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Abstract The molecular mechanisms that control the timing of sexual differentiation in the brain

are poorly understood. We found that the timing of sexually dimorphic differentiation of

postmitotic, sex-shared neurons in the nervous system of the Caenorhabditis elegans male is

controlled by the temporally regulated miRNA let-7 and its target lin-41, a translational regulator.

lin-41 acts through lin-29a, an isoform of a conserved Zn finger transcription factor, expressed in a

subset of sex-shared neurons only in the male. Ectopic lin-29a is sufficient to impose male-specific

features at earlier stages of development and in the opposite sex. The temporal, sexual and spatial

specificity of lin-29a expression is controlled intersectionally through the lin-28/let-7/lin-41

heterochronic pathway, sex chromosome configuration and neuron-type-specific terminal selector

transcription factors. Two Doublesex-like transcription factors represent additional sex- and

neuron-type specific targets of LIN-41 and are regulated in a similar intersectional manner.

DOI: https://doi.org/10.7554/eLife.42078.001

Introduction
The nervous systems of males and females of many animal species display anatomical and functional

differences (Jazin and Cahill, 2010; McCarthy and Arnold, 2011; Portman, 2017; Yang and Shah,

2014). Sex-specific maturation events in the brain are typically triggered at a specific window of

postnatal life. Sexual maturation in mammals, called puberty, represents a key developmental transi-

tion and is accompanied by substantial sexually dimorphic changes in the brain (Avendaño et al.,

2017; Juraska and Willing, 2017; Sisk and Foster, 2004). The onset of puberty in mammals is char-

acterized by the activation of neurons in the hypothalamus that produce hormonal signals

(Avendaño et al., 2017). However, the mechanisms that control the activation of these neurons and

hence the timing of pubertal onset are poorly understood.

Like in other animals, most of the sex-specific features of the nervous system of the nematode

Caenorhabditis elegans are also established during postembryonic development (Barr et al., 2018;

Sulston et al., 1980; Sulston and Horvitz, 1977). Sexual dimorphisms in the C. elegans nervous sys-

tem fall into two broad types: (1) Some neurons are present only in one sex but not the opposite sex

(Sulston et al., 1980; Sulston et al., 1983). These sex-specific neurons are directly involved in dis-

tinct aspects of sex-specific mating and reproductive behavior (Emmons, 2018). (2) Some embryoni-

cally born, postmitotic neurons that are present in both sexes (‘sex-shared’ neurons) can adopt sex-

specific features during sexual maturation (Portman, 2017). Sexually dimorphic features of sex-

shared neurons include sex-specific synaptic wiring patterns (Jarrell et al., 2012) and sex-specific

expression of signaling molecules, such as neurotransmitters, neuropeptides and chemoreceptors
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(Hilbert and Kim, 2017; Pereira et al., 2015; Ryan et al., 2014; Serrano-Saiz et al., 2017a; Ser-

rano-Saiz et al., 2017b). For example, the AIM interneuron class is glutamatergic in juvenile, pre-

sexual maturation stages of both sexes, but during sexual maturation will turn off glutamatergic

identity and turn on cholinergic neurotransmitter identity specifically in males (Pereira et al., 2015).

In other cases, sexually dimorphic features emerge from a ‘mixed’ juvenile state. For example, juve-

nile phasmid sensory neurons innervate several distinct interneuron targets in both sexes before sex-

ual maturation, but during sexual maturation specific subsets of these connections get pruned in a

sex-specific manner (Oren-Suissa et al., 2016).

Most if not all of these sexually dimorphic features of the C. elegans nervous system terminally

differentiate during the fourth larval stage (Desai et al., 1988; Oren-Suissa et al., 2016;

Pereira et al., 2015; Serrano-Saiz et al., 2017a; Sulston and Horvitz, 1977). The molecular mecha-

nisms that control the timing of sexual maturation in postmitotic neurons have largely remained

obscure. Candidate regulators of sex-specific developmental timing events are so-called hetero-

chronic genes, first identified in C. elegans (Ambros and Horvitz, 1984). Heterochronies refer to off-

sets of the relative timing of somatic developmental events versus gonadal developmental events

(Slack and Ruvkun, 1997). In heterochronic mutants, the timing of cellular cleavage patterns in post-

embryonic skin cell lineages is disrupted in a highly stereotyped manner; in some mutants, lineage

patterning events normally occurring late will occur earlier (‘precocious mutants’) while in other

mutants specific cell lineage patterning events will be delayed or never occur (Ambros, 1989;

Ambros and Horvitz, 1984; Slack and Ruvkun, 1997). Molecular analysis of these heterochronic

mutants revealed a gene regulatory pathway, which contains several deeply conserved post-tran-

scriptional regulatory factors at its core, including the miRNA let-7, the LIN-28 protein, a negative

regulator of let-7 processing, and the RNA-binding, posttranscriptional regulator LIN-41, a key tar-

get of the let-7 miRNA (Figure 1A) (Ambros, 1989; Ecsedi et al., 2015; Moss et al., 1997;

Reinhart et al., 2000; Slack et al., 2000). While these regulatory factors are well known to control

cell division patterns in the ectoderm, their role in postmitotic cell types is much less well defined

(Del Rio-Albrechtsen et al., 2006; Hallam and Jin, 1998; Howell et al., 2015; Olsson-Carter and

Slack, 2010; Zou et al., 2013).

eLife digest In most adult animals, male and female brains are slightly different. For example, in

the nematode worm Caenorhabditis elegans, certain neurons exist in one sex but not the other.

Nerve cells that are shared in both sexes may also activate different genes, or form different

connections in males and females. Most of these differences – which ultimately give rise to sex-

specific behaviors – emerge during a period of development called sexual maturation. Yet, the

mechanisms that control when sexual differentiation takes place in the brain are largely unknown.

To investigate this, Pereira et al. set out to determine how sex differences arise in the nervous

system of C. elegans, a small animal with two sexes, male and hermaphrodite. In particular, Pereira

et al. wanted to know which genes cause certain neurons that are present in both sexes to switch to

the male-specific form when the worm gets old enough.

The experiments revealed that a genetic pathway formed of three genes, let-7, lin-28 and lin-41,

controls when sexual maturation takes place throughout the worm nervous system. When the worm

is young, lin-41 is active and represses a gene called lin-29A. As the animal reaches maturity, let-7

‘switches off’ lin-41, and lin-29A gets activated in a subset of neurons. These brain cells then turn on

male-specific genes and acquire a shape only found in males. The anatomy of male mutant worms

that lack lin-29A is normal, but the animals show features found in hermaphrodites, for example in

the way they crawl across a dish. This shows that activating lin-29A may also trigger male-specific

behaviors.

Switching on sex-specific neuronal circuits at the correct time is essential for animals to develop

correctly. The lin-7 and let-28 genes also control when sexual maturation takes place in mammals, so

studying these genes in C. elegans could help to understand how male and female brains are

shaped during development in other species, and why some diseases affect the sexes differently.

DOI: https://doi.org/10.7554/eLife.42078.002

Pereira et al. eLife 2019;8:e42078. DOI: https://doi.org/10.7554/eLife.42078 2 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.42078.002
https://doi.org/10.7554/eLife.42078


Figure 1. Heterochronic pathway effects on AIM and CEM neuronal differentiation during sexual maturation. (A) A simplified schematic of the

heterochronic pathway, deduced from the genetic analysis of hypodermal cell lineage division events. The LIN-28 RNA binding protein prevents the

maturation of miRNA let-7. When LIN-28 protein levels go down at the end of the second larval stage (L2), mature miRNA let-7 levels rise and bind to

the 3’UTR of let-7 targets. One let-7 target is the RNA-binding protein LIN-41, whose levels are downregulated at the onset of sexual maturation (L4).

Figure 1 continued on next page
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Within the nervous system, the impact of heterochronic genes on sex-specific differentiation

events during sexual maturation at the juvenile to adult transition has been poorly defined. Such a

role is not an obvious matter because heterochronic genes do not control timing in all tissues. For

example, heterochronic genes are not involved in controlling the timing of gonadal maturation

(Ambros and Horvitz, 1984; Euling and Ambros, 1996). We show here that the phylogenetically

conserved core heterochronic pathway genes lin-28, let-7 and lin-41 control the timing of maturation

of sexual dimorphisms in different neuron classes. We show that these broadly expressed timing

genes act through distinct cell-specific effector modules, among them a specific isoform of the lin-29

Zn finger transcription factor and the two DM domain (DMD) containing transcription factors mab-3

and dmd-3. These temporally regulated effector genes are expressed in a sexually dimorphic man-

ner in distinct sets of sex-shared neurons to control specific aspects of sexually dimorphic features

and functions. Remarkably, genome-wide association studies have linked one component of the het-

erochronic pathway to aberrant onset of puberty in humans (Faunes and Larraı́n, 2016). Our find-

ings therefore suggest the emergence of a phylogenetically conserved mechanism to control the

timing of sexual maturation.

Figure 1 continued

This allows for its negative regulator, the zinc-finger transcription factor lin-29, to be expressed at the L4 stage to induce the larval to adult transition.

Sequence homology alignment of the five Zn-finger domains shows that LIN-29 is an orthologue of human ZNF362 and ZNF384, while EGRH-1 is an

orthologue of human EGR. The Zn fingers of worm, fly and human are shown. Zn coordinating Cys and His residues are colored in blue and DNA-

contacting residues (at position �1,+2,+3 and+6 of the helixes preceding the His residues) are colored in red. Conservation is indicated in grey

shading. (B) AIM neuronal differentiation is precocious in lin-28(n719lf) and lin-41(bch28lf). unc-17/VACHT (ot907) and cho-1/CHT (otIs534) cholinergic

reporter expression (cytoplasmic for unc-17 and nuclear for cho-1) is not observed in AIM in control animals at the L3 stage (dotted circles, top panels).

lin-28(n719lf) and lin-41(bch28lf) mutant males show precocious cholinergic gene expression in AIM at the L3 stage (top panels). eat-4/VGLUT (otIs388)

glutamatergic reporter expression is observed in AIM in control animals at the L3 stage (circled in white, bottom panels). lin-28(n719lf) and lin-41

(bch28lf) mutant males show precocious loss of AIM glutamatergic identity (dotted circles, bottom panels). The AIY cholinergic neuron is located next

to AIM and is used as a positional reference. Solid circles indicate expression of the reporter, stippled circle indicates loss of expression. (C) Male-

specific AIM differentiation is blocked in let-7(n2853ts), lin-41(xe8gf) and lin-29a/b(n333lf) mutants. unc-17/VACHT (ot907) and cho-1/CHT (otIs354)

cholinergic reporter expression (cytoplasmic for unc-17 and nuclear for cho-1) is observed in young adult (YA) control males but not in AIM neurons in

hermaphrodites nor let-7(n2853ts), lin-41(xe8gf) and lin-29a/b(n333lf) mutant males (dotted circles, top panels). eat-4/VGLUT (otIs388) glutamatergic

reporter expression is observed in hermaphrodites and in let-7(n2853ts), lin-41(xe8gf) and lin-29a/b(n333lf) mutant males, where it fails to be

downregulated (circled in white, bottom panels). L1 let-7(n2853ts) animals were shifted to the restrictive temperature (25˚C) and imaged after 48hs. The

incomplete penetrance of the let-7 mutants is likely because the allele used, n2853, a point mutation in the miRNA seed region, is hypomorphic. The

AIY cholinergic neuron is located next to AIM and is used as a positional reference. (D) Quantification for the AIM neurotransmitter switch in

heterochronic mutants lin-28(n719lf), lin-41(bch28lf), let-7(n2853ts), lin-41(xe8gf), lin-29a/b(n333lf) and mab-10(xe44) (n = 15). Expression of unc-17/

VACHT (ot907) and eat-4/VGLUT (otIs388) was quantified as ON or OFF. (E) CEM neuronal differentiation defects in heterochronic mutants. CEM

cholinergic gene expression is precocious in lin-28(n719lf) and lin-41(bch28lf) males compared to control. unc-17/VACHT (ot907) and cho-1/CHT

(otIs354) cholinergic reporter expression is not observed in CEM neurons in wild-type males at the L3 stage (dotted circle). lin-28(n719lf) and lin-41

(bch28lf) males show precocious cholinergic gene expression in CEM neurons at the L3 stage (circled in white, top panels). CEM cholinergic gene

expression is lost in let-7(n2853ts) and lin-41(xe8gf) mutants (dotted circles). lin-29a/b(n333lf) mutants showed no defect in cholinergic gene expression

in CEM neurons (circled in white). L1 let-7(n2853ts) animals were shifted to the restrictive temperature (25˚C) and imaged after 48hs. The incomplete

penetrance of the let-7 mutants is likely because the allele used, n2853, a point mutation in the miRNA seed region, is hypomorphic. (F) Quantification

for CEM cholinergic gene expression in heterochronic mutants lin-28(n719lf), lin-41(bch28lf), let-7(n2853ts), lin-41(xe8gf), lin-29a/b(n333lf) and mab-10

(xe44) (n = 15). Expression of unc-17/VACHT (ot907) was quantified as ON or OFF.

DOI: https://doi.org/10.7554/eLife.42078.003

The following figure supplements are available for figure 1:

Figure supplement 1. Expression pattern for the endogenously tagged unc-17/VACHT allele during development.

DOI: https://doi.org/10.7554/eLife.42078.004

Figure supplement 2. AIM and CEM neuronal differentiation does not require the gonad nor the germline.

