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Quantifying the differences between networks is a
challenging and ever-present problem in network
science. In recent years, a multitude of diverse, ad hoc
solutions to this problem have been introduced.
Here, we propose that simple and well-understood
ensembles of random networks—such as Erd6s—Rényi
graphs, random geometric graphs, Watts-Strogatz
graphs, the configuration model and preferential
attachment networks—are natural benchmarks for
network comparison methods. Moreover, we show
that the expected distance between two networks
independently sampled from a generative model
is a useful property that encapsulates many key
features of that model. To illustrate our results, we
calculate this within-ensemble graph distance and related
quantities for classic network models (and several
parameterizations thereof) using 20 distance measures
commonly used to compare graphs. The within-
ensemble graph distance provides a new framework
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for developers of graph distances to better understand their creations and for practitioners to
better choose an appropriate tool for their particular task.

1. Introduction

Quantifying the extent to which two finite graphs structurally differ from one another is
a common, important problem in the study of networks. We see attempts to quantify the
dissimilarity of graphs in both theoretical and applied contexts, ranging from the comparison of
social networks [1-3], to time-evolving networks [4-8], biological networks [5], power grids and
infrastructure networks [9], object recognition [10], video indexing [11] and much more. Together,
these network comparison studies all seek to define a notion of dissimilarity or distance between
two networks and to then use such a measure to gain insights about the networks in question.

However, it is often unclear which network features a given graph distance will or will not
capture. For this reason, rigorous benchmarks must be established in order to better understand
the tendencies and biases of these distances. We adopt the perspective that random graph
ensembles are the appropriate tool to achieve this task. Specifically, by sampling pairs of graphs
from within a given random ensemble with the same parameterization and measuring the
graph distance between them, we create a benchmark that allows us to better understand the
sensitivity of a given graph distance to known statistical features of an ensemble. Ultimately, a
good benchmark would characterize the behaviour of graph distances between graphs sampled
from both within an ensemble and between different ensembles. We tackle the former in this
paper, noting a rich diversity of behaviours among commonly used graph distance measures.
Even though this work focuses on within-ensemble graph distances, these results guide our
understanding of how any two sets of networks structurally differ from each other regardless of
whether those sets are generated by the same random ensemble or another network-generating
process. Put simply, the approach introduced in this work is general and can be used to develop
a number of graph distance benchmarks.

There are many approaches used to quantify the dissimilarity between two graphs, and we
highlight 20 different ones here. Given the large number of algorithms considered in this work,
we find it useful to systematically characterize each of these measures. We do so by breaking them
down into “description-distance” pairs. That is, every graph distance measure can be thought of
as (i) computing some description or property of two graphs and (ii) quantifying the difference
between those descriptions using some distarnce metric.

(a) Formalism of graph distances
(i) Graph descriptors
Definition 1.1. A graph description ¥ is a mapping from a set of graphs G to a space D,
v.G—D. (1.1)

The set G is that of all finite labelled simple graphs, and the space D is known as the graph
descriptor space. Typically, D is RI*M for integers I, m or is a space of probability distributions.
Given a description ¥, the descriptor of graph G, denoted v, is the element of D to which G is
mapped; ¥ =¥ (G).

(ii) Descriptor distances

Definition 1.2. A distance maps a pair of descriptors to a non-negative real value,

d:DxD—Ry (1.2)
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and satisfies the following properties for all x,yy € D:

(i) d(x,y) =d(y, x) (symmetry)
(ii) d(x,x) =0 (identity law)

The properties listed in this definition are general and mirror those in the literature [12]. They
do not restrict the large possibility of measures we might use, while also providing a clean
separation between how we choose to describe graphs and how we calculate the differences
between those descriptions. A common property when considering distance measures is the
triangle inequality; however, we have not included this in the list above as not all commonly
used graph distances obey this property [13]. As in the case of pseudometrics, d(x, ) =0 does
not always imply x =y [7].!

