SJL:WT chime-
ras. These data demonstrate that in the context of the same host 
environment where both CD28+/+ and CD28/ PCs have 
access to the same T cell help and the same BM microenviron-
ment, the BM (but not splenic) PCs of CD28/ origin are at 
a competitive disadvantage, which is consistent with a direct 
cell-intrinsic role for CD28 specifically in the BM PC subset.

CD28 activation enhances the survival of BM but not 
splenic PCs
The potential intrinsic functions of CD28 in the BM PC in-
clude regulating LLPC generation during B→PC differentia-
tion, LLPC plasmablast proliferation, selective homing to/ 
adhesion within the BM, and/or survival within the BM niche. 
Given the previous findings in T cells and myeloma cells, we first 
examined whether CD28 activation had a prosurvival effect 
in normal PCs. In vitro, anti-CD28 mAb–­induced direct 
CD28 activation by itself (without an exogenous signal 1) pro-
tected purified WT BM PC from serum starvation–induced 
death (Fig. 3 A, left) but had no effect on splenic PC survival 
(Fig. 3 A, right). Assessment of the purified BM and splenic 
PC populations demonstrated that they were phenotypically 

Figure 3.  CD28 activation protects BM 
but not splenic PCs from serum starva-
tion–induced death. (A) 2 × 104 purified BM 
or splenic PCs were cultured with or without 
fetal calf serum for 24 h with or without 
polyclonal control hamster Ig-coated beads or 
anti-CD28–coated beads, and viability was 
assessed by trypan blue exclusion. Mean ± SD 
of three independent experiments is shown. 
(B) Purified BM and splenic PCs were cultured 
with or without polyclonal control hamster Ig 
or anti-CD28 for 30 min (splenic PCs were 
cultured with or without 3 µM imiquimod as 
a positive control), and whole cell lysates 
analyzed by EMSA (bottom) for binding to 
probes containing consensus NF-B binding 
sites (Bahlis et al., 2007). Immunoblot analysis 
(top) was performed for p50 and p65. Data 
are representative of four independent experi-
ments. (C) Purified BM and splenic PCs were 
cultured alone, with polyclonal control ham-
ster Ig or anti-CD28 for 60 min, and lysates 
were analyzed for NF-B luciferase reporter 
activity. Relative NF-B activity was deter-
mined as described in Materials and methods, 
and BM PC or SP PC alone were set as 1 and 
all other samples normalized to BM PC or SP 
PC alone. Mean ± SD of three independent 
experiments is shown. ns, not significant.  
*, P < 0.05; **, P < 0.01; ***, P < 0.001.

http://www.jem.org/cgi/content/full/jem.20110040/DC1
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with CD80+ BMSC and 68.5% were 
in contact with fascin+ BMSC.

The ability of DC to support PC 
survival was examined in vitro in co-
cultures of purified WT BM PC + 
WT BMDC and demonstrated seven
fold more viable PC compared with 
medium alone conditions out to 
30 d of culture (Fig. 4 C). However, 

BMDC could not support CD28/ BM PC survival  
(Fig. 4 D), indicating a central role for CD28 even within the 
complexity of the PC–DC cellular interaction. Co-culture 
with BMDC also did not support long term survival of 
splenic PC (Fig. S2), which is consistent with their lack of 
CD28 signaling, although there was enhancement of short-
term survival, possibly as a result of CD28 induction of IL-6 
from the DC (see Fig. 5). WT BM PC function, as measured 
by total IgG production, was also maintained in the BMDC 
co-cultures (Fig. 4 E), whereas CD28/ BM PC cultured 
alone or with BMDC produced only low levels of IgG, IgM, 
and IgA (Fig. 4 F and not depicted). This was not because 
CD28/ BM PCs were unable to make immunoglobulin, as 
exogenously added IL-6 induced significant IgG production 
(Fig. S3). Co-culture of WT BM PC with CD80/, 
CD86/, and CD80/CD86/ BMDCs similarly yielded 
significantly less long-term PC survival and production of 
IgG compared with co-culture with WT BMDC (Fig. 4, G 
and H). Interestingly, the observation that the individual ab-
sence of CD80 or CD86 affects PC survival/function in vitro 
is consistent with the preceding in vivo findings and sug-
gests that they are not simply interchangeable ligands for 
CD28 but have functions separate from activating CD28.

findings suggest that compared with BM PC, CD28 on splenic 
PC has a higher activation threshold more characteristic of that 
seen in T cells (Thompson et al., 1989; Stein et al., 1994).