DOI: https://doi.org/10.7554/eLife.42078.005
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Results

Effects of the heterochronic lin-28/let-7/lin-41 pathway on neuron-
specific sexual maturation
As an entry point to identify the molecular mechanisms required for the correct timing of nervous

system sexual maturation, we used the previously described neurotransmitter switch of the AIM

interneurons (Figure 1B–D), a sex-shared neuron class that is required for mate searching behavior

(Barrios et al., 2012; Pereira et al., 2015). A fosmid-based reporter of the eat-4/VGLUT vesicular

glutamate transporter is expressed during juvenile stages in the AIM interneuron of both sexes. At

the onset of sexual maturation, during the fourth larval stage, AIM neurons of the male turn off the

glutamatergic gene reporter and turn on expression of fosmid-based reporters for the cholinergic

genes unc-17/VACHT and cho-1/CHT (Pereira et al., 2015). The acquisition of AIM cholinergic iden-

tity during sexual maturation only in males was confirmed by analyzing the expression of the cholin-

ergic unc-17/VACHT locus, tagged with mKate2 using CRISPR/Cas9 genome engineering

(Figure 1—figure supplement 1).

Sexual maturation in many animal species is controlled by gonadal hormones (Avendaño et al.,

2017). In C. elegans, the gonad has been shown to be required for the establishment of sex-specific

adult behaviors (Arantes-Oliveira et al., 2002; Fujiwara et al., 2016; Kleemann et al., 2008;

Lipton et al., 2004). Therefore, we first examined whether signals from the germline or gonad may

affect the AIM neurotransmitter switch. We found that neither genetic removal of the germ cells nor

laser ablation of gonadal precursor cells (which results in the loss of both gonad and germline)

affects the execution of the AIM neurotransmitter switch (Figure 1—figure supplement 2).

Temporal control of cell lineage decisions during early larval stages in C. elegans has been shown

to depend on the activity of the evolutionary conserved heterochronic pathway (Ambros and Hor-

vitz, 1984; Moss and Romer-Seibert, 2014; Slack and Ruvkun, 1997). To test if members of the

heterochronic pathway were required for the correct timing of nervous system differentiation during

sexual maturation, we examined the impact of heterochronic mutants on the male-specific AIM neu-

rotransmitter switch. We observed no defects in the timing of cholinergic gene battery induction in

L4 in lin-4 null mutant animals which controls the timing of L2-specific aspects of cellular patterning

(Ambros and Horvitz, 1984) (data not shown). However, we observed a premature onset of both

unc-17/VACHT and cho-1/CHT expressions in AIM neurons of lin-28 mutant males (Figure 1B,D),

mirroring the precocious cellular cleavage defects of lin-28 in epidermal tissues (Ambros and Hor-

vitz, 1984). Matching the precocious induction of cholinergic identity, lin-28 mutant males also

showed a precocious downregulation of the glutamatergic marker eat-4/VGLUT in the AIM inter-

neurons (Figure 1B,D).

We also found that in males carrying a loss-of-function mutation in the miRNA let-7, whose proc-

essing is negatively controlled by lin-28 (Lehrbach et al., 2009), the neurotransmitter switch of the

AIM interneurons is eliminated, that is, male AIM neurons remain glutamatergic (Figure 1C–D). Since

let-7 is a repressor of gene expression, the loss of the neurotransmitter switch suggests that let-7

may normally act to repress a factor that prevents the neurotransmitter switch. We found that lin-41,

the first of many let-7 targets to be identified (Slack et al., 2000) encodes this repressor factor. In

lin-41 loss-of-function mutants (bch28), the neurotransmitter switch was prematurely executed, while

in lin-41 gain-of-function mutants (xe8), in which let-7 is unable to downregulate lin-41 activity due

to a deletion of the let-7-binding sites in the lin-41 3’UTR (Ecsedi et al., 2015), the neurotransmitter

switch of AIM was abrogated and AIM neurons remained glutamatergic (Figure 1B,D).

The heterochronic pathway genes also controlled the onset of differentiation of the male-specific

CEM sensory neurons. Even though these neurons are already born in the embryo (and removed by

apoptosis in hermaphrodites [Sulston et al., 1983]), the CEM neurons only fully differentiate at the

fourth larval stage (Pereira et al., 2015). By analyzing the expression of cholinergic reporters, we

found that this L4-specific maturation event is also precisely timed by the heterochronic pathway

genes. In lin-28 mutants, CEM neurons prematurely expressed cholinergic genes while in let-7

mutants CEM neurons’ terminal differentiation was blocked (Figure 1E,F). As we had seen for the

AIM neurotransmitter switch, lin-41 mutants showed precocious cholinergic gene expression in CEM

neurons and lin-41 gain-of-function mutants (in which lin-41 expression fails to be downregulated)

also fail to show CEM cholinergic gene expression during sexual maturation suggesting that let-7

miRNA acts through regulating lin-41 for the correct timing of this process (Figure 1E,F). However,
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as in the case of the AIM neurotransmitter switch, lin-4 mutants show no defect in the timing of CEM

differentiation (data not shown). In conclusion, mutant analysis of the heterochronic pathway genes

showed that the lin-28/let-7/lin-41 regulatory pathway is required for the correct timing and for the

acquisition of male-specific features of two distinct neuron classes; however, this regulatory cassette

may couple to upstream regulatory inputs other than lin-4.

The lin-29 Zn finger transcription factor is the relevant target of lin-41
in controlling the AIM neurotransmitter switch
lin-41 encodes a versatile regulatory protein with RING and NHL domains, involved in both post-

transcriptional RNA regulation (including translation) and protein ubiquitination (Ecsedi and

Großhans, 2013). To ask which of the many previously described effectors of LIN-41

(Aeschimann et al., 2017; Ecsedi and Großhans, 2013) are relevant in the context of the AIM neu-

rotransmitter switch, we turned to the lin-29 Zn finger transcription factor, whose expression is trans-

lationally inhibited by lin-41 in the context of timing of skin cell proliferation (Aeschimann et al.,

2017; Ambros and Horvitz, 1984; Rougvie and Ambros, 1995; Slack et al., 2000)(Figure 1A).

Orthology analysis with several tools (Kim et al., 2018; Wang et al., 2017) as well as a detailed anal-

ysis of predicted DNA binding features suggests that LIN-29 is an ortholog of the uncharacterized

vertebrate ZNF362 and ZNF384 proteins (Figure 1A). During the larva-to-adult transition, let-7 inhi-

bition of lin-41 derepresses lin-29 expression and induces adult gene expression programs in the

epidermis. Consistent with lin-29 being a functional effector of lin-41 in the AIM interneurons, we

find that the AIM neurotransmitter switch is entirely lost in lin-29 null mutants (Figure 1C,D). In con-

trast, we found that the onset of differentiation of the male-specific CEM neurons in the L4 stage, as

measured by the induction of cholinergic identity, is unaffected in lin-29 null mutants (Figure 1E,F).

These findings indicate that lin-41 controls distinct effector genes in different neuron types.

The transcriptional co-factor mab-10/NAB has been shown to act with lin-29 to control epidermal

cell differentiation during the larval to adult transition (Harris and Horvitz, 2011). Moreover, bio-

chemical studies revealed that the mab-10 transcript, like lin-29, is a direct target of the LIN-41 pro-

tein (Aeschimann et al., 2017). We confirmed this notion by CRISPR/Cas9-mediated tagging of the

mab-10 locus with mCherry, finding that ubiquitous mab-10 expression initiates at the L4 stage

(Figure 2A). However, analyzing the effects of a newly generated mab-10 null allele, we found that

in the absence of mab-10, the AIM neurotransmitter switch and CEM cholinergic gene expression

occurred normally (Figure 1D,F). Hence, while mab-10 functions with lin-29 in seam cell differentia-

tion, it is not required for lin-29 function in AIM interneurons in males.

Transition from ubiquitous temporal regulators (lin-28/let-7/lin-41) to a
sex- and neuron-type specific regulator (lin-29)
To address in which cells the heterochronic pathway acts to control the AIM neurotransmitter switch,

we first examined the expression pattern of lin-28, let-7, lin-41 and lin-29 in the nervous system.

While expression of these genes in other cells, specifically, the epidermis, has previously been exam-

ined in detail (Moss et al., 1997; Rougvie, 2001; Slack et al., 2000), much less is known about their

neuronal expression. We analyzed heterochronic gene expression relative to either a panneuronally

expressed RFP marker or a cholinergic RFP marker (cholinergic labeling of the AIM neuron allowed

us to correlate the timing of heterochronic gene expression relative to the AIM neurotransmitter

switch). Consistent with previous reporter gene analysis (Moss et al., 1997), we found that a fosmid-

based reporter construct of the lin-28 gene is expressed very broadly in the nervous system in a sex-

ually non-dimorphic manner and downregulated by the end of the L2 stage (Figure 2B).

To analyze lin-41 expression, we used an endogenously gfp tagged lin-41 allele (Spike et al.,

2014). This lin-41 reporter allele showed broad expression in the nervous system from the L1 until

the L4 stage in both sexes, when it becomes downregulated (Figure 2C). Previous work showed that

lin-41 downregulation in hypodermal tissue depends on let-7 (Ecsedi et al., 2015; Slack et al.,

2000) and to corroborate this notion in the context of the nervous system, we analyzed let-7 activity

using an ‘activity sensor’ construct in which the lin-41 promoter is fused to gfp and to the let-7

responsive 3’UTR of the lin-41 locus. This reporter shows ubiquitous expression, including in the ner-

vous system, from the L1 stage to L4, when GFP levels start to drop and disappear from most tis-

sues, including neurons, by the adult stage (Figure 2D). A control construct carrying the unc-54 3’

Pereira et al. eLife 2019;8:e42078. DOI: https://doi.org/10.7554/eLife.42078 6 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.42078


Figure 2. Temporal expression pattern of heterochronic pathway genes in the nervous system. (A) mab-10::mCherry expression pattern during larval

development in both sexes. An endogenously tagged mab-10 allele (xe75) showed ubiquitous expression starting in the L4 stage, including in the

nervous system. Reporter expression was maintained in the adult. No sexually dimorphic differences were observed for mab-10 expression. A cartoon

for the mab-10 locus is shown below the images. (B) lin-28::gfp expression pattern during early larval development. A lin-28::gfp fosmid-based reporter

(wgIs535) showed ubiquitous expression at the L2 stage, including in the nervous system. Reporter expression was broadly downregulated at the L3

and L4 stages. The fosmid-based cho-1/CHT reporter (otIs544) was used to label cholinergic neurons. No sexually dimorphic differences were observed

for lin-28 expression. (C) lin-41 expression pattern during larval development in both sexes. An endogenously tagged lin-41 allele (tn1541) showed

ubiquitous expression at the L3 stage, including in the nervous system. Reporter expression is broadly downregulated at the L4 stage. Expression of lin-

41::gfp was maintained in two neuronal pairs in the head (black arrows). No sexually dimorphic differences were observed for lin-41 expression. A

Figure 2 continued on next page
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UTR is not downregulated at the L4 and young adult stages (Figure 2D). We conclude that let-7

activity is, as expected, temporally controlled in the nervous system. We did not observe any sexual

dimorphisms of lin-41 or let-7 sensor expression in the nervous system.

To determine the expression pattern of the lin-41 effector lin-29 in the nervous system, we used

strains in which the lin-29 locus was tagged with gfp, using CRISPR/Cas9-mediated genome engi-

neering. lin-29 produces two distinct transcripts, lin-29a and lin-29b that differ at their 5’end; both

contain five DNA-binding Zn finger domains (Rougvie and Ambros, 1995) (Figure 3A). We used a

strain in which both isoforms were simultaneously tagged by introducing gfp at the 3’ end of the

locus (Aeschimann et al., 2017) (Figure 3A). In addition, we examined the expression pattern exclu-

sively of the b-isoform, by introducing the same 3’ terminal gfp tag in the a-isoform-specific mutant

allele (xe40) via CRISPR/Cas9-mediate genome engineering (Figure 3A). To examine the expression

pattern of the a-isoform, we inserted gfp at the 5’ end of the a-isoform (Figure 3A). Generally, the

expression pattern of the gfp allele that tags both isoforms matches the expression pattern reported

using an antibody directed against both LIN-29 isoforms (Figure 3B) (Bettinger et al., 1996;

Euling et al., 1999). As previously reported, we observed expression in head neurons and the ven-

tral nerve cord. However, we found that this neuronal expression is almost completely restricted to

the male and this male-specific expression can be entirely ascribed to the a-isoform (Figure 3B–D).

The male-specific neuronal expression of lin-29a is not observed in male-specific neurons but is,

interestingly, entirely restricted to sex-shared neurons (i.e. neurons that are generated in both

sexes). Intriguingly, most of these neurons had not been previously reported to show sexually dimor-

phic gene expression patterns or functions. Specifically, 21 out of 116 sex-shared neuron classes

express lin-29a, including seven sensory neuron classes in the head and tail (AWA, ASG, ASJ, ASK,

ADF, PHB, PLM), seven interneuron classes (AVA, RIA, AIM, AVG, RIF, PVC, PVN), a few head and

tail motor neurons (SAB, PDA, PDB) and most of the sex-shared ventral nerve cord motor neurons

(dorsal and ventral A, B and D-type and AS neurons). Many of these LIN-29A expressing neurons are

synaptically connected to one another (White et al., 1986) and some of the synaptic connections

are known to be sexually dimorphic (Jarrell et al., 2012).

Expression of lin-29a in all these neurons in the male nervous system is precisely temporally con-

trolled; it is first observed in the early L4 stage and persists throughout adulthood (Figure 3D). In

addition to the male-specific neuronal expression of the lin-29a isoform, we also found that the lin-

29b isoform is expressed in three postembryonically generated touch neurons (AVM, PVM, PDE),

where its expression is not temporally regulated, that is, its expression is induced right after the neu-

rons are born in the first two larval stages and expression is observed in both sexes (data not

shown).