(iiii) Graph distances

Definition 1.3. Given a set of graphs M C G, a graph description ¥, its descriptor space D,
and a distance d on D, the associated graph distance measure D: M x M — Ry is a function
defined by

D(G,G) =d(Yc, ¥c). (1.3)

Every graph distance quantifies some notion of dissimilarity between two graphs.?

(iv) Network spaces

Definition 1.4. Given a distance d and description ¥ on descriptor space D and a set of graphs
M C G, the associated network space, denoted (d, ¥, M), is the set of descriptors mapped to by
¥ from graphs in M, equipped with d as a distance measure.

The network space (d, ¥, M) consists of | M| points in D, namely {{g}gepm € D—giving rise
to [M|(|M] + 1)/2 distance values, one for each pair of descriptions of elements of M.

Fundamental questions naturally arise. Does a network space capture known properties of a
given ensemble of graphs? This question we can begin to answer by considering sets of graphs
with known properties: i.e. random graph models.

(v) Models

Definition 1.5. A model Mj is a process which generates a probability distribution P over
a set of graphs M C G, where « is a vector of parameters needed by the model to generate the
distribution.

Models (or null models) represent a collection of maximally random graphs constrained by
a set of parameters, which we use to generate sets of graphs [14]. The probability distribution
of model M; is then defined over the set of graphs that have non-zero probability of being
generated given the model and its parameters . For many well-known models, we have a deep
understanding of how the structure of sampled graphs is influenced by the parameter values.
Using our knowledge of how parameters affect graph structure, we can see how well the expected
features of a given model are reflected by the structure of each network space.

!For example, two cospectral but non-identical graphs would have distance zero according to any spectral distance measure.

2Throughout this paper, we use the term ‘graph distance’ or ‘distance’ to refer to a dissimilarity measure between two graphs
satisfying the properties we detail in §a. This language is somewhat imprecise from a mathematical perspective; many graph
distances do not meet all the criteria of distance metrics. We have chosen to keep the term ‘graph distance” at the cost of some
informality to maintain consistency with much of the existing literature we draw upon. We thank one of the anonymous
reviewers for their help in clarifying this matter.
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(b) This study

Herein, we apply a variety of graph distances to pairs of independently and identically sampled
networks from a variety of random network models, over a range of parameter values for each,
and consider the within-ensemble distance distribution as a function of the type of graph and
model parameters. While our focus is on the means of the distance distributions, we also include
the standard deviations in each figure. Ultimately, we report the within-ensemble graph distances
for 20 different graph distances from the software package, net r d.2 To our knowledge, this is the
largest systematic comparison of graph distances to date.

2. Methods

(@) Ensembles

We study the behaviour of (d, ¥, M) for sets of graphs sampled from M; under a variety of
parameterizations. There are many graph ensembles that one could use to compute within-
ensemble graph distances, and we begin by focusing on two broad classes: ensembles that
produce graphs with homogeneous degree distributions and those that produce graphs with
heterogeneous degree distributions. In total, we study the within-ensemble graph distance for
five different ensembles.

(i) Erd6s—Rényi random graphs

Graphs sampled from the Erd&s-Rényi model (ER), also known as G, p), have (undirected)
edges among n nodes, with each pair being connected with probability p [15,16]. This model
is commonly used as a benchmark or a null model to compare with observed properties of real-
world network data from nature and society. In our case, it allows us to explore the behaviour
of graph distance measures on dense and homogeneous graphs. In fact, this model maximizes
entropy subject to a global constraint on expected edge density, p.

One well-studied construction of this ensemble is when p = (k)/n, in which n nodes are
connected uniformly at random such that nodes in the resulting graph have an average degree of
(k). This ensemble is particularly useful for identifying which graph distance measures are able to
capture key structural transitions that happen as the average degree increases. For convenience,
we will refer to this ensemble as G, (k).

(i) Random geometric graphs

We work with random geometric graphs of n nodes and edge density p, generated by sprinkling n
coordinates uniformly into a one-dimensional ring of circumference 1, and connecting all pairs of
nodes whose coordinate distance (arc length) is less than or equal to p/2. Compared to G, y), this
model produces graphs that have a high average local clustering coefficient, which is a property
commonly found in real network data. Note that setting the connection distance to p/2 means
that p parameterizes the edge density exactly as in G, ) [17,18].