BM-derived DCs (BMDCs) support BM PC survival  
and Ig production
The selective loss of BM PC also seen in the CD80/CD86 
knockouts suggests that the essential stromal cells within the 
BM PC survival niche (Shapiro-Shelef and Calame, 2005) ex-
press these CD28 ligands. Other work has suggested that DCs 
(which can have high expression of CD80 and CD86) are 
supportive stromal cells for the B lineage, as direct DC contact 
provides critical differentiation and survival signals to normal 
B cells (Sapoznikov et al., 2008), plasmablasts (Mohr et al., 
2009), and myeloma cells (Said et al., 1997; Bogen, 2002; 
Kukreja et al., 2006). Additionally, BM DCs in myeloma pa-
tients are induced to produce the B lineage survival factor IL-6 
(Said et al., 1997). Consistent with these studies, we have found 
in situ within the BM of WT mice that CD138+ PCs are in 
direct contact with CD80+ (Fig. 4 A) and fascin+ (a DC marker; 
Bahlis et al., 2007; Fig. 4 B) BM stromal cells (BMSCs)  
phenotypically resembling DC. Enumeration of PCs across  
entire BM sections demonstrated that 73.6% were in contact 

Figure 4.  BMDCs interact with and 
support PC survival and function through 
CD28–CD80/CD86 interactions. (A) BM 
sections from WT mice were stained with 
antibodies against CD80 (red) and CD138 
(green; image representative of four inde-
pendent experiments). (B) Immunohisto-
chemical staining from sternum sections of 
WT mice. Brown is fascin, identifying DCs, 
and pink is CD138+ PCs identified by arrows 
(image representative of two independent 
experiments). (C–H) Purified BM PCs were 
cocultured with BMDC of indicated geno-
types for the indicated time periods. Total 
viable PC numbers were determined by 7AAD 
incorporation analyzed by flow cytometry 
(mean ± SD of three independent experi-
ments is shown). Culture supernatants were 
analyzed for total IgG production by ELISA 
(mean ± SD is shown of one representative 
experiment of three). ns, not significant.  
*§, P < 0.05 PC + BMDC compared with PC + 
CD80/ BMDC and CD80/86/ BMDC; *#, 
P < 0.05 PC + BMDC compared with PC + 
CD86/ BMDC; *, P < 0.05; **, P < 0.01.

http://www.jem.org/cgi/content/full/jem.20110040/DC1
http://www.jem.org/cgi/content/full/jem.20110040/DC1
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antibody levels (because SLPC would 
be unaffected, consistent with Delogu 
et al., 2006) but would compromise 

the survival of antigen-specific LLPC and the ability to sus-
tain antigen-specific antibody titers long term after vaccina-
tion. To examine this, BM chimeric mice lacking CD28 
only in B cell compartment were generated by tandem trans-
plantation of WT hosts with BM from MT mice that lack  
B cells but have normally functioning CD28+ T cells (Tuaillon, 
2000; Delogu et al., 2006) plus BM from either CD28/  
or WT control mice (Fig. 6 A). Analysis of chimerization 
showed comparable percentages of CD3+CD28+ T cells, 
whereas CD138+ PCs were CD28+ in WT and CD28 in 
CD28/ chimeras (Fig. 6, B and C). The chimeras were 
primed and boosted with the T cell–dependent antigen NIP-
ovalbumin, and serum immunoglobulin and PC numbers 
were assessed over 180 d. WT:MT and CD28/:MT chi-
meras had equivalent total serum IgG1 levels over the 6 mo 
(Fig. 6 D, left). However, although the NIP-specific IgG1  
titers were similar at day 7, they were significantly lower in 
the CD28/:MT chimeras by day 21 and back to prevac-
cination levels by day 180 (Fig. 6 D, right). NIP-specific IgA 
and IgM titers were unaffected (Fig. S5, A and B), suggesting 
that plasmablasts and mucosal PC are less dependent on CD28. 
To determine if the loss of anti-NIP antibody titers was a  
result of down-regulation of immunoglobulin production or 
loss of the LLPC population, the number of total and antigen-
specific PCs was assessed. The total number of PCs in the 
spleen was comparable between chimeras (Fig. 6 E, left) but 
significantly lower in the BM of the CD28/:MT mice 
(Fig. 6 E, right). The frequency of NIP-specific antibody- 
secreting cells (ASCs) was also similar in the spleens of the 
chimeras (Fig. 6 F), but twofold (day 42) to sevenfold (day 180) 
lower in the BM of the CD28/:MT mice (Fig. 6 G). The 
smaller number of BM PCs in the CD28/:MT could also 
be a result of defective B→LLPC differentiation or LLPC 
BM homing versus decreased in situ survival, so the rate of 
decline in PC numbers in the BM over time was determined. 
This would be unchanged by a generation/homing defect 