The late larval onset of expression of lin-29 in non-neuronal cells has been reported to be con-

trolled by the heterochronic pathway (Bettinger et al., 1996; Moss et al., 1997). To assess whether

onset of male-specific, neuronal expression of the lin-29a isoform is controlled by lin-41 and let-7,

we analyzed lin-29a neuronal expression in these mutant backgrounds. Indeed, we found that in lin-

41(lf) mutants lin-29a::gfp expression is observed prematurely including in the sex-shared neurons of

the male (Figure 4A). As expected, in let-7(lf) and lin-41(gf) mutants (both of which maintain expres-

sion of LIN-41), lin-29a::gfp expression levels are significantly reduced compared to wild-type adult

males (Figure 4B). This decrease in lin-29a expression is consistent with the similarity of loss-of-func-

tion phenotypes of let-7 and lin-29 null mutants and lin-41 gain-of-function mutants in which the AIM

neurotransmitter switch does not occur (Figure 1). Together with our previous biochemical analysis

Figure 2 continued

cartoon for the lin-41 locus is shown below the images. (D) let-7 activity sensor and control sensor expression during larval development in both sexes.

A lin-41 promoter fusion driving gfp and fused to the lin-41 3’UTR (xeSi182), which is directly targeted by let-7 miRNA, showed ubiquitous expression of

gfp in the nervous system from the L1 to the L3 stage. At the L4 stage, reporter expression is broadly downregulated and only a few cells are labeled

by GFP in the adult head, recapitulating the lin-41::gfp expression. The same lin-41 promoter fusion driving gfp and fused to the unc-54 3’ UTR

(xeSi202) failed to be normally downregulated at the L4 stage showing that lin-41 downregulation requires its 3’UTR being bound by miRNA let-7.

Cholinergic neurons were labeled by a cho-1/CHT fosmid reporter (otIs544) driving mCherry allowing us to correlate the lin-41 downregulation with AIM

neurotransmitter switch in males at the L4 stage. No sexually dimorphic differences in gfp expression were observed for the let-7 sensor and its control.

Cartoons for each construct are shown above the images.
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Figure 3. Temporal expression pattern of lin-29 in the nervous system of both sexes. (A) Cartoon showing the lin-29 locus. Alternative promoter usage

generates two LIN-29 protein isoforms. Exons 1 – 4 are LIN-29A specific while exons 5 – 11, that include the Zn-finger DNA binding domain, are shared

by both -A and -B isoforms. The lin-29 locus was tagged using CRISPR/Cas9 genome engineering. gfp was inserted either at the C-terminal end (lin-

29a/b::gfp; xe61 allele) to tag both LIN-29A and B protein isoforms or at the N-terminal end (gfp::lin-29a; xe63 allele) to tag only the LIN-29A isoform.

Figure 3 continued on next page
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(Aeschimann et al., 2017), we conclude that let-7-controlled LIN-41 directly represses lin-29a trans-

lation to control the precise timing of LIN-29A protein accumulation in the nervous system.

The lin-29a isoform is required cell-autonomously and is sufficient to
define the male-specific neurotransmitter switch in the AIM interneuron
To assess the functional relevance of the lin-29a isoform in controlling the AIM neurotransmitter

switch, we generated two lin-29a-isoform specific alleles (xe38 and xe40) using CRISPR/Cas9

genome engineering (Figure 3A) (Aeschimann et al., 2018). We indeed find that in both isoform-

specific alleles the male-specific AIM neurotransmitter switch failed to occur (Figure 5A). A newly

generated lin-29 null allele that removes both isoforms (Aeschimann et al., 2017) also confirmed

the results previously reported with the canonical null alleles tested (Figure 5A).

To assess whether lin-29a acts cell-autonomously in AIM to control its neurotransmitter switch, we

expressed lin-29a under an AIM-specific promoter (Serrano-Saiz et al., 2017a). This driver is not

only active in both sexes, but it is already active in embryos and early larval stages, hence allowing

us to assess three key issues: (1) whether LIN-29A acts cell-autonomously, (2) whether LIN-29A can

induce the neurotransmitter switch prematurely in males and (3) whether LIN-29A can ectopically

induce the AIM neurotransmitter switch in hermaphrodites. We generated two independent trans-

genic lines that cell type-specifically express lin-29a in a lin-29a (xe38 and xe40) mutant background.

We found that in adult male animals, the loss of the AIM neurotransmitter switch (as assayed by cho-

1 and unc-17 induction and eat-4 downregulation in AIM) is rescued by the transgene, thereby dem-

onstrating cell autonomy of LIN-29A function (Figure 5B).

Examining juvenile males, before the onset of overt sexual maturation, we observed that the neu-

rotransmitter switch is executed prematurely already by the first larval stage in these transgenic ani-

mals ectopically expressing LIN-29A in AIM neurons (Figure 5B). This sufficiency experiment

indicates that the temporal control of lin-29a expression, and specifically the repression of lin-29a by

the heterochronic pathway is required to prevent lin-29a from triggering the neurotransmitter switch

precociously. Lastly, examining adult hermaphrodite animals expressing this construct, we found

that lin-29a is sufficient to induce the neurotransmitter switch in the opposite sex (Figure 5B). We

conclude that lin-29a is required and sufficient to control the AIM neurotransmitter switch.

To assess whether lin-29a function in AIM goes beyond controlling AIM’s neurotransmitter switch,

we examined another molecular marker of sexually dimorphic AIM differentiation, the orphan GPCR,

srj-54, which is induced in the AIM neurons upon male sexual differentiation (Portman, 2007). We

Figure 3 continued

Canonical alleles n333 and n546 as well as the newly generated alleles xe37 (null), xe38 (A-specific) and xe40 (A-specific) are indicated. (B) lin-29a/b

expression pattern during larval development in both sexes. Confocal images for endogenously tagged lin-29a/b::gfp (xe61) show that GFP is

expressed in the pharynx at the L3 stage and onwards in both sexes (examination of young animals showed that pharyngeal expression starts at the L1

stage). Hypodermal GFP expression all along the body started at the end of the L3 stage in both sexes. At the L4 stage, we also detected GFP

expression in neurons only in the male, many of which were also labeled by a cholinergic marker, a cho-1/CHT mCherry expressing fosmid (marked by

arrows). Expression in these male neurons persisted in the adult stage. No neuronal expression was observed in the head nor tail in hermaphrodite

animals. Scale bar: 10 mm. (C) lin-29b expression pattern at the young adult stage in both sexes. Confocal images for gfp tagged lin-29b(xe40) (this

allele is given a new name, xe65, since it contains the xe40 lesion plus the gfp insertion) show that GFP is expressed in head glia in both sexes (marked

by yellow arrowheads). GFP is also observed in the pharynx and in tail cells in both sexes. Cholinergic cho-1/CHT mCherry expressing fosmid (otIs544)

did not co-localize with GFP showing that LIN-29B is not expressed in neurons in the head nor tail in either sex (Note that LIN-29B is expressed in

midbody neurons in both sexes not shown in this image). Scale bar: 10 mm. (D) gfp::lin-29a expression pattern during larval development in both sexes.

Confocal images for endogenously tagged gfp::lin-29a (xe63) show that GFP is expressed in male-specific non-neuronal tail cells at the end of the L3

stage and onwards. No expression was observed in the head or tail of the hermaphrodite at this stage. No overlap between GFP and the cholinergic

fosmid based reporter cho-1/CHT (otIs544) was observed at this stage. At the young adult stage, we observed GFP expression in neurons only in males

(expression in male neurons started at the L4 stage), indicated by white arrows. No neuronal expression was observed in hermaphrodite neurons. Many

GFP positive neurons in the male were also labeled by the cho-1/CHT mCherry expressing fosmid (otIs544). Cholinergic neurons expressing lin-29a

included AIM, ASJ, AVA, ASK, AWA, ASG, RIA and ADF in the head, ventral nerve cord (VNC) motor neurons of the A, B, D and AS classes and the

PVC interneuron in the tail. Neuronal GFP expression is indicated by arrows and neuronal identity is indicated for head and tail neurons in the GFP

panels. GFP expression was observed throughout the hypodermis in both sexes, indicated with blue circles in the GFP panels. Hypodermis nuclei are

larger. Cholinergic retrovesicular ganglion (RVG), ventral nerve cord (VNC) and pre-anal ganglion (PAG) neurons expressing lin-29a are shown in the

head, midbody and tail respectively. Male-specific tail cells expressing lin-29a are marked with black arrows. Scale bar: 10 mm.
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found that srj-54 fails to be expressed in lin-29a mutants (Figure 6A) adding another AIM male-spe-

cific molecular feature that fails to be normally induced in the absence of lin-29. As we will describe

further below, lin-29a mutants are also defective in an AIM-mediated sexual behavioral paradigm.

lin-29a controls sexually dimorphic molecular features of other sex-
shared neurons
The expression of lin-29a in a number of distinct neuron types indicated that lin-29a may play addi-

tional roles in controlling sexually dimorphic, that is, male-specific nervous system features. To this

end, we assessed two other molecular markers that were previously found to be expressed in a sexu-

ally dimorphic manner in two distinct, sex-shared neuron classes, both of which express lin-29a. First,

the dmd-5 transcription factor was reported to be expressed in AVG neurons in adult males but not

in hermaphrodites (Oren-Suissa et al., 2016). By analyzing the expression of a dmd-5 reporter in

wild type versus lin-29a mutants, we found that lin-29a is required for dmd-5 expression in AVG in

males (Figure 6B). Second, the daf-7 gene, encoding a neuroendocrine TGFb-like signal, is turned

on during sexual maturation in the sex-shared ASJ neurons only in males (Hilbert and Kim, 2017).

This induction is also abrogated in lin-29a mutants (Figure 6B). Non-sexually dimorphic expression

of dmd-5 and daf-7 in other neuron types was not affected by lin-29a.

The electron micrographical reconstruction of the nervous system of C. elegans male revealed

sexually dimorphic neuronal morphology and connectivity of several sex-shared neurons

(Jarrell et al., 2012; White et al., 1986). Specifically, the lin-29a-expressing PDB motorneuron

located in the pre-anal ganglion grows elaborate branches off from its cell body and initial segment

of its posteriorly directed main process. This was only observed in the male but not in the hermaph-

rodite (Jarrell et al., 2012; White et al., 1986). These male-specific branches make extensive

Figure 4. lin-29a neuronal expression is temporally regulated by lin-41 and let-7. (A) gfp::lin-29a expression in the lin-29a(xe63) strain is precocious in

the absence of lin-41. Expression was examined in synchronized L3 animals and compared between lin-41(n2914)/balancer control versus lin-41(n2914)

loss-of-function males. Neuronal nuclei are more compact than the larger hypodermal nuclei. (B) gfp::lin-29a expression in the lin-29a(xe63) strain is

downregulated in let-7(lf) and lin-41(gf) mutants. Expression was examined at the young adult stage in let-7(n2853ts) loss-of-function mutants and lin-41

(xe8) gain-of-function mutants, compared to control males. While control males showed expression of gfp::lin-29a in the hypodermis and nervous

system (more compact nuclei), both mutants showed a severe downregulation of gfp::lin-29a expression in the hypodermis and neurons at the young

adult stage. L1 let-7(n2853ts) animals were shifted to the restricted temperature (25˚C) and imaged as adults, after 48hs.
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chemical and electrical synaptic contacts with both male-specific neurons, as well as sex-shared neu-

rons (Jarrell et al., 2012). We corroborated the existence and reproducibility of male-specific

branches by visualizing PDB with a reporter transgene (Figure 6C). We found that these branches

grow specifically during sexual maturation in the L4 stage (Figure 6C), co-incident with the onset of

lin-29a expression. Growth of these branches is disrupted in lin-29a mutants (Figure 6C). These find-

ings demonstrate a role for lin-29a in regulating the temporal and sexually dimorphic acquisition of

male-specific neuronal morphologies and predict that PDB fails to make its branch-specific synaptic

contacts in the absence of lin-29a. We conclude that lin-29a affects multiple distinct types of sexual

maturation events, from gene expression to anatomy, in distinct neuron classes.

Figure 5. Cell-autonomy and sufficiency of lin-29a for the AIM neurotransmitter switch. (A) The neurotransmitter switch is blocked in three newly

generated lin-29 mutants. In adult control animals, the fosmid-based cholinergic reporters unc-17/VACHT (otIs576) and cho-1/CHT (otIs544) are

expressed in AIM neurons of adult males but not hermaphrodites while the eat-4/VGLUT (otIs518) glutamatergic reporter is expressed in AIM neurons

of adult hermaphrodites but not males. The AIM neurotransmitter switch is blocked in a newly generated lin-29a/b(xe37) null allele and in two lin-29a-

specific mutants (xe38 and xe40). In these lin-29 mutant males, AIM fails to turn on cholinergic markers unc-17/VACHT (top panels) and cho-1/CHT

(bottom panels) and expresses a pan neuronal maker rab-3::rfp (top panels) and the glutamatergic marker eat-4/VGLUT (bottom panels). A pan-

neuronal rab-3::rfp (otIs355) reporter was used to label all neurons in the top panels. (B) AIM-specific LIN-29A expression is sufficient to cell-

autonomously rescue the neurotransmitter switch in males and induce it in young larvae and the opposite sex. LIN-29A expression was driven under an

AIM-specific promoter in lin-29a mutant animals: LIN-29A was expressed in lin-29a(xe38) (otEx7316 and otEx7317) and in lin-29a(xe40) (otEx7318 and

otEx7319). Expression of cholinergic gene reporter unc-17/VACHT (otIs576) was examined to assay rescue and ectopic induction of the AIM

neurotransmitter switch (n = 15).
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Figure 6. Male-specific molecular differentiation programs are lost in lin-29a mutants. (A) Male-specific expression of srj-54 in AIM requires lin-29a.