(iiii) Watts—Strogatz graphs

Watts-Strogatz (WS) graphs allow us to study the effects that random, long-range connections
have on regular lattices. A WS graph is initialized as a one-dimensional regular ring-lattice,
parameterized by the number of nodes n and the even-integer degree of every node (k) (each
node connects to the (k)/2 closest other nodes on either side). Each edge in the network is then
randomly rewired with probability p,, which generates graphs with both relatively high average
clustering and relatively short average path lengths for a wide range of p, € (0,1) [19].

3See https:/ / github.com/netsiphd /netrd /. This software package includes several more distances that were not included in
these analyses, and as it is an open-source project, we anticipate that it will be updated with new distance measures as they
continue to be developed.
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(iv) (Soft) configuration model with power-law degree distribution

We generate expected degree sequences from distributions with power-law tails with a mean of
(k). We construct an instance of a ‘soft’ configuration model, the maximum entropy network
ensemble with a given sequence of expected degrees, by connecting node-pairs with probabilities
determined via the method of Lagrange multipliers [20-22]. Through this method, we are able
to construct networks with a tunable degree exponent, y. The degree exponents that we test
range from those that skew the distribution heavily, resulting in a highly heterogeneous ultra-
small-world network (y €(2,3)), to those that generate more homogeneous networks (y > 3).
In contrast to the homogeneous ensembles we tested—all of which have homogeneous degree
distributions—the requirement of heterogeneity in these graphs constrains the possible edge
densities to be vanishingly small. Otherwise, in the high-edge density regime, degrees cannot
fluctuate to appreciably larger-than-average values, and we have a natural degree scale imposed
by the network size.

(v) Nonlinear preferential attachment

The final ensemble of networks included here are grown under a degree-based nonlinear
preferential attachment mechanism [23-25]. A network of n nodes is grown as follows: each
new node is added to the network sequentially, connecting its 7 edges to nodes already in the
network v; € V with probability IT; =k’ / Z]- k}", where k; is the degree of node v; and o modulates
the probability that a given node already in the network will collect new edges. When o =1, this
model generates networks with a power-law degree distribution (with degree exponent y =3),
and a condensation regime emerges as n — 0o when « > 2, producing a star network with O(n)
nodes all connected to a main hub node [25].

(b) Graph distance measures

The study of network similarity and graph distance has yielded many approaches for comparing
two graphs [5,26]. Typically, these methods involve comparing simple descriptors based on
either aggregate statistical properties of two graphs—such as their degree or average path length
distributions [4]—or intrinsic spectral properties of the two graphs, such as the eigenvalues of
their adjacency matrices, or of other matrix representations [27]. The description distances also
tend to fall into two broad categories: either classic definitions of norms or distances based
on statistical divergence. While different approaches are better suited for capturing differences
between certain types of graphs, they obviously are expected to share several properties.

The simplest graph distances aggregate element-wise comparisons between the adjacency
matrices of two graphs [28-31] and extensions thereof [32]; these methods depend explicitly on
the node labelling scheme (and hence are not invariant under graph isomorphism [33]), which
may limit their utility when comparing graphs with unknown labels (e.g. graphs sampled from
random graph ensembles, as we do here). Several measures collect empirical distributions [34] or
a ‘signature’ vector [1] from each graph and take the distance between them (using the Jensen-
Shannon divergence, Canberra distance, earth mover’s distance etc.4), which, among other
things, facilitates comparison of differently sized graphs [4,36]. Another family of approaches
compare spectral properties of certain matrices characterized by the graphs [37], such as the non-
backtracking matrix [7,38] or Laplacian matrix [27]. The relevant spectral properties associated
with these distances are invariant under graph isomorphism [33,39]. Some graph distances have
been shown to be metrics (i.e. they satisfy properties such as triangle inequality, etc.) [13], whereas
others have not. These are not exhaustive descriptions of every graph distance in use today,
but they represent coarse similarities between the various methods. We summarize the 20 graph
distances we consider in table 1 and more extensively define them in electronic supplementary
material, B.