BM PCs induce BMDC production of IL-6 that is necessary 
for Ig production in a CD28-CD80/CD86–dependent manner
Given that the other receptor for CD80 and CD86, CTLA4, 
has not been detected on normal or malignant PC (Shaffer et al., 
2002; Zhan et al., 2007; Driscoll et al., 2010), one possibility 
is that this separate CD80/CD86 function is via their sig-
naling directly to the DC. It has been shown in DC-mediated 
T cell activation that CD28 cross-linking of CD80/CD86 
induces DC production of IL-6 (Orabona et al., 2004), a pro-
inflammatory cytokine necessary for T cell activation but also 
a well characterized differentiation/survival factor for the B 
cell lineage (Kawano et al., 1988; Minges Wols et al., 2002). 
PCs also induce IL-6 production from the stromal micro
environment, although the specific interactions involved are un-
clear (Minges Wols et al., 2002). This raised the possibility that 
CD28 on the surface of PC also induces DC production of 
microenvironmental IL-6 to support PC survival/function. In 
vitro, although WT PC and WT BMDC did not make IL-6 
by themselves, co-culture induced significant IL-6 produc-
tion that is dependent on CD80 (completely) or CD86 (par-
tially; Fig. 5 A) and was not seen when the co-cultured DC 
could not make IL-6 (IL-6/ BMDC; Fig. 5 B). Surprisingly 
however, even though exogenous IL-6 has a significant pro-
survival effect on BM PC cultured in medium alone (Fig. S4; 
Minges Wols et al., 2002), BM PC survival was unaffected 
when co-cultured with IL-6/ BMDC compared with WT 
(Fig. 5 C). However, there was significantly less IgG produc-
tion in IL-6/ BMDC co-cultures (Fig. 5 D), suggesting that 
CD28 separately regulates BM PC survival directly and immuno
globulin production indirectly via CD80/CD86-mediated 
induction of IL-6 from the stromal DC.

Loss of CD28, CD80, or CD86 compromises BM PC survival 
and durable antibody responses in vivo
If CD28 function is selectively important for the maintenance 
of the LLPC subset, loss of CD28 in PCs may not affect total 

Figure 5.  BM PCs induce DC IL-6 pro-
duction through a CD80- and CD86- 
dependent mechanism. (A). 104 purified BM 
PCs were cultured with or without 105 WT 
BMDC with or without 20 µg/ml of hamster Ig 
(isotype control), or 20 µg/ml anti-CD80 or 
anti-CD86 for 24 h. IL-6 production analyzed 
by ELISA. (B) Purified BM PCs were cultured 
with or without WT or IL-6/ BMDC for 24 h 
and IL-6 production analyzed by ELISA. (C and 
D) Purified BM PCs were cultured with or 
without WT or IL-6/ BMDC. Total PC num-
bers and IgG production were determined as 
previously described. Data are presented as 
the mean ± SD and are representative of 
three independent experiments. *, P < 0.05;  
**, P < 0.01; ***, P < 0.001.

http://www.jem.org/cgi/content/full/jem.20110040/DC1
http://www.jem.org/cgi/content/full/jem.20110040/DC1
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was not equivalent to the loss of 
CD28. Because generating chimeric 
mice lacking CD80 or CD86 only 
in the myeloid compartment was 
not feasible, global CD80/ or 
CD86/ mice (and WT controls) 
were vaccinated and analyzed in the 
same fashion as for the CD28/: 
MT chimeras. Total serum IgG1 
levels in the CD80/ and CD86/ 
mice were lower on average than in 
the WT mice, but this difference was 
not statistically significant (Fig. 7 A, 
left). However, NIP-specific anti-
body titers were significantly lower 
in CD80/ and CD86/ mice 
compared with WT at all time points, 
persisting out past 2 mo (Fig. 7 A, 