Expression of the GPCR srj-54 (fsIs5) promoter fusion is observed in adult males but not hermaphrodites in the AIM interneurons. Expression of srj-54

was lost in all the lin-29a(xe38) mutant males. Quantification is shown on the right (n = 15). Scale bar: 10 mm. (B) Male-specific expression of dmd-5 in

AVG requires lin-29a. Expression of the DM-containing transcription factor promoter fusion dmd-5 (pUL#JS9B3) is observed in adult males but not

Figure 6 continued on next page

Pereira et al. eLife 2019;8:e42078. DOI: https://doi.org/10.7554/eLife.42078 13 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.42078


lin-29a mutant males display defects in mating behavior
We next sought to broaden our understanding of lin-29a function in the nervous system by testing if

lin-29a was required for the establishment of adult-specific sexually dimorphic behaviors. Critical for

such an analysis is the fact that lin-29a mutant males do not display the obvious morphological and

patterning defects displayed by the lin-29 null allele. Specifically, the male tail, whose overall mor-

phogenesis is disrupted in lin-29 null mutants (Euling et al., 1999) appears morphologically normal

in lin-29a mutants (Figure 7A). We precisely quantified other morphological differences between

hermaphrodites and males using an automated visualization/measurement tool (Yemini et al., 2013)

and found no overt morphological differences between wild-type and lin-29a mutant males

(Figure 7B). The normal overall appearance of lin-29a mutant males allowed us to first ask whether

lin-29a mutant males displayed mating-related behavioral defects. One aspect of mate attraction

relates to the mating process itself, in which the male detects various sensory cues from the her-

maphrodites to engage in direct contact (Liu and Sternberg, 1995). Previous work with the lin-29

null mutant revealed multiple defects in these direct interactions and these defects were ascribed to

spicule patterning defects (Euling et al., 1999). In spite of spicule patterning appearing normal in

lin-29a isoform-specific mutants, we observed that these mutants were unable to mate (Figure 7C).

We found that one aspect of mating behavior defective in these mutants is vulva location behavior

(Figure 7C).

The AIM and ASJ neurons, both of which express lin-29a specifically in males, were previously

implicated in mate-searching, which constitutes another aspect of mating behavior (Barrios et al.,

2012; Hilbert and Kim, 2017). In this behavioral paradigm, well-fed single adult males leave a

source of food to explore their environment in search for mating partners. We indeed found that lin-

29a mutants are defective in mate searching behavior (Figure 7D). These defects are similar to the

defects caused by loss of daf-7/TGFb (Hilbert and Kim, 2017) and, consistent with this phenotypic

similarity, we had described above that daf-7/TGFb expression is lost in the ASJ neurons of lin-29a

mutants. Nevertheless, we could partially rescue the mate searching defects of the lin-29a mutant

males by restoring LIN-29A expression exclusively in the AIM neurons (Figure 7D), indicating that

lin-29a may function in several distinct neurons to control mate searching behavior.

Feminization of locomotor patterns of lin-29a mutant males
The male-specific expression of lin-29a in ventral nerve cord and head motor neurons and in a com-

mand interneuron pair made us consider whether lin-29a may be involved in controlling aspects of

sexually dimorphic locomotor behavior. It has previously been shown that adult male and hermaph-

rodites display distinct locomotor behavior when crawling on a lawn of bacteria (Mowrey et al.,

2014). We extended the analysis of sexually dimorphic adult-specific behavior using an automated

worm tracker system which quantifies several hundred distinct postural and locomotory features of

an animal (Yemini et al., 2013). We found a large number of sexually dimorphic features. While

many of them were not affected in lin-29a mutant animals (Figure 8 and Supplementary file 1), we

found that lin-29a mutants displayed a striking feminization of a number of body posture and loco-

motory features. Postural differences included head bend, neck bend, midbody bend, hips bend,

amplitude ratio and primary wavelength. (Figure 8). Other lin-29a-dependent locomotory features

included midbody crawling amplitude and tail crawling amplitude (Figure 8). The lack of morpholog-

ical differences between wild-type and lin-29a mutant males indicates that these locomotory

Figure 6 continued

hermaphrodites in the AVG interneuron. In the absence of lin-29a, expression is lost from AVG in 80% of the male worms (top panels); quantification is

shown on the right (n = 15). The expression of the daf-7/TGFb-like molecule promoter fusion is observed in adult males but not hermaphrodites and

this expression is lost in the lin-29a(xe38) mutant males (bottom panels). Quantification is shown on the right (n = 15). Scale bar: 10 mm. (C) lin-29a is

required for normal PDB branching. A cis-regulatory element from the kal-1 locus is expressed in a number of neurons in the tail region in both sexes,

including the PDB –inter and motorneuron (Wenick and Hobert, 2004). kal-1::gfp reporter expression showed that the PDB neuron process exhibits

elaborate branching in the male after sexual maturation but not at earlier larval stages. In the absence of lin-29a, PDB branching is lost from adult males

(bottom panels). Quantification of total neurite length is shown on the right (n = 10). PDB neurites establish extensive electrical and chemical synapses

with sex-shared and male-specific neurons exclusively in adult males (schematized based on data from (Jarrell et al., 2012); synaptic partners of PDB

present in both sexes are in blue and in black if sex-specific) . Scale bar: 5 mm.

DOI: https://doi.org/10.7554/eLife.42078.010

Pereira et al. eLife 2019;8:e42078. DOI: https://doi.org/10.7554/eLife.42078 14 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.42078.010
https://doi.org/10.7554/eLife.42078


Figure 7. lin-29a is required for male mating behaviors. (A) lin-29A mutants show a normal male tail morphology. DIC images for young adult wild type

and lin-29a mutants xe38 and xe40. No morphological defects were detected in the young adult lin-29a mutant males compared to wild type. 20x

images for young adult males are shown on the top panels. 63x images of the male tail are shown on the bottom panels. (B) WormTracker analysis of

sexually dimorphic postural features showed no difference between wild-type and lin-29a mutant males. Hermaphrodites and males were tracked for 5

min and features describing body posture were analyzed using the WormTracker software. Adult hermaphrodites and males showed sex-specific

differences in posture including length, head width, midbody width and area. When wild-type males were compared to lin-29a xe38 and xe40 mutant

males no significant differences were found. (C) lin-29a is required for male mating. The ability of the of lin-29a(xe38) and lin-29a(xe40) mutant males to

locate the hermaphrodite vulva is significantly reduced compared to lin-29(+) control males (n = 15). (D) lin-29a is required for male-specific mate

searching behavior. Young adult males are followed over time and scored for movement beyond 3 cm away from the food source. lin-29a(xe38) mutant

Figure 7 continued on next page
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phenotypes are the result of neuronal defects rather than being a secondary consequence of overall

body morphology. Taken together, these results show that lin-29a is required for the acquisition of

male-specific postural and locomotory features and that the absence of lin-29a results in a feminiza-

tion of these behavioral parameters.

We sought to determine in which of the neurons that express lin-29a in a sexually dimorphic man-

ner lin-29a acts to control aspects of the locomotor behaviors described above. We particularly con-

sidered the so-called ‘motor circuit’, composed of a set of command interneurons and ventral nerve

cord motor neurons (Von Stetina et al., 2006). Expression of lin-29a in the motor circuit, using a cis-

regulatory element from the unc-17/VAChT locus rescued a defined subset of the feminized behav-

ioral features (wavelength, crawling amplitude and midbody bend) (Figure 8). Other lin-29a-express-

ing neurons may be involved in controlling locomotory and postural features not rescued by this

transgene.

Intersectional control of the temporal, sexual and spatial specificity of
lin-29a expression
Having established the function of lin-29a in sexually dimorphic development and function of the C.

elegans nervous system, we sought to better understand the mode of lin-29a regulation. lin-29a

shows a striking specificity of expression in three different dimensions. Within the nervous system,

lin-29a is expressed in a temporally controlled manner (onset in embryonically born neurons only in

the L4 stage), in a sex-specific manner (only in males) and it is expressed in a highly neuron type-spe-

cific manner. In as far as the first dimension, time, is concerned, we have described above that lin-

29a expression in the nervous system is temporally controlled by the lin-28/let-7/lin-41 heterochronic

pathway. To assess the control of sex-specificity of lin-29a expression, we genetically removed tra-1,

the master regulatory transcription factor of sex determination which is normally expressed in all her-

maphroditic cells (XX sex chromosome genotype) where it suppresses male

identities (Schvarzstein and Spence, 2006). We found that in tra-1(e1488) mutants, lin-29a expres-

sion becomes derepressed in XX animals (Figure 9A). Moreover, we induced the degradation of tra-

1 exclusively in the nervous system by force-expressing fem-3, which promotes TRA-1 protein

destruction (Starostina et al., 2007), under the control of a panneuronal driver. We found that lin-

29a expression is derepressed in the nervous system of the hermaphrodite, with the same pattern of

cellular specificity seen normally in males (Figure 9A).

To address the cellular specificity of lin-29a expression, we considered the possibility that neuron

class-specific terminal selector-type transcription factors that control the expression of neuron-class

specific identity programs (Hobert, 2016) may also control the neuronal specificity of lin-29a expres-

sion. For example, the terminal differentiation program of the lin-29a expressing ASK neurons is con-

trolled by the LIM homeobox gene ttx-3/LHX2 and the identity of the AIM neuron is defined by the

unc-86/BRN3 POU homeobox gene (Serrano-Saiz et al., 2013). We found that lin-29a expression is

eliminated in the ASK neurons of ttx-3 mutants and in the AIM neurons of unc-86 mutants

(Figure 9B). The unc-3/COE-type transcription factor controls the identity of multiple neurons of the

motor circuit, including the lin-29a expressing ventral nerve cord motorneurons, the SAB head motor

neurons, the PDA and PDB tail motor neurons and the command interneurons AVA and PVC

(Kratsios et al., 2011; Pereira et al., 2015). We found that in unc-3 mutants lin-29a expression is

lost in all these neurons (Figure 9B). We conclude that the complex lin-29a expression pattern can

be explained by an intersectional mechanism. Temporal control is exerted via the heterochronic

pathway, sexual specificity by the sex determination pathway and cellular specificity by terminal

selector-type neuronal identity factors.

Figure 7 continued

males failed to leave the food and search for mates and behaved similarly to wild-type hermaphrodites. lin-29a mate-searching defect could be partially

rescued by restoring LIN-29A expression in AIM interneurons (otEx7316). Values plotted are an average of two independent experiments (n = 15 for

each experiment).
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Other male-specific effectors of lin-41 are also controlled in an
intersectional manner
The sexually dimorphic expression pattern of lin-29a in the male nervous system does not extend to

all sex-shared neurons that are known to display sexually dimorphic features. For example, the sex-

Figure 8. lin-29a is required for the establishment of male-specific features of locomotor behavior. There are lin-29a dependent and lin-29a

independent adult-specific sexually dimorphic locomotory features. Cartoon of an adult C. elegans depicts the location of the body parts used for

feature computation. The arrows for each body part represent the bend angle. Wavelength and amplitude while crawling are shown. Adult

hermaphrodites and males showed sex-specific differences in posture, path and locomotory features that were not affected by lin-29a absence (top

panel). A complete list of sexually dimorphic features not affected by lin-29a is provided in Supplementary file 1. In lin-29a mutant males, a number of

sexually dimorphic features were feminized compared to wild-type males (bottom panel), including posture and locomotory features. Restoration of lin-

29a expression in command interneuron AVA and ventral nerve cord motor neurons (otEx7320) partially rescued the feminization of two postural

features (midbody bend and wavelength) as well as one locomotory feature (midbody crawling amplitude) (n = 20).

DOI: https://doi.org/10.7554/eLife.42078.012
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Figure 9. Intersectional control of distinct lin-41 effectors via heterochronic, sexual (tra-1) and spatial (terminal selector) inputs. (A) LIN-29 neuronal

expression is regulated by the sex-determination pathway. Mutant hermaphrodites for the downstream effector of the sex-determination pathway tra-1

showed lin-29a/b::gfp (xe61) expression in hermaphrodite neurons in L4 and adult stages. Masculinization of the hermaphrodite nervous system by a

pan-neuronal promoter driving fem-3 (otEx7321), that represses tra-1 function, induced lin-29a/b::gfp (xe61) expression in hermaphrodite neurons in L4

Figure 9 continued on next page
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shared PHC sensory neuron functionally and anatomically remodels during sexual maturation (Ser-

rano-Saiz et al., 2017a), but does not express lin-29a. This suggests that lin-29a is possibly just one

of several targets of LIN-41 in the context of male-specific nervous system differentiation. Previous

whole animal RNA profiling of let-7 and lin-41 mutants, as well as RNA-binding assays demonstrated

that LIN-41 also represses mab-3 and dmd-3 mRNA (Aeschimann et al., 2017). Both genes are

members of the DMD family of sex-specifically expressed transcription factors (Mason et al., 2008;

Yi and Zarkower, 1999) and were previously shown to be expressed in male-specific neurons and in

a male-specific manner in distinct, but sex-shared neurons (Mason et al., 2008; Serrano-Saiz et al.,

2017a; Yi et al., 2000). Their timing of expression had not been previously examined.

We gfp-tagged the endogenous mab-3 and dmd-3 loci using CRISPR/Cas9 genome engineering.

Within the sex-shared nervous system, we found that mab-3 is not only male-specifically expressed

in the ADF neuron, as previously reported (Yi et al., 2000), but also in additional head neurons,

including the embryonically generated SMD head motor neurons (Figure 9C). We found that like the

male-specific, neuronal expression of lin-29a, male-specific neuronal expression of mab-3 is precisely

timed to commence at the L4 stage (Figure 9C). Similarly, the gfp-tagged dmd-3 locus is expressed

in a sex-shared neuron class, the PHC neurons (Figure 9D), where dmd-3 acts to control the sexually

dimorphic remodeling of PHC (Mason et al., 2008; Serrano-Saiz et al., 2017a). dmd-3::gfp expres-

sion in PHC also commences at the L4 stage (Figure 9D), at the time when PHC neurons remodel in

a male-specific manner (Serrano-Saiz et al., 2017a). We corroborated our previous data of LIN-41

protein affecting mab-3 and dmd-3 expression (Aeschimann et al., 2017) by showing that the tem-

poral specificity of nervous system expression of mab-3 and dmd-3 is indeed lost in let-7 mutants

(Figure 9C–D).