*From our preliminary analyses, the particular choice of metric can dramatically change the distance values, though we do
not report this here. For an extensive description of distance metrics in general, see [12,35].
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Table 1. Graph distances. Distance measures used to systematically compare graphs in this work, as well as their abbreviated
labels, and their sources. Lap., Laplacian; Gauss., Gaussian; Loren, Lorenzian; JSD, Jensen—Shannon divergence; Euc., Euclidian
distance.

1 Jaccard [29] JAC

Table 2. Experiment parameterization. Here, we report the ensembles that were used in these experiments,
as well as their parameterizations. For G,y and WS key parameters, we span 100 values, spaced
logarithmically, between the values above. Parameter labels: n, networksize; p = density; (k) = average degree;
Dy, probability that a random edge is randomly rewired; 7y, power-law degree exponent; ¢, preferential attachment kernel.
Note: In electronic supplementary material, A, we show how the within-ensemble graph distance changes as n increases.

ensemble fixed parameter(s) key parameter

Ginp) p € {0.02,0.06, . . .,0.98}
................... RGGpe{002006098}

) kye{0™*,...,n)
................... WSp,e{10*410°}
................... G ye{201206601}
................... PAae{—5—4955}

(c) Description of experiments

See table 2 for the full parameterization of these sampled graphs. In each experiment, we generate
N = 10? pairs of graphs for every combination of parameters. With these sampled random graphs,
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we measure the distance between pairs from the same parameterization of the same model,
M;, and report statistical properties of the resulting vectors of distances. In other words, our
experiments consist of calculating mean within-ensemble graph distances,

(Dy= > D(G,G)Pz(G)Ps(G), 2.1)
G,Geg
where Py :G —[0,1] (or P; when its meaning is unambiguous) is the graph probability
distribution for model M. This is estimated by sampling N> 1 graph-pairs {(G;, G;)}fi ; and
computing

1 N
(D)~ < 3 D(Gi, G). (22)
i=1

We then study the behaviour of (D) for various M;. The error on the mean within-ensemble
graph distance is estimated from the following standard error of the mean opy ~ op/+/N, where
op is the standard deviation on the within-ensemble graph distance D, estimated by sampling as
well. For all experiments, we used N = 103 pairs of graphs, which is sufficient in general as can be
seen from the small standard error relative to the mean in all figures. In each plot, we also include
the standard deviations op of the within-ensemble graph distances, and we highlight when the
standard deviation offers particularly notable insights into the behaviour of certain distances.

Lastly, there are several distances that assume alignment in the node labels of G and G'.
Because we are sampling from random graph ensembles, the networks we study here are not
node-aligned, and as such, care should be taken when interpreting the output of these graph
distances. For every description of graph distances in electronic supplementary material, B, we
note if node alignment is assumed.

3. Results

In the following sections, we broadly describe the behaviour of the mean within-ensemble graph
distance (in general denoted (D)) for the distance measures tested. The general structure of this
section is motivated by critical properties of the ensembles studied here. We highlight features of
the within-ensemble graph distance for two broad characterizations of networks: homogeneous
and heterogeneous graph ensembles, focusing on specific ensembles within each category.

All of the main results from the experiments described below are summarized in table 3, which
practitioners may find especially useful when considering which tools to use for comparing
networks with particular structures. When relevant, we highlight certain distance measures to
emphasize interesting within-ensemble graph distance behaviours.

(a) Results for homogeneous graph ensembles
(i) Dense graph ensembles

Here, we present our results for the two models that produce homogeneous and dense graphs.

The G,y model possesses three notable features that we might expect graph distance
measures to recover. Note that while we might expect graph distances to recover these features,
we are not asserting that every graph distance measure should capture these properties.

(i) The size of the ensembles shrink to a single isomorphic class in the limitsp — Oand p — 1,
corresponding respectively to an empty and complete graph of size 1. In both limits, we
might therefore expect (D(My,)) to go to zero for any method that considers unlabelled
graphs.