right). The total numbers of CD138+B220 PC were com
parable in the spleens of CD80/, CD86/, and WT mice 
(Fig. 7 B, left), but BM PCs were significantly decreased in 
CD80/ and CD86/ mice compared with WT (Fig. 7 B, 
right). Similarly, the frequency of NIP-specific ASC in the 
spleens of CD80/, CD86/, and WT mice were equiva-
lent (Fig. 7 C) but significantly decreased over time in the  
BM of CD80/ and CD86/ mice compared with WT 
(Fig. 7 D). Altogether, the loss of CD80 or CD86 recapitu-
lates the selective effect of CD28 loss on the BM PC pop-
ulation, supporting the model of an essential prosurvival 
interaction involving CD28 expressed on LLPC with CD80 
and CD86 in the stromal niche.

(fewer LLPC would get to the BM but, once there, would have 
normal survival) but accelerated by a survival defect. Consis-
tent with the latter, the decline in the NIP-specific BM PC 
numbers was significantly faster in the CD28/:MT (slope = 
0.29) with a half-life of 63 d versus WT:MT chimeras 
(slope = 0.12; P < 0.023) with a half-life of 426 d, with no 
difference seen in rates of splenic PC decline.

These findings predict that if CD28-expressing LLPCs 
are interacting with CD80/CD86-expressing stromal niche 
DC, that loss of CD80 and/or CD86 expression will recapi
tulate the effect of losing PC CD28. Additionally, involve-
ment of other CD80/CD86 binding receptors in addition to 
CD28 would be unmasked if the loss of the CD80 or CD86 

Figure 6.  Loss of CD28 in the B lineage 
reduces long-lived antibody responses 
and long-lived PC numbers. (A) Experi-
mental design. (B and C) Total splenic (B) or 
BM (C) mononuclear cells were analyzed in 
chimeras at time 0 before immunization  
for CD28+CD3+ T cells (left) and 
CD28+CD138+B220 PC (right) by multi
parametric flow cytometry. (D) Total serum 
IgG1 and NIP-specific IgG1 was analyzed by 
ELISA at the time points indicated. Each 
point represents one mouse, with the mean 
indicated by black bars. (E) Total PC numbers 
in spleen (left) and BM (right) was deter-
mined from total mononuclear cells by  
multiparametric flow cytometry using 
CD138+B220 to identify PC. Histograms 
are representative of six mice (day 180 WT, 
n = 3) per group. Error bars represent the 
mean ± SD. (F and G) Splenic (F) and BM  
(G) NIP-IgG ASC numbers were determined 
by ELISPOT. Each point represents the tripli-
cate mean of one mouse. Mean is indicated 
by black bars. ns, not significant. *, P < 0.05; 
**, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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Figure 7.  Loss of CD28 ligands CD80 
or CD86 diminishes long-lived antibody 
responses and long-lived PC numbers.  
(A) Mice were vaccinated and total serum 
IgG1 and NIP-IgG1 was analyzed by ELISA 
at the time points indicated. Each point 
represents one mouse, with the mean indi-
cated by black bars. (B) Total PC numbers in 
spleen (left) and BM (right) was determined 
from total mononuclear cells by multipara-
metric flow cytometry using CD138+B220 
to identify PC. Histograms are representa-
tive of three mice per group. Error bars rep-
resent the mean ± SD. (C and D) Splenic  
(C) and BM (D) NIP-IgG ASC numbers were 
determined by ELISPOT. Each point repre-
sents the triplicate mean of one mouse. 
Mean is indicated by black bars. ns, not 
significant. *, P < 0.05; **, P < 0.01; ***, P < 
0.001; ****, P < 0.0001; *****, P < 0.00001.

DISCUSSION
Although long-lived antibody responses are a fundamental 
component of protective humoral immunity and are essential 
for effective vaccination, the molecular and cellular basis for 
such sustained immunoglobulin production (in particular in 
the absence of ongoing antigen exposure) remain poorly under
stood. Prolonged survival of a subset of PCs in the BM has 
been implicated as a key component of long-term humoral 
immunity; however, the intrinsic characteristics of these PCs 
(and if they even are a distinct subset), the basis of their longev-
ity, and their actual contribution to durable antibody titers are 
not known. We have found that intrinsic CD28 function in 
PCs plays a previously unrecognized but essential role in main-
taining long-lived antibody responses by selectively supporting 
the survival of BM PC. Furthermore, the intrinsic difference in 
CD28 signaling/function between short-lived splenic PC and 
long-lived BM PC is the first clear evidence (to our knowl-
edge) that LLPC and SLPC are distinct subsets of PC. More 
importantly, the loss of long-term antibody titers with the  
selective loss of BM PC in the CD28/, CD80/, and  
CD86/ mice is the first direct demonstration that BM LLPCs 
are necessary to sustain antigen-specific antibody levels. Alto-
gether, our findings provide clear evidence that a distinct subset 
of BM-resident LLPC is necessary and sufficient to maintain 
long-term antibody levels, and they identify CD28 function in 
PCs as a central determinant of LLPC function and survival.