Like lin-29a, the male-specificity of mab-3 and dmd-3 expression in the nervous system is con-

trolled by the tra-1 transcription factor (Figure 9E,G) Moreover, the neuronal specificity of mab-3

and dmd-3 expression is, like lin-29a, also controlled by neuron-type specific terminal selectors. unc-

42 is a terminal selector transcription factor that controls terminal differentiation of the RMD and

SMD neurons (Pereira et al., 2015), and we found that mab-3 expression in these neurons fails to

be induced in an unc-42 mutant background (Figure 9C). Similarly, ceh-14 is a terminal selector of

PHC neuron identity (Serrano-Saiz et al., 2017a) and is required for dmd-3 expression in PHC

(Figure 9F). We conclude that lin-41 operates through multiple distinct, male-specific effector genes

and that the temporal, sexual and spatial specificity of expression of these distinct effectors is con-

trolled by a similar, intersectional regulatory logic (Figure 10A,B).

Discussion
We have described here that the timing of multiple distinct, neuron-type specific sexually dimorphic

maturation events in the nervous system of C. elegans are controlled by a phylogenetically con-

served regulatory cassette composed of ubiquitously expressed and temporally controlled genes,

lin-28 (a regulator of let-7 miRNA processing), let-7 (a miRNA) and its target lin-41 (a translational

Figure 9 continued

and onwards. (B) lin-29a/b::gfp neuronal expression is lost in neuron-specific transcription factor mutants. The POU homeobox transcription factor unc-

86 is required for lin-29a/b::gfp expression in AIM interneurons. The LIM-HD transcription factor ttx-3 is required for lin-29a/b::gfp expression in ASK.

The COE/EBF transcription factor unc-3 is required for lin-29a/b::gfp expression in AVA, SAB, DA, DB, VA, VB, PDA, PDB and PVC neurons. Cholinergic

neurons are labeled with the cho-1/CHT mCherry fosmid reporter. (C) mab-3::gfp expression in the SMD neurons in control hermaphrodites, males and

mutant animals. mab-3::gfp (ot931) expression was determined during larval development. GFP was first observed in the SMD neurons at the L4 stage

and onwards, only in males. mab-3::gfp expression was lost from SMD neurons in a let-7(n2853ts) mutant male. L1 let-7(n2853ts) animals were shifted to

the restricted temperature (25˚C) and imaged as adults, after 48hs. mab-3::gfp expression was lost from SMD neurons in an unc-42(e419) mutant male.

Scale bar: 5 mm. (D) dmd-3::gfp expression in the PHC neuron in control hermaphrodites, males and mutant animals. GFP was first observed in the PHC

neurons at the L4 stage and onwards, only in males. dmd-3::gfp expression was decreased from PHC neurons in a let-7(n2853) mutant male. L1 let-7

(n2853) animals were shifted to the restricted temperature (25˚C) and imaged as adults, after 48hs. (E) dmd-3::gfp expression in PHC was lost in ceh-14

null mutant males and in let-7(n2853ts) mutant males. L1 let-7(n2853ts) animals were shifted to the restricted temperature (25˚C) and imaged as adults,

after 48hs. (F) Masculinization of the hermaphrodite nervous system by a pan-neuronal promoter driving fem-3 (otEx7322 and otEx7323, respectively),

that promotes TRA-1 degradation, induced mab-3::gfp (ot931) expression in hermaphrodite SMD neurons and dmd-3::gfp (ot932) expression in

hermaphrodite PHC neurons in L4 and onwards.
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Figure 10. Timing mechanisms controlling sexually dimorphic nervous system differentiation during sexual maturation. (A) The evolutionarily conserved

lin-28/let-7/lin-41 heterochronic pathway controls the timing of the expression of multiple neuron-specific effectors in the male nervous system. The

RNA-binding protein LIN-28 controls the expression of the miRNA let-7, which in turn controls expression of the RNA-binding protein LIN-41. LIN-41

let-7-mediated downregulation at the onset of sexual maturation de-represses LIN-41 targets LIN29A, MAB-3 and DMD-3. Expression of these LIN-41

Figure 10 continued on next page
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regulator). The conservation of the deployment of this pathway in the timing of sexual maturation is

remarkable. Genetic manipulations in mice, as well as genome-wide association studies of humans

with abnormally timed puberty demonstrate that lin-28 and let-7 also control timing of sexual matu-

ration (puberty) onset in mammals (Chen et al., 2017; Corre et al., 2016; He et al., 2009;

Ong et al., 2009; Perry et al., 2009; Sulem et al., 2009; Zhu et al., 2010). This conclusion was fur-

ther corroborated by the finding that mutations in human makorin, the orthologue of lep-2, a regula-

tor of lin-28 activity in C. elegans (Herrera et al., 2016), also affect the timing of puberty in humans

(Abreu et al., 2013; Bulcao Macedo et al., 2014). Similarly, in the fly nervous system, lin-28 and let-

7 are involved in controlling the timing of pupal to adult transitions (González-Itier et al., 2018;

Sempere et al., 2003; Wu et al., 2012) that are accompanied by sexual maturation in the nervous

system, as assessed by expression of the male-specific isoform of Fruitless, a master regulator of

male-specific nervous system differentiation (Lee et al., 2000). However, a regulatory linkage

between the heterochronic pathway and transcriptional regulators of sexual differentiation (hormone

receptors in vertebrates or Fruitless in flies) has not yet been established in these systems.

Apart from suggesting a remarkable conservation of timing mechanisms of sexual maturation, we

have provided insights into the mechanisms by which the lin-28/let-7 axis affects the timing of sexual

maturation. The let-7 miRNA is known to have a plethora of distinct mRNA targets (Büssing et al.,

2008), but the one that we define here as being relevant in the context of sexual maturation is the

translational regulator lin-41 (Slack et al., 2000). C. elegans lin-41 had previously been implicated as

an output of let-7 in the timing of skin cell maturation events (Slack et al., 2000) as well as vulval

patterning (Ecsedi et al., 2015). lin-41 is also highly conserved in vertebrates where its expression

appears to be temporally regulated during embryogenesis with its expression being complementary

to let-7, as observed in C. elegans (Schulman et al., 2005). The dynamics of lin-28, let-7 and lin-41

expression has not yet been comprehensively examined in the context of sexual maturation in the

vertebrate brain, but notably, the expression of Lin28 and Let7 in the hypothalamus, a site of release

of peptides that control pubertal onset, appears to be temporally controlled (Sangiao-

Alvarellos et al., 2013). In Drosophila, let-7 expression has also been found to be temporally regu-

lated; its expression increases during late pupal stages (Faunes and Larraı́n, 2016). This is the time

at which at least some parts of the Drosophila nervous system sexually mature (Lee et al., 2000),

but a role of Drosophila let-7 in the timing of sexual maturation has not yet been assessed.

One key remaining question, raised by our studies in C. elegans, is how lin-28/Lin28 function is

precisely timed in the nervous system. Surprisingly, we found that a previously described upstream

regulator of lin-28, the lin-4 miRNA (Moss et al., 1997), does not affect male-specific sexual matura-

tion in the nervous system, suggesting the existence of alternative pathways that determine when

lin-28’s function in controlling let-7 processing is downregulated. Recent work in C. elegans has dis-

covered LIN-28 protein degradation, mediated by the conserved LEP-2/Makorin protein, as another

means to control lin-28 function (Herrera et al., 2016). It remains to be explored how LEP-2/

Makorin-mediated LIN-28 degradation is temporally controlled.

We showed here that the key target of let-7, the lin-41 translational regulator, relays temporal

information in a modular manner to distinct, neuron class-specific outputs (Figure 10A). Among

them is the phylogenetically conserved LIN-29 Zn finger transcription factor (whose vertebrate

Figure 10 continued

effectors in specific neurons in males, at the onset of sexual maturation, constitute effector modules directing the precisely timed nervous system

masculinization. We hypothesize that similar LIN-41 effectors, not identified yet, could be acting in other neurons in the male nervous system and in the

hermaphrodite nervous system. (B) Temporal, sex-specific and neuron-specific intersectional control of nervous system differentiation during sexual

maturation. A hypothetical male neuron is shown. As discussed above, LIN-41 repression of the heterochronic pathway is relieved at the onset of sexual

maturation, allowing neuron-specific effector proteins to be expressed. In males, degradation of the ubiquitously expressed transcriptional repressor

TRA-1 allows expression of male-specific regulatory effectors (blue boxes same as panel A). The neuron type-specificity of regulatory effector gene

expression is determined by terminal selector transcription factors that control the expression of many other neuronal identity features. Hence, terminal

selectors define a neuron type-specific, but permissive state whose sex- and time-specificity is controlled by factors that antagonize the effect of

terminal selectors on regulatory effector genes (transcriptionally – TRA-1; translationally – LIN-41). Note that features that are controlled by sex/time-

specific regulatory effectors, exemplified by LIN-29A regulation of neurotransmitter pathway genes, are also controlled by terminal selectors, thereby

constituting a ‘feedforward’ regulatory architecture.
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orthologs ZNF362 and ZNF384 are completely unstudied), which we identified as being sexually

dimorphically expressed in one fifth of all sex-shared neuron classes. Two other targets of lin-41 that

are relevant for sexual maturation are two male-specifically expressed DM domain transcription fac-

tors (Aeschimann et al., 2017) (this paper). Neurons that express these sexually dimorphic output

regulators (lin-29, mab-3, dmd-3) act at distinct levels of information processing, from sensory, to

inter- to motorneurons. Intriguingly, many of the sex-shared, LIN-29(+) interneurons are synaptically

connected and some of these connections are sexually dimorphic. Some of the neurons that express

LIN-29 or MAB-3 in a male-specific manner were not previously shown to display any sexual dimor-

phisms, demonstrating that the C. elegans nervous system may be even more sexually dimorphic

than previously appreciated.

lin-29, mab-3 and dmd-3 expression mark many, but not quite all sex-shared neurons with sexu-

ally dimorphic features. We indeed found evidence for two other dmd genes whose expression is

both sexually and temporally controlled in yet distinct neuron classes (Oren-Suissa et al.,

2016) (unpubl. data). Altogether, these findings suggest a scenario in which a ubiquitously

expressed temporal coordinate system (heterochronic pathway), intersects with a ubiquitously

expressed sexual coordinate system (sex determination pathway) to control the sexual and temporal

specificity of a number of modular, neuron-type specific output systems that control sexual dimor-

phisms in distinct cellular circuit modules (Figure 10A,B). This modular organization displays striking

conceptual similarities with the modular organization of sexual dimorphic control mechanisms in ver-

tebrates (Yang and Shah, 2014).

How is the neuron type-specificity of the modular outputs (lin-29, mab-3, dmd-3 etc.) of the tem-

poral and sex-determination system controlled? We provided evidence here that the neuron-type

specificity of the sex-specific regulator is controlled by neuron-type specific terminal selector tran-

scription factors which define the overall differentiated state of individual neuron classes

(Hobert, 2016) (Figure 10B). For example, unc-3 is required for many (non-sexually dimorphic)

aspects of motor neuron differentiation in the ventral nerve cord and we find that unc-3 also is

required to target lin-29 expression specifically in ventral nerve cord neurons. Like the regulation of

lin-29 by the temporal cue lin-41, the neuron-type specific regulation of lin-29 could potentially be

direct since we noted several phylogenetically conserved binding sites for UNC-3 protein in the lin-

29 locus. The regulation of sex-specific output regulators, like lin-29, by terminal selectors reveals

the potential existence of a specific gene regulatory network architecture. For example, in the male

AIM neurons, unc-86 and ceh-14 are required for the induction of unc-17 and cho-1 expression

(Pereira et al., 2015). Both are apparently not sufficient to induce unc-17 and cho-1 expression in

hermaphrodites, but via the unc-86-mediated induction of lin-29 expression in the AIM neurons in

males, unc-86 and ceh-14 are now apparently able to induce, with the help of lin-29, the expression

of unc-17 and cho-1. Further biochemical studies will be required to corroborate the existence of

such feedforward architecture (Figure 10B). In conclusion, we have identified an intersectional regu-

latory mechanism in which temporal cues, sexual cues and neuron-type specific cues define the onset

of expression of sex-specific, neuron-type specific ‘output regulators’ which define sexual dimorphic

features of the C. elegans nervous system (Figure 10).

Materials and methods

C. elegans strains
Worm strains used in this study are listed in Table 1. The wild-type strain was Bristol N2. Worms

were grown on nematode growth media (NGM) seeded with bacteria (OP50) as a food source. To

synchronize worms 10 adult gravid hermaphrodites were transferred to a new plate with OP50.

Worms were allowed to lay eggs for approximately two hours and adult gravid hermaphrodites were

removed afterwards.

srj-54::yfp is a PCR fragment that was constructed using standard PCR fusion methods by fusing

fragment A, comprising 664 bp upstream of the predicted ATG of srj-54 and the first four codons of

srj-54 coding sequence, to fragment B, comprising yfp fused to the unc-54 3´ UTR. srj-54::yfp was

injected with unc-122::gfp into him-5(e1490) to generate a stable extrachromosomal array. This array

was integrated into the genome using standard UV irradiation methods followed by several rounds

of backcrossing to him-5(e1490) to generate fsIs5.
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Table 1. Strain list.