Although there has been extensive evidence that CD28  
is required for the generation of antibody responses (e.g., 

Delogu et al., 2006), its involvement 
has been almost entirely attributed 
to helper T cell activation (e.g., 
Shahinian et al., 1993; Ferguson et al., 
1996), even though any effect on PCs 
cannot be separately distinguished in 
these studies. The first clear indica-
tion of an intrinsic B cell role was 

only recently suggested by the finding that CD28 deficiency 
in B lineage blunted early (day 14 after vaccination) primary 
antibody responses even with adequate T cell help (Delogu  
et al., 2006), although the underlying mechanism (defects in 
B→PC differentiation, homing, PC survival, antibody produc-
tion, or some other mechanism) and effect on durable anti-
body responses was not determined. We have found that CD28 
on LLPC functions as a two-way molecular bridge, transduc-
ing a survival signal to the LLPC as well as back-signaling 
through CD80/CD86 to modulate stromal niche DC to sup-
port LLPC (and possibly SLPC) function via IL-6 produc-
tion. This ability to transduce the prosurvival signal appears 
limited to LLPC and suggests that survival within the BM 
niches is restricted to PC that can signal through CD28. Thus, 
the molecular competency (Manz and Radbruch, 2002) of a 
PC to reside in a LLPC BM niche is in part set by its CD28 
signaling threshold, with SLPC unable to use these niches be-
cause of a higher activation threshold more characteristic of  
T cells. This setpoint may be determined by the type of B cell 
being activated and/or the context in which the activation 
takes place. For example, memory B cell activation would be 
indicative of a recurring pathogen against which long-lived 
antibody titers would be beneficial, and a highly inflamma-
tory setting caused by an acutely destructive pathogen for 
which persistent protective antibodies against reinfection 
would also be beneficial. This would be consistent with ob-
servations that repeated antigen exposure is necessary for 
most vaccines to elicit durable antibody titers, and that the 
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Finally, an intrinsic role for CD28 in LLPC survival/func-
tion suggests that therapeutically targeting this receptor may 
be directly effective in manipulating humoral immunity in 
human health and disease. In the context of vaccine develop-
ment, strategies to augment CD28 signaling (for example, tra-
ditional, i.e., not super-agonist) anti-CD28 antibodies that 
trigger signaling in PC but not T cells may lead to greater 
LLPC survival and higher/more persistent antibody titers. 
Conversely, inhibition of CD28 signaling may compromise 
the survival of pathogenic LLPCs that are still dependent on 
the BM niche for survival. These include the malignant LLPC 
in multiple myeloma and autoreactive LLPC in many auto
immune syndromes and organ graft rejection. In this regard, it 
is relevant to note that agents that enhance or block CD28-
mediated T cell co-stimulation are already in clinical use (e.g., 
CTLA4-Ig [abatacept] for the treatment of rheumatoid arthri-
tis) and may have new (or perhaps newly recognized) applica-
tion in normal and pathogenic humoral immunity.

MATERIALS AND METHODS
Animals. Female and male C57BL/6J (WT), B6.129S2-Igh-6tm1Cgn/J (MT), 
B6.SJL-Ptprca Pepcb/BoyJ (SJL), and B6.129S2-Cd28tm1Mak/J (CD28/) 
mice were purchased from The Jackson Laboratory at 5–6 wk of age. Female 
C57BL/6J retired breeders at 9 mo old were purchased from The Jackson 
Laboratory. Upon receipt, animals were housed and bred at the Division of 
Laboratory Animal Resources (Roswell Park Cancer Institute [RPCI],  
Buffalo, NY) in a pathogen-free barrier facility. All animal experiments were 
approved by the RPCI Institutional Animal Care and User Committee.

Antibodies and flow cytometry. Antibodies for NF-B p50 (clone NLS) 
and p65 (clone F-6) were purchased from Santa Cruz Biotechnology, Inc. 
Imiquimod was purchased from Sigma Aldrich. Anti-CD80 mAb (clone 
16.10.A1) and anti-CD86 (clone GL-1) were generated from hybridomas. 
Cells were stained with anti-CD45.1 (clone A20), anti-CD45.2 (clone 104), 
anti–B220-PE/Cy7 (clone RA3-6B2), anti–I-A/I-E-PerCP/Cy5.5 (clone 
M5/114.15.2), anti-CD19 (clone 6D5), and anti–CD3-PE (clone 17A2; 
BioLegend); anti–hamster IgG (H + L)–FITC and isotype control rat IgG2a-
PE (Beckman Coulter); anti-CD28 (clone PV1; Beckman Coulter; gift from 
C. June and B. Levine, University of Pennsylvania, Philadelphia, PA); anti–
CD138-PE (clone 281–2; BD); anti–mouse IL-6R (R&D Systems); and 
anti–goat IgG-FITC (United States Biochemical Corporation). Polyclonal 
control hamster-IgG was purchased from Genetex, Inc. Polyclonal control 
hamster IgG and anti-CD28 mAb were conjugated to Dynabeads goat anti–
mouse IgG (Invitrogen) per the manufacturer’s instructions and were cul-
tured with cells at a 2:1 bead to cell ratio, respectively. Cells were incubated 
with staining reagents in staining media (PBS-1% FCS, 5 mM Hepes, and  
5 mM 10% sodium azide) for 30 min in 4°C. Analysis was performed by flow 
cytometry (LSR II and FACScan 2; BD).

PC isolation. PCs from WT and CD28/ mice were isolated using a 
MACS (Miltenyi Biotec) CD138+ PC isolation kit. Cells were labeled with 
non-PC depletion cocktail and anti-biotin microbeads for non-PC deple-
tion. Cells were then labeled with CD138 microbeads and run over the 
magnetic column twice to remove any CD138 cells (Minges Wols and Witte, 
2008). The purity of the CD138+ population was >83%.

CellVue labeling and cell cultures. BMDCs were generated from BM of 
WT, B6.129S4-Cd80tm1Shr/J (CD80/), B6.129S4-Cd86tm1Shr/J (CD86/), 
B6.129S4-Cd80tm1Shr Cd86tm2Shr/J (CD80/86/), and B6.129S2-Il6tm1Kopf/J 
(IL-6/) mice (gift from A. Grakoui and H. Scarborough, Emory Univer-
sity, Atlanta, GA). BM cells were differentiated in culture with 20 ng/ml 
GM-CSF (derived from supernatant; gift from J.L. Clements, RPCI) for 7 d 

inflammation elicited by specific vaccines correlates with the 
ability to generate long-lived humoral immunity (Pulendran, 
2009). The molecular basis for where the CD28 activation 
threshold is set is unknown but is likely to be a key determi-
nant of whether a newly differentiated PC is fated to become 
a LLPC or SLPC.

These findings also underscore that CD28 has several sig-
nificantly different characteristics in LLPC compared with  
T cells. First, there appears to be no “co-” in the stimulation 
induced by CD28 in LLPC, and this signal alone is sufficient 
to support LLPC survival in the absence of other exogenous 
factors (i.e., in serum-free conditions). How CD28 activation 
supports LLPC survival is not clear as, unlike T cells, we have 
not identified a role for Bcl-xL up-regulation in PCs. Ongoing 
studies suggest other antiapoptotic factors and enhanced  
metabolic fitness are playing a role. Another difference is 
the nonredundancy of CD80 and CD86 in maintaining the 
LLPC population compared with their relative redundancy 
in activating CD28 on T cells. Our data suggests that this 
nonredundancy is not the result of another CD80/CD86-
binding receptor (CTLA-4 and PD-1), although more defin-
itive studies are needed to be conclusive. Whether this 
nonredundancy is a result of some characteristic of CD28 
signaling on the PC side or CD80/CD86 signaling on the 
stromal side is unclear and is currently being examined.