Strain name Genotype Relevant DNA on array or single copy transgene

DR466 him-5(e1490)

MT1524 lin-28(n719)

MT7897 lin-41(n2914)/unc-29(e1072); lin-11(n1281)

MT7626 let-7(n2853)

HW1814 lin-41(xe8/bch28); him-5(e1490) 1

VT132 lin-29a/b(n333)/mnC1; sqt-1(sc13)

CB4037 glp-1(e2141)

HW1672 lin-29a/b(xe37)

HW1693 lin-29a(xe38)

HW1695 lin-29a(xe40)

HW1698 mab-10(xe44)

CB2823 tra-1(e1488)/eDp6

MT1859 unc-86(n846)

OH161 ttx-3(ot22)

CB151 unc-3(e151)

CB419 unc-42(e419)

OH15422 ceh-14(ot900) 2

OH15568 unc-17(ot907[unc-17::mKate2::3xflag])

DG3913 lin-41(tn1541[lin-41::gfp])

HW1822 lin-29(xe61[lin-29a/b::gfp::3xflag])

HW2224 lin-29(xe63 [gfp::3xflag::lin-29a]); him-5(e1490)

HW1835 lin-29(xe65 [lin-29b::gfp::3xflag; lin-29(xe40)])

HW2047 mab-10(xe75[mab-10::flag::mCherry])

HW2225 lin-29(xe63); him-5(e1490); let-7(n2853)

HW2342 lin-29(xe63); him-5(e1490); lin-41(n2914)/unc-29(e1072); lin-11(n1281)

HW2344 lin-29(xe63); him-5(e1490); lin-41(xe8/bch28)

OH15732 mab-3(ot931[mab-3::3xflag::gfp])

OH15733 dmd-3(ot932[dmd-3::3xflag::gfp])

OH10689 otIs355 rab-3::nls::tag_rfp

OH12543 otIs534 cho-1 fosmid::sl2::yfp::h2b

OH12655 otIs544 cho-1 fosmid::sl2::mCherry::h2b

OH13083 otIs576 unc-17 fosmid::gfp

OH11124 otIs388 eat-4 fosmid::sl2::yfp::h2b

OH12496 otIs518 eat-4 fosmid::sl2::mCherry::h2b

OP535 wtIs535 lin-28 fosmid::gfp

HW2172 xeSi182 plin-41::gfp(pest)::h2b::lin-41 3’UTR

HW2173 xeSi202 plin-41::gfp(pest)::h2b::unc-54 3’UTR

UR219 fsIs5 srj-54p::yfp

UL2497 Ex(dmd-5p::gfp) dmd-5p::gfp (pUL#JS9B3 plasmid)

FK181 ksIs2 daf-7p::gfp

EB2509 dzIs75 II kal-1p::gfp 3

OH15741 lin-29(xe38) + otEx7316 eat-4p::lin-29a

OH15742 lin-29(xe38) + otEx7317 eat-4p::lin-29a

OH15743 lin-29(xe40) + otEx7318 eat-4p::lin-29a

Table 1 continued on next page

Pereira et al. eLife 2019;8:e42078. DOI: https://doi.org/10.7554/eLife.42078 23 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.42078


For neuron-specific expression of lin-29a, promoter constructs driving lin-29a cDNA were gener-

ated by Gibson assembly or RF cloning. cDNA was amplified from pDH06, kindly provided by Dr.

Horvitz (Harris and Horvitz, 2011). A 1 kb of the unc-17/VACHT promoter that drives expression in

AVA, SAB, DA, DB, VA, VB, PDA and PDB neurons (our unpublished data) was amplified by PCR

from the fosmid construct (FW AATGAAATAAGCTTGCATGGTATACACCAATCATTTCTCC and REV

TCCTCTAGAGTCGACCTGCAGATAATTTAATTAAAATTGAGTTCCAAC). The PCR fragments were

assembled into pPD95.75 by Gibson. For AIM-specific expression a fragment of the eat-4 locus was

used to drive LIN-29A expression. The lin-29a cDNA was inserted to replace the fem-3 cDNA in this

construct (Pereira et al., 2015). For nervous system masculinization, a rab-3 pan-neuronal promoter

driving fem-3::mCherry was used (White et al., 2007). Transgenic lines carrying extrachromosomal

arrays were generated by germline injection with 20 ng/ul of plasmid DNA and unc-122::gfp as a co-

injection marker, also at 20 ng/ul.

Genome engineering
Isoform-specific gfp::3xflag tagging of endogenous lin-29 using CRISPR/Cas9. In order to obtain the

lin-29(xe65) allele, the following mix was injected into lin-29a(xe40) mutant worms: 50 ng/ml pIK155,

100 ng/ml of pIK198 with a cloned sgRNA (atattatttatcagtgattg), 2.5 ng/ml pCFJ90, 5 ng/ml pCFJ104

and 10 ng/ml pFA26 (pDD282 with cloned homology arms). Recombinants were isolated according

to the protocol by Dickinson et al. (Dickinson et al., 2015), verified by DNA sequencing and out-

crossed three times. The plasmid for homologous recombination (pFA26) was previously described

(Aeschimann et al., 2017). The lin-29(xe63) allele specifically tags lin-29a with GFP::3xFLAG at the

N-terminus (Aeschimann et al., 2018).

Tagging of endogenous mab-10 with flag::mCherry using CRISPR/Cas9. In order to tag mab-10

with flag::mCherry at the C-terminus, the following mix was injected into unc-119(ed3) worms

(Dickinson et al., 2015; Katic et al., 2015): 25 ng/ul pIK155, 65 ng/ul of pIK198 with a cloned

sgRNA (gctcccggaatcttgaagct), 10 ng/ul pIK127 (Peft-3::gfp::h2b), 5 ng/ul Pmyo-3::gfp and 65 ng/ul

pIK284. The plasmid serving as a template for homologous recombination (pIK284) was obtained

using the SapTrap protocol (Schwartz et al., 2016), by combining SapTrap component vectors

pMLS257, pMLS291 and pMLS382 with two pairs of annealed oligos (oIK1052/oIK1053, oIK1054/

oIK1055). Wild-type moving recombinants were isolated, verified by DNA sequencing and out-

crossed three times. The mab-10::mCherry allele is not fully functional since mab-10(xe75) and mab-

10(xe44) both enhance the bursting phenotype of let-7(n2853ts) (data not shown).

lin-29, lin-29a and mab-10 null mutant alleles. In order to specifically mutate lin-29a without

affecting expression of lin-29b, we introduced deletions into the coding exons specific to lin-29a, at

the same time introducing a frame-shift in the downstream lin-29a reading frame. The lin-29a(xe38)

allele is a 10 bp deletion in exon 2, resulting in a frame-shift and a stop codon in exon 3. It was

obtained by injecting a single sgRNA (gctggaaccaccactggctc) and has the following flanking sequen-

ces: 5’ gaatagctggaaccaccact – xe38 deletion – ctaccacccattttggtgtt 3’. The lin-29a(xe40) allele is a

1102 bp deletion covering exons 2–4, introducing a frame-shift in the lin-29a reading frame with a

predicted stop codon in exon 6 (Aeschimann et al., 2018). We used deletions of almost the entire

Table 1 continued

Strain name Genotype Relevant DNA on array or single copy transgene

OH15744 lin-29(xe40) + otEx7319 eat-4p::lin-29a

OH15745 lin-29(xe38) + otEx7320 unc-17p::lin-29a

OH15746 lin-29(xe61) + otEx7321 rab-3p::fem-3::mCherry

OH15748 mab-3(ot931) + otEx7322 rab-3p::fem-3::mCherry

OH15749 dmd-3(ot921) + otEx7323 rab-3p::fem-3::mCherry

1The xe8 gain of function and bch28 null alleles have been described in Ecsedi et al. (2015) and in Katic et al. (2015). These alleles were maintained in

trans to improve health of the animals. Offspring homozygous for either allele were scored for phenotypic traits
2Bayer and Hobert (2018).
3The kal-1 gfp promoter fusion corresponds to ‘promoter G’ from Wenick and Hobert, 2004
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coding regions as null alleles for lin-29 and mab-10: The lin-29(xe37) allele is a 14.8 kbp deletion

spanning lin-29 exons 2–11 and the mab-10(xe44) allele is a 2.9 kbp deletion spanning mab-10 exons

3–9 (Aeschimann et al., 2018).

To obtain mutant worm lines, wild-type worms were injected with a mix containing 50 ng/ml

pIK155, 100 ng/ml of each pIK198 with a cloned sgRNA, 5 ng/ml pCFJ90 and 5 ng/ml pCFJ104, as

previously described (Katic et al., 2015). Single F1 progeny of injected wild-type worms were

picked to individual plates and the F2 progeny screened for deletions using PCR assays. After analy-

sis by DNA sequencing, the alleles were outcrossed three times to the wild-type strain.

Tagging of endogenous unc-17 with 3xflag::mKate2 using CRISPR/Cas9. The unc-17 locus was

tagged at the C-terminus as previously described (Dickinson et al., 2015; Katic et al., 2015).The

plasmid serving as a template for homologous recombination was cloned using Gibson and included

700 bp-long homology arms. Wild-type moving recombinants were isolated, verified by DNA

sequencing and outcrossed three times.

Tagging of endogenous mab-3 and dmd-3 with 3xflag::gfp using CRISPR/Cas9. The mab-3 and

dmd-3 loci were tagged at the C-terminus as previously described (Dickinson et al., 2015;

Katic et al., 2015). The plasmid serving as a template for homologous recombination was cloned

using Gibson and included 700 bp-long homology arms. Wild-type moving recombinants were iso-

lated, verified by DNA sequencing and outcrossed three times.

Neuron identification
Expression analysis of the lin-29 endogenously tagged alleles with neuron-specific resolution was

done by assessing nuclear position and size using Nomarski optics and crossing these strains with

neuronal landmark reporter strains eat-4 (otIs518) (Serrano-Saiz et al., 2017a) and cho-1 (otIs544)

(Pereira et al., 2015).

Laser ablation
Laser ablation of Z1/Z4 was performed at the L1 stage as previously described (Hsin and Kenyon,

1999) using a MicroPoint Laser System Basic Unit (N2 pulsed laser (dye pump), ANDOR Technology)

attached to a Zeiss Axio Imager Z2 microscope (Objective EC Plan-Neofluar 63X/1.30 Oil). Worms

were recovered by washing with M9 buffer and imaged at the young adult stage. Control animals

were treated in the same manner, but not subjected to laser exposure. Gonad and germline removal

were confirmed by DIC microscopy.

Microscopy
Worms were anesthetized using 100 mM of sodium azide and mounted on 5% agarose on glass

slides. All images were acquired using a Zeiss confocal microscope (LSM880; Zeiss [Carl Zeiss],

Thornwood, NY). Image reconstruction was performed using the ZEN software tool. Maximum inten-

sity projections of representative images are shown. For neurite tracing, confocal Z-stacks were

opened using FIJI, and loaded into the Simple Neurite Tracer plugin. All neurites emerging from the

soma or posterior process of PDB were traced. The simple neurite tracer plugin was used to analyze

the skeletons for neurite length, which were summed to calculate total neurite.

Mating assays
Animals were synchronized at the L1 stage and grown to the early L4 stage group housed. The day

before the mating assay experiment, males at the early L4 stage were separated to a new plate.

Male mating behavior was assayed by direct observation of the mating process. A single young adult

male was placed with 10–15 L4 unc-3(e151) hermaphrodites on a mating plate. The male mating

behavior was recorded as previously described (Euling et al., 1999). Males were tested for their abil-

ity to locate vulva in a mating assay, calculated as location efficiency. The number of passes or hesi-

tations at the vulva until the male firs stops were counted: location efficiency = 1/number of

encounters to stop, expressed as percentage.

Mate-searching assay
Animals were synchronized at the L1 stage and grown to the early L4 stage . The day before the

mating assay experiment, hermaphrodites and males at the early L4 stage were separated to a new
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plate. The mate-searching assay was performed as previously described (Lipton et al., 2004). A sin-

gle animal was placed in the center of a 15 m l patch of food per 10 cm plate. Each animal that had

left the food was scored blindly at 7 time points for a period of 24 hr. A worm was considered a

leaver if it was 3 cm away from the food source at the scoring time.

Automated worm tracking
Automated single worm tracking was performed using the Wormtracker 2.0 system at room temper-

ature (Yemini et al., 2013). Animals were synchronized at the L1 stage and grown to the early L4

stage . The day before the tracking experiments, hermaphrodites and males were separated to

same-sex group housed plates. Animals were recorded at the young adult stage for 5 min to ensure

sufficient sampling of locomotion related behavioral features. All animals were tracked on NGM

plates uniformly covered with food (OP50). To avoid potential variability arising due to room condi-

tions, all strains that were compared in a single experiment were recorded simultaneously in identi-

cal room condition, along with the controls. Analysis of the tracking videos was performed as

previously described (Yemini et al., 2013). After correction for multiple testing (Bonferroni correc-

tion), features shown in Figure 8 and Supplementary file 1 emerged as the ones with most signifi-

cantly different q-value among the test groups. For the rescue experiment, we only measured these

features, permitting us to use the p-value.
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He C, Kraft P, Chen C, Buring JE, Paré G, Hankinson SE, Chanock SJ, Ridker PM, Hunter DJ, Chasman DI. 2009.
Genome-wide association studies identify loci associated with age at menarche and age at natural menopause.
Nature Genetics 41:724–728. DOI: https://doi.org/10.1038/ng.385, PMID: 19448621

Herrera RA, Kiontke K, Fitch DH. 2016. Makorin ortholog LEP-2 regulates LIN-28 stability to promote the
juvenile-to-adult transition in Caenorhabditis elegans. Development 143:799–809. DOI: https://doi.org/10.
1242/dev.132738, PMID: 26811380

Hilbert ZA, Kim DH. 2017. Sexually dimorphic control of gene expression in sensory neurons regulates decision-
making behavior in C. elegans. eLife 6:e21166. DOI: https://doi.org/10.7554/eLife.21166, PMID: 28117661

Hobert O. 2016. Terminal Selectors of Neuronal Identity. Current topics in developmental biology 116:455–475.
DOI: https://doi.org/10.1016/bs.ctdb.2015.12.007, PMID: 26970634

Howell K, White JG, Hobert O. 2015. Spatiotemporal control of a novel synaptic organizer molecule. Nature
523:83–87. DOI: https://doi.org/10.1038/nature14545, PMID: 26083757

Hsin H, Kenyon C. 1999. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:
362–366. DOI: https://doi.org/10.1038/20694, PMID: 10360574

Jarrell TA, Wang Y, Bloniarz AE, Brittin CA, Xu M, Thomson JN, Albertson DG, Hall DH, Emmons SW. 2012. The
connectome of a decision-making neural network. Science 337:437–444. DOI: https://doi.org/10.1126/science.
1221762, PMID: 22837521

Jazin E, Cahill L. 2010. Sex differences in molecular neuroscience: from fruit flies to humans. Nature Reviews
Neuroscience 11:9–17. DOI: https://doi.org/10.1038/nrn2754, PMID: 20019686

Juraska JM, Willing J. 2017. Pubertal onset as a critical transition for neural development and cognition. Brain
Research 1654:87–94. DOI: https://doi.org/10.1016/j.brainres.2016.04.012, PMID: 27060769

Katic I, Xu L, Ciosk R. 2015. CRISPR/Cas9 Genome Editing in Caenorhabditis elegans: Evaluation of Templates
for Homology-Mediated Repair and Knock-Ins by Homology-Independent DNA Repair. G3&amp;#58; Genes|
Genomes|Genetics 5:1649–1656. DOI: https://doi.org/10.1534/g3.115.019273, PMID: 26044730

Pereira et al. eLife 2019;8:e42078. DOI: https://doi.org/10.7554/eLife.42078 28 of 31

Research article Neuroscience

https://doi.org/10.1515/jpem-2016-0101
https://doi.org/10.1515/jpem-2016-0101
http://www.ncbi.nlm.nih.gov/pubmed/28525351
https://doi.org/10.1530/JOE-15-0360
http://www.ncbi.nlm.nih.gov/pubmed/26698568
https://doi.org/10.1016/j.ydbio.2006.04.472
http://www.ncbi.nlm.nih.gov/pubmed/16806150
https://doi.org/10.1038/336638a0
http://www.ncbi.nlm.nih.gov/pubmed/3200316
https://doi.org/10.1534/genetics.115.178335
https://doi.org/10.1534/genetics.115.178335
http://www.ncbi.nlm.nih.gov/pubmed/26044593
https://doi.org/10.1101/gad.207266.112
http://www.ncbi.nlm.nih.gov/pubmed/23512656
https://doi.org/10.1016/j.devcel.2014.12.018
http://www.ncbi.nlm.nih.gov/pubmed/25669883
https://doi.org/10.1146/annurev-neuro-070815-014056
http://www.ncbi.nlm.nih.gov/pubmed/29709211
https://doi.org/10.1016/S0092-8674(00)81045-4
http://www.ncbi.nlm.nih.gov/pubmed/8625405
https://doi.org/10.1006/dbio.1998.9063
https://doi.org/10.1006/dbio.1998.9063
http://www.ncbi.nlm.nih.gov/pubmed/9986728
https://doi.org/10.1016/j.ydbio.2016.06.013
https://doi.org/10.1016/j.ydbio.2016.06.013
http://www.ncbi.nlm.nih.gov/pubmed/27297887
https://doi.org/10.1016/j.cub.2016.04.058
http://www.ncbi.nlm.nih.gov/pubmed/27265391
https://doi.org/10.1016/j.mod.2018.06.002
https://doi.org/10.1016/j.mod.2018.06.002
http://www.ncbi.nlm.nih.gov/pubmed/29908237
https://doi.org/10.1016/j.devcel.2004.12.019
http://www.ncbi.nlm.nih.gov/pubmed/15737928
https://doi.org/10.1038/25757
http://www.ncbi.nlm.nih.gov/pubmed/9738501
https://doi.org/10.1242/dev.065417
https://doi.org/10.1242/dev.065417
http://www.ncbi.nlm.nih.gov/pubmed/21862562
https://doi.org/10.1038/ng.385
http://www.ncbi.nlm.nih.gov/pubmed/19448621
https://doi.org/10.1242/dev.132738
https://doi.org/10.1242/dev.132738
http://www.ncbi.nlm.nih.gov/pubmed/26811380
https://doi.org/10.7554/eLife.21166
http://www.ncbi.nlm.nih.gov/pubmed/28117661
https://doi.org/10.1016/bs.ctdb.2015.12.007
http://www.ncbi.nlm.nih.gov/pubmed/26970634
https://doi.org/10.1038/nature14545
http://www.ncbi.nlm.nih.gov/pubmed/26083757
https://doi.org/10.1038/20694
http://www.ncbi.nlm.nih.gov/pubmed/10360574
https://doi.org/10.1126/science.1221762
https://doi.org/10.1126/science.1221762
http://www.ncbi.nlm.nih.gov/pubmed/22837521
https://doi.org/10.1038/nrn2754
http://www.ncbi.nlm.nih.gov/pubmed/20019686
https://doi.org/10.1016/j.brainres.2016.04.012
http://www.ncbi.nlm.nih.gov/pubmed/27060769
https://doi.org/10.1534/g3.115.019273
http://www.ncbi.nlm.nih.gov/pubmed/26044730
https://doi.org/10.7554/eLife.42078


Kim W, Underwood RS, Greenwald I, Shaye DD. 2018. OrthoList 2: A New Comparative Genomic Analysis of
Human and Caenorhabditis elegans Genes. Genetics 210:445–461. DOI: https://doi.org/10.1534/genetics.118.
301307, PMID: 30120140

Kleemann G, Jia L, Emmons SW. 2008. Regulation of Caenorhabditis elegans male mate searching behavior by
the nuclear receptor DAF-12. Genetics 180:2111–2122. DOI: https://doi.org/10.1534/genetics.108.093773,
PMID: 18854588

Kratsios P, Stolfi A, Levine M, Hobert O. 2011. Coordinated regulation of cholinergic motor neuron traits
through a conserved terminal selector gene. Nature Neuroscience 15:205–214. DOI: https://doi.org/10.1038/
nn.2989, PMID: 22119902

Lee G, Foss M, Goodwin SF, Carlo T, Taylor BJ, Hall JC. 2000. Spatial, temporal, and sexually dimorphic
expression patterns of the fruitless gene in the Drosophila central nervous system. Journal of Neurobiology 43:
404–426. DOI: https://doi.org/10.1002/1097-4695(20000615)43:4<404::AID-NEU8>3.0.CO;2-D, PMID: 10
861565

Lehrbach NJ, Armisen J, Lightfoot HL, Murfitt KJ, Bugaut A, Balasubramanian S, Miska EA. 2009. LIN-28 and the
poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nature Structural &
Molecular Biology 16:1016–1020. DOI: https://doi.org/10.1038/nsmb.1675, PMID: 19713957

Lipton J, Kleemann G, Ghosh R, Lints R, Emmons SW. 2004. Mate searching in Caenorhabditis elegans: a genetic
model for sex drive in a simple invertebrate. Journal of Neuroscience 24:7427–7434. DOI: https://doi.org/10.
1523/JNEUROSCI.1746-04.2004, PMID: 15329389

Liu KS, Sternberg PW. 1995. Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron 14:
79–89. DOI: https://doi.org/10.1016/0896-6273(95)90242-2, PMID: 7826644

Mason DA, Rabinowitz JS, Portman DS. 2008. dmd-3, a doublesex-related gene regulated by tra-1, governs sex-
specific morphogenesis in C. elegans. Development 135:2373–2382. DOI: https://doi.org/10.1242/dev.017046,
PMID: 18550714

McCarthy MM, Arnold AP. 2011. Reframing sexual differentiation of the brain. Nature Neuroscience 14:677–
683. DOI: https://doi.org/10.1038/nn.2834, PMID: 21613996

Moss EG, Lee RC, Ambros V. 1997. The cold shock domain protein LIN-28 controls developmental timing in C.
elegans and is regulated by the lin-4 RNA. Cell 88:637–646. DOI: https://doi.org/10.1016/S0092-8674(00)
81906-6, PMID: 9054503

Moss EG, Romer-Seibert J. 2014. Cell-intrinsic timing in animal development. Wiley Interdisciplinary Reviews:
Developmental Biology 3:365–377. DOI: https://doi.org/10.1002/wdev.145, PMID: 25124757

Mowrey WR, Bennett JR, Portman DS. 2014. Distributed effects of biological sex define sex-typical motor
behavior in Caenorhabditis elegans. Journal of Neuroscience 34:1579–1591. DOI: https://doi.org/10.1523/
JNEUROSCI.4352-13.2014, PMID: 24478342

Olsson-Carter K, Slack FJ. 2010. A developmental timing switch promotes axon outgrowth independent of
known guidance receptors. PLoS Genetics 6:e1001054. DOI: https://doi.org/10.1371/journal.pgen.1001054,
PMID: 20700435

Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB, Bingham SA, Brage S, Smith GD, Ekelund U, Gillson CJ,
Glaser B, Golding J, Hardy R, Khaw KT, Kuh D, Luben R, Marcus M, McGeehin MA, Ness AR, et al. 2009.
Genetic variation in LIN28B is associated with the timing of puberty. Nature Genetics 41:729–733. DOI: https://
doi.org/10.1038/ng.382, PMID: 19448623

Oren-Suissa M, Bayer EA, Hobert O. 2016. Sex-specific pruning of neuronal synapses in Caenorhabditis elegans.
Nature 533:206–211. DOI: https://doi.org/10.1038/nature17977, PMID: 27144354

Pereira L, Kratsios P, Serrano-Saiz E, Sheftel H, Mayo AE, Hall DH, White JG, LeBoeuf B, Garcia LR, Alon U,
Hobert O. 2015. A cellular and regulatory map of the cholinergic nervous system of C. elegans. eLife 4:e12432.
DOI: https://doi.org/10.7554/eLife.12432, PMID: 26705699

Perry JR, Stolk L, Franceschini N, Lunetta KL, Zhai G, McArdle PF, Smith AV, Aspelund T, Bandinelli S,
Boerwinkle E, Cherkas L, Eiriksdottir G, Estrada K, Ferrucci L, Folsom AR, Garcia M, Gudnason V, Hofman A,
Karasik D, Kiel DP, et al. 2009. Meta-analysis of genome-wide association data identifies two loci influencing
age at menarche. Nature Genetics 41:648–650. DOI: https://doi.org/10.1038/ng.386, PMID: 19448620

Portman DS. 2007. Genetic control of sex differences in C. elegans neurobiology and behavior. Advances in
genetics 59:1–37. DOI: https://doi.org/10.1016/S0065-2660(07)59001-2, PMID: 17888793

Portman DS. 2017. Sexual modulation of sex-shared neurons and circuits in Caenorhabditis elegans. Journal of
Neuroscience Research 95:527–538. DOI: https://doi.org/10.1002/jnr.23912, PMID: 27870393

Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. 2000. The 21-
nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906.
DOI: https://doi.org/10.1038/35002607, PMID: 10706289

Rougvie AE, Ambros V. 1995. The heterochronic gene lin-29 encodes a zinc finger protein that controls a
terminal differentiation event in Caenorhabditis elegans. Development 121:2491–2500. PMID: 7671813

Rougvie AE. 2001. Control of developmental timing in animals. Nature Reviews Genetics 2:690–701.
DOI: https://doi.org/10.1038/35088566, PMID: 11533718

Ryan DA, Miller RM, Lee K, Neal SJ, Fagan KA, Sengupta P, Portman DS. 2014. Sex, age, and hunger regulate
behavioral prioritization through dynamic modulation of chemoreceptor expression. Current Biology 24:2509–
2517. DOI: https://doi.org/10.1016/j.cub.2014.09.032, PMID: 25438941

Sangiao-Alvarellos S, Manfredi-Lozano M, Ruiz-Pino F, Navarro VM, Sánchez-Garrido MA, Leon S, Dieguez C,
Cordido F, Matagne V, Dissen GA, Ojeda SR, Pinilla L, Tena-Sempere M. 2013. Changes in hypothalamic
expression of the Lin28/let-7 system and related microRNAs during postnatal maturation and after

Pereira et al. eLife 2019;8:e42078. DOI: https://doi.org/10.7554/eLife.42078 29 of 31

Research article Neuroscience

https://doi.org/10.1534/genetics.118.301307
https://doi.org/10.1534/genetics.118.301307
http://www.ncbi.nlm.nih.gov/pubmed/30120140
https://doi.org/10.1534/genetics.108.093773
http://www.ncbi.nlm.nih.gov/pubmed/18854588
https://doi.org/10.1038/nn.2989
https://doi.org/10.1038/nn.2989
http://www.ncbi.nlm.nih.gov/pubmed/22119902
https://doi.org/10.1002/1097-4695(20000615)43:4%3C404::AID-NEU8%3E3.0.CO;2-D
http://www.ncbi.nlm.nih.gov/pubmed/10861565
http://www.ncbi.nlm.nih.gov/pubmed/10861565
https://doi.org/10.1038/nsmb.1675
http://www.ncbi.nlm.nih.gov/pubmed/19713957
https://doi.org/10.1523/JNEUROSCI.1746-04.2004
https://doi.org/10.1523/JNEUROSCI.1746-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15329389
https://doi.org/10.1016/0896-6273(95)90242-2
http://www.ncbi.nlm.nih.gov/pubmed/7826644
https://doi.org/10.1242/dev.017046
http://www.ncbi.nlm.nih.gov/pubmed/18550714
https://doi.org/10.1038/nn.2834
http://www.ncbi.nlm.nih.gov/pubmed/21613996
https://doi.org/10.1016/S0092-8674(00)81906-6
https://doi.org/10.1016/S0092-8674(00)81906-6
http://www.ncbi.nlm.nih.gov/pubmed/9054503
https://doi.org/10.1002/wdev.145
http://www.ncbi.nlm.nih.gov/pubmed/25124757
https://doi.org/10.1523/JNEUROSCI.4352-13.2014
https://doi.org/10.1523/JNEUROSCI.4352-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24478342
https://doi.org/10.1371/journal.pgen.1001054
http://www.ncbi.nlm.nih.gov/pubmed/20700435
https://doi.org/10.1038/ng.382
https://doi.org/10.1038/ng.382
http://www.ncbi.nlm.nih.gov/pubmed/19448623
https://doi.org/10.1038/nature17977
http://www.ncbi.nlm.nih.gov/pubmed/27144354
https://doi.org/10.7554/eLife.12432
http://www.ncbi.nlm.nih.gov/pubmed/26705699
https://doi.org/10.1038/ng.386
http://www.ncbi.nlm.nih.gov/pubmed/19448620
https://doi.org/10.1016/S0065-2660(07)59001-2
http://www.ncbi.nlm.nih.gov/pubmed/17888793
https://doi.org/10.1002/jnr.23912
http://www.ncbi.nlm.nih.gov/pubmed/27870393
https://doi.org/10.1038/35002607
http://www.ncbi.nlm.nih.gov/pubmed/10706289
http://www.ncbi.nlm.nih.gov/pubmed/7671813
https://doi.org/10.1038/35088566
http://www.ncbi.nlm.nih.gov/pubmed/11533718
https://doi.org/10.1016/j.cub.2014.09.032
http://www.ncbi.nlm.nih.gov/pubmed/25438941
https://doi.org/10.7554/eLife.42078


experimental manipulations of puberty. Endocrinology 154:942–955. DOI: https://doi.org/10.1210/en.2012-
2006, PMID: 23291449