The requirement for CD80 and CD86 for LLPC survival 
and colocalization of BM PC and DC in vivo, as well as the 
ability of DC to support LLPC survival in vitro, strongly sug-
gests that DCs (along with other myeloid professional antigen-
presenting cells) are stromal components of the LLPC BM 
niche. The physical colocalization of LLPC with DC in the 
BM closely parallels the direct association of plasmablasts with 
DC and monocyte/macrophages in the lymph node, which in-
duces the myeloid cells to generate the IL-6/April-rich micro
environment necessary for plasmablast survival and maturation 
(Mohr et al., 2009). Furthermore, the ability of CD28 to in-
duce DC production of IL-6 via CD80/CD86 binding (which 
has been shown in DC–T cell interactions [Orabona et al., 
2004] but not with PC) provides a molecular mechanism for 
how PCs induce the stromal microenvironment to produce 
this cytokine. Consistent with previous studies, we find that 
this IL-6 production is less important for LLPC survival when 
in contact with DC but is necessary for sustained antibody 
production (Martins et al., 2006; Radbruch et al., 2006), and it 
is possible that the decrease in IL-6 production within the BM 
microenvironment caused by loss of CD28 or CD80/86 re-
sults in a disproportionately greater drop in serum NIP-IgG1 
levels compared with the loss of NIP-specific PC in vivo. It is 
interesting to speculate that regulation of Ig production is via 
CD28-mediated induction of high level BLIMP-1 expression 
that is needed for immunoglobulin production (Shapiro-Shelef 
and Calame, 2005) and is characteristic of LLPC after they 
enter the BM niches (Kallies et al., 2004). Of note, BLIMP-1 
expression in T cells is increased by CD28 co-stimulation 
(Martins et al., 2006), which suggests another pathway by 
which CD28 may modulate LLPC function.
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for 30 min. Staining with antibodies and secondary reagents was performed 
for 60 and 30 min, respectively, at room temperature. The following anti-
bodies were used: anti–hamster IgG-PE (clone HTK888; BioLegend), anti–
CD80-PE (clone 16-10AI; BioLegend), anti-CD138 (clone 281–2; BD), 
and anti–rat IgG-FITC (eBioscience). Sections were analyzed by a confocal 
system microscope (DM IRE2 and TCS SP2; Leica) with software (version 
2.61). Four BM sections were used to quantify CD138+ cells adjacent to 
CD80+ BMSC. CD138 positively stained cells alone or adjacent to CD80+ 
BMSC were counted. Percentage of adjacent CD138+ cells to CD80+ 
BMSC cells was determined by the number of CD138+ cells adjacent to 
CD80+ BMSC cells/total number of CD138+ cells.

NF-B luciferase assay. BALB/c-Tg(IB-luc)-Xen (IB-luc) mice (gift 
from I. Gitlin and A.V. Gudkov, RPCI) were used in the NF-B luciferase  
assay. NF-B activity was assayed using Dual Luciferase Reporter Assay (Pro-
mega) per the manufacturer’s instructions. In brief, purified BM and splenic PC 
were cultured in 10% FCS media alone or with polyclonal hamster Ig or anti-
CD28 mAb beads for 1 h. Cells were lysed in 1× passive lysis buffer (PLB), and 
the PLB lysate was then resuspended in LARII buffer and firefly luciferase  
activity was measured by a luminometer (Monolight 3010; BD). Relative  
NF-B activity was determined as follows: (luciferase activity)/(cell number  
for each sample/volume of lysis buffer) × (µl of LARII added to sample).

Statistical analysis. A Student’s t test was performed for statistical analysis 
using two-tailed nonequal variances and 95% CI. For comparison of NIP-
specific ASC of WT:MT versus CD28/:MT in spleen and BM linear 
regression, analysis was performed for each mouse to give a single estimated 
slope value. Rate of decay was performed by ANOVA and the following 
equation was used to determine half-life: (elapsed time × log2)/[log(beginning 
amount/ending amount)].

Online supplemental material. BM and splenic PC were characterized 
by CD138 and CD19 expression by flow cytometry prior and after CD138 
purification. Supernatant from PC were analyzed for IgM and IgG produc-
tion by ELISA (Fig. S1). Splenic PC survival was assessed by co-culture 
studies with BMDCs (Fig. S2). Induction of Ig from CD28/ BM PC was 
assessed with the addition of recombinant IL-6 (Fig. S3). BM PC survival 
was assessed with the addition of recombinant IL-6 (Fig. S4). Serum from 
chimeras was analyzed for IgA and NIP-specific IgA or IgM and NIP-specific 
IgM by ELISA (Fig. S5). Online supplemental material is available at http://
www.jem.org/cgi/content/full/jem.20110040/DC1.
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