Schulman BR, Esquela-Kerscher A, Slack FJ. 2005. Reciprocal expression of lin-41 and the microRNAs let-7 and
mir-125 during mouse embryogenesis. Developmental dynamics : an official publication of the American
Association of Anatomists 234:1046–1054. DOI: https://doi.org/10.1002/dvdy.20599, PMID: 16247770

Schvarzstein M, Spence AM. 2006. The C. elegans sex-determining GLI protein TRA-1A is regulated by sex-
specific proteolysis. Developmental Cell 11:733–740. DOI: https://doi.org/10.1016/j.devcel.2006.09.017,
PMID: 17084364

Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V. 2003. Temporal regulation of microRNA
expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity.
Developmental Biology 259:9–18. DOI: https://doi.org/10.1016/S0012-1606(03)00208-2, PMID: 12812784

Serrano-Saiz E, Poole RJ, Felton T, Zhang F, De La Cruz ED, Hobert O. 2013. Modular control of glutamatergic
neuronal identity in C. elegans by distinct homeodomain proteins. Cell 155:659–673. DOI: https://doi.org/10.
1016/j.cell.2013.09.052, PMID: 24243022

Serrano-Saiz E, Oren-Suissa M, Bayer EA, Hobert O. 2017a. Sexually Dimorphic Differentiation of a C. elegans
Hub Neuron Is Cell Autonomously Controlled by a Conserved Transcription Factor. Current Biology 27:199–
209. DOI: https://doi.org/10.1016/j.cub.2016.11.045, PMID: 28065609

Serrano-Saiz E, Pereira L, Gendrel M, Aghayeva U, Bhattacharya A, Howell K, Garcia LR, Hobert O. 2017b. A
Neurotransmitter Atlas of the Caenorhabditis elegans Male Nervous System Reveals Sexually Dimorphic
Neurotransmitter Usage. Genetics 206:1251–1269. DOI: https://doi.org/10.1534/genetics.117.202127, PMID: 2
8684604

Sisk CL, Foster DL. 2004. The neural basis of puberty and adolescence. Nature Neuroscience 7:1040–1047.
DOI: https://doi.org/10.1038/nn1326, PMID: 15452575

Slack F, Ruvkun G. 1997. Temporal pattern formation by heterochronic genes. Annual Review of Genetics 31:
611–634. DOI: https://doi.org/10.1146/annurev.genet.31.1.611, PMID: 9442909

Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. 2000. The lin-41 RBCC gene acts in the C. elegans
heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular Cell 5:
659–669. DOI: https://doi.org/10.1016/S1097-2765(00)80245-2, PMID: 10882102

Spike CA, Coetzee D, Eichten C, Wang X, Hansen D, Greenstein D. 2014. The TRIM-NHL protein LIN-41 and the
OMA RNA-binding proteins antagonistically control the prophase-to-metaphase transition and growth of
Caenorhabditis elegans oocytes. Genetics 198:1535–1558. DOI: https://doi.org/10.1534/genetics.114.168831,
PMID: 25261698

Starostina NG, Lim JM, Schvarzstein M, Wells L, Spence AM, Kipreos ET. 2007. A CUL-2 ubiquitin ligase
containing three FEM proteins degrades TRA-1 to regulate C. elegans sex determination. Developmental Cell
13:127–139. DOI: https://doi.org/10.1016/j.devcel.2007.05.008, PMID: 17609115

Sulem P, Gudbjartsson DF, Rafnar T, Holm H, Olafsdottir EJ, Olafsdottir GH, Jonsson T, Alexandersen P,
Feenstra B, Boyd HA, Aben KK, Verbeek AL, Roeleveld N, Jonasdottir A, Styrkarsdottir U, Steinthorsdottir V,
Karason A, Stacey SN, Gudmundsson J, Jakobsdottir M, et al. 2009. Genome-wide association study identifies
sequence variants on 6q21 associated with age at menarche. Nature Genetics 41:734–738. DOI: https://doi.
org/10.1038/ng.383, PMID: 19448622

Sulston JE, Albertson DG, Thomson JN. 1980. The Caenorhabditis elegans male: postembryonic development of
nongonadal structures. Developmental Biology 78:542–576. DOI: https://doi.org/10.1016/0012-1606(80)90352-
8, PMID: 7409314

Sulston JE, Horvitz HR. 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans.
Developmental Biology 56:110–156. DOI: https://doi.org/10.1016/0012-1606(77)90158-0, PMID: 838129

Sulston JE, Schierenberg E, White JG, Thomson JN. 1983. The embryonic cell lineage of the nematode
Caenorhabditis elegans. Developmental Biology 100:64–119. DOI: https://doi.org/10.1016/0012-1606(83)
90201-4, PMID: 6684600

Von Stetina SE, Treinin M, Miller DM. 2006. The motor circuit. International review of neurobiology 69:125–167.
DOI: https://doi.org/10.1016/S0074-7742(05)69005-8, PMID: 16492464

Wang J, Al-Ouran R, Hu Y, Kim SY, Wan YW, Wangler MF, Yamamoto S, Chao HT, Comjean A, Mohr SE,
Perrimon N, Liu Z, Bellen HJ, UDN. 2017. MARRVEL: Integration of Human and Model Organism Genetic
Resources to Facilitate Functional Annotation of the Human Genome. The American Journal of Human
Genetics 100:843–853. DOI: https://doi.org/10.1016/j.ajhg.2017.04.010, PMID: 28502612

Wenick AS, Hobert O. 2004. Genomic cis-regulatory architecture and trans-acting regulators of a single
interneuron-specific gene battery in C. elegans. Developmental Cell 6:757–770. DOI: https://doi.org/10.1016/j.
devcel.2004.05.004, PMID: 15177025

White JG, Southgate E, Thomson JN, Brenner S. 1986. The structure of the nervous system of the nematode
Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences 314:1–340.
DOI: https://doi.org/10.1098/rstb.1986.0056, PMID: 22462104

White JQ, Nicholas TJ, Gritton J, Truong L, Davidson ER, Jorgensen EM. 2007. The sensory circuitry for sexual
attraction in C. elegans males. Current Biology 17:1847–1857. DOI: https://doi.org/10.1016/j.cub.2007.09.011,
PMID: 17964166

Wu YC, Chen CH, Mercer A, Sokol NS. 2012. Let-7-complex microRNAs regulate the temporal identity of
Drosophila mushroom body neurons via chinmo. Developmental Cell 23:202–209. DOI: https://doi.org/10.
1016/j.devcel.2012.05.013, PMID: 22814608

Pereira et al. eLife 2019;8:e42078. DOI: https://doi.org/10.7554/eLife.42078 30 of 31

Research article Neuroscience

https://doi.org/10.1210/en.2012-2006
https://doi.org/10.1210/en.2012-2006
http://www.ncbi.nlm.nih.gov/pubmed/23291449
https://doi.org/10.1002/dvdy.20599
http://www.ncbi.nlm.nih.gov/pubmed/16247770
https://doi.org/10.1016/j.devcel.2006.09.017
http://www.ncbi.nlm.nih.gov/pubmed/17084364
https://doi.org/10.1016/S0012-1606(03)00208-2
http://www.ncbi.nlm.nih.gov/pubmed/12812784
https://doi.org/10.1016/j.cell.2013.09.052
https://doi.org/10.1016/j.cell.2013.09.052
http://www.ncbi.nlm.nih.gov/pubmed/24243022
https://doi.org/10.1016/j.cub.2016.11.045
http://www.ncbi.nlm.nih.gov/pubmed/28065609
https://doi.org/10.1534/genetics.117.202127
http://www.ncbi.nlm.nih.gov/pubmed/28684604
http://www.ncbi.nlm.nih.gov/pubmed/28684604
https://doi.org/10.1038/nn1326
http://www.ncbi.nlm.nih.gov/pubmed/15452575
https://doi.org/10.1146/annurev.genet.31.1.611
http://www.ncbi.nlm.nih.gov/pubmed/9442909
https://doi.org/10.1016/S1097-2765(00)80245-2
http://www.ncbi.nlm.nih.gov/pubmed/10882102
https://doi.org/10.1534/genetics.114.168831
http://www.ncbi.nlm.nih.gov/pubmed/25261698
https://doi.org/10.1016/j.devcel.2007.05.008
http://www.ncbi.nlm.nih.gov/pubmed/17609115
https://doi.org/10.1038/ng.383
https://doi.org/10.1038/ng.383
http://www.ncbi.nlm.nih.gov/pubmed/19448622
https://doi.org/10.1016/0012-1606(80)90352-8
https://doi.org/10.1016/0012-1606(80)90352-8
http://www.ncbi.nlm.nih.gov/pubmed/7409314
https://doi.org/10.1016/0012-1606(77)90158-0
http://www.ncbi.nlm.nih.gov/pubmed/838129
https://doi.org/10.1016/0012-1606(83)90201-4
https://doi.org/10.1016/0012-1606(83)90201-4
http://www.ncbi.nlm.nih.gov/pubmed/6684600
https://doi.org/10.1016/S0074-7742(05)69005-8
http://www.ncbi.nlm.nih.gov/pubmed/16492464
https://doi.org/10.1016/j.ajhg.2017.04.010
http://www.ncbi.nlm.nih.gov/pubmed/28502612
https://doi.org/10.1016/j.devcel.2004.05.004
https://doi.org/10.1016/j.devcel.2004.05.004
http://www.ncbi.nlm.nih.gov/pubmed/15177025
https://doi.org/10.1098/rstb.1986.0056
http://www.ncbi.nlm.nih.gov/pubmed/22462104
https://doi.org/10.1016/j.cub.2007.09.011
http://www.ncbi.nlm.nih.gov/pubmed/17964166
https://doi.org/10.1016/j.devcel.2012.05.013
https://doi.org/10.1016/j.devcel.2012.05.013
http://www.ncbi.nlm.nih.gov/pubmed/22814608
https://doi.org/10.7554/eLife.42078


Yang CF, Shah NM. 2014. Representing sex in the brain, one module at a time. Neuron 82:261–278.
DOI: https://doi.org/10.1016/j.neuron.2014.03.029, PMID: 24742456

Yemini E, Jucikas T, Grundy LJ, Brown AE, Schafer WR. 2013. A database of Caenorhabditis elegans behavioral
phenotypes. Nature Methods 10:877–879. DOI: https://doi.org/10.1038/nmeth.2560, PMID: 23852451

Yi W, Ross JM, Zarkower D. 2000. Mab-3 is a direct tra-1 target gene regulating diverse aspects of C. elegans
male sexual development and behavior. Development 127:4469–4480. PMID: 11003845

Yi W, Zarkower D. 1999. Similarity of DNA binding and transcriptional regulation by Caenorhabditis elegans
MAB-3 and Drosophila Melanogaster DSX suggests conservation of sex determining mechanisms.
Development 126:873–881. PMID: 9927589

Zhu H, Shah S, Shyh-Chang N, Shinoda G, Einhorn WS, Viswanathan SR, Takeuchi A, Grasemann C, Rinn JL,
Lopez MF, Hirschhorn JN, Palmert MR, Daley GQ. 2010. Lin28a transgenic mice manifest size and puberty
phenotypes identified in human genetic association studies. Nature Genetics 42:626–630. DOI: https://doi.org/
10.1038/ng.593, PMID: 20512147

Zou Y, Chiu H, Zinovyeva A, Ambros V, Chuang CF, Chang C. 2013. Developmental decline in neuronal
regeneration by the progressive change of two intrinsic timers. Science 340:372–376. DOI: https://doi.org/10.
1126/science.1231321, PMID: 23599497

Pereira et al. eLife 2019;8:e42078. DOI: https://doi.org/10.7554/eLife.42078 31 of 31

Research article Neuroscience

https://doi.org/10.1016/j.neuron.2014.03.029
http://www.ncbi.nlm.nih.gov/pubmed/24742456
https://doi.org/10.1038/nmeth.2560
http://www.ncbi.nlm.nih.gov/pubmed/23852451
http://www.ncbi.nlm.nih.gov/pubmed/11003845
http://www.ncbi.nlm.nih.gov/pubmed/9927589
https://doi.org/10.1038/ng.593
https://doi.org/10.1038/ng.593
http://www.ncbi.nlm.nih.gov/pubmed/20512147
https://doi.org/10.1126/science.1231321
https://doi.org/10.1126/science.1231321
http://www.ncbi.nlm.nih.gov/pubmed/23599497
https://doi.org/10.7554/eLife.42078