(ii) The G,y model creates ensembles of graphs and graph complements symmetric under
the change of variable p’ =1 — p. By definition, every graph G has a complement G such
that every edge that does (or does not) exist in G does not (or does) exist in G. Therefore,
for every graph in Gy, ), one can expect to find its complement occurring with the same
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probability in G,,1-). We might expect (D(Mp,p)) = (D(Mp,1-p)) if graph distances can
capture this symmetry.

(iii) A density of p:% produces the G, ensemble with maximal entropy (all graph
configurations have an equal probability). As a result, we might also expect (D(M,,p))
to have a global maximum at p = %

The RGG model shares features 1 and 3 with the G(,,,p) model, but not feature 2. Moreover,
the most significant differences between the two models is that edges are not independent in
the RGG model. Correlations between edges lead to local structure (i.e. higher-order structures
like triangles) and to correlations in the degree distribution. We therefore do not expect distance
measures focused on the degree distribution to produce exactly the same mean within-ensemble
distance curve in RGG as in Gg, ). Conversely, any distance measure that does produce the
exact same within-ensemble distance curve for RGG and G;,p) either fails to account for these
correlations, or the effect of these correlations is negligible on the overall distance between two
graphs drawn from the ensemble. This is the case for HAM Hl Mand FRQO.

Our results for homogeneous graph ensembles are shown in figure 1. Only 5 out of 20
graph distances capture all the features discussed above, namely: HAM H M FRO, PCD, DJS.
Notably, these are some of the simplest methods considered. In fact, these include two in which
theoretical predictions for ER graphs precisely match the observed results for both ER graphs and
RGGs, despite no consideration of RGGs having been included in such calculations. In one case
(FRO), ER graphs and RGGs behave identically, yet there is also an n-dependence (see electronic
supplementary material, figure Al).

(ii) Sparse graph ensembles

While the previous section highlighted dense RGG and ER networks, we now turn to the within-
ensemble graph distance of sparse homogeneous graphs sampled from G, ;), such that p = (k) /n.
In the case of sparse graphs, the edge density decays to zero in the n — oo limit as the mean
degree (k) remains fixed. We found it important to cast this distinction between dense G,
because of critical transitions that take place as (k) increases. As network scientists, these early
transition points in sparse networks are foundational, with implications for a number of network
phenomena (i.e. the occurrence of outbreaks in disease models [44], etc.).

In fact, the presence of such critical transitions in random graph models underscores the
utility of this approach for studying graph distance measures. That is, a sudden change in
the within-ensemble graph distance signals abrupt changes in the probability distribution over
the set of graphs in the ensemble (i.e. the emergence of novel graph structures that are markedly
different from the greater population of graphs in an ensemble). This may show up as a local or
global maximum within-ensemble graph distance near parameter values for which this transition
occurs. Conversely, if a sudden decrease in within-ensemble graph distance is observed, then
there may be a sudden disappearance or reduction in largely dissimilar graphs in the ensemble.

In the case of Gy ) where p = (k)/n, which we will refer to with the shorthand, G, )), the
following critical transitions emerge:

(iv) At (k) =1, we see the emergence of a giant component in ER networks (likewise, a 2-core
emerges at (k) = 2). We might expect, for example, a within-G, ) graph distance to have
a local maximum at such values.

Ultimately, we observe that distance measures that are fundamentally associated with flow-
based properties of the network (i.e. if a distance measure is based on a graph’s Laplacian matrix,
communicability, or other properties important to diffusion, such as path-length distributions
etc.) are the ones most sensitive for picking up on this property (figure 2).5

*Note that the two distance measures based on the non-backtracking matrix (NBD and DNB) are undefined in graphs without
a 2-core, restricting their range in figure 2.
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Figure 1. Mean and standard deviations of the within-ensemble distances for G, ) and RGG. By repeatedly measuring the
distance between pairs of G, ;) and RGG networks of the same size and density, we begin to see characteristic behaviour in both
the graph ensembles as well as the graph distance measures themselves. In each subplot, the mean within-ensemble graph
distance is plotted as a solid line with a shaded region around for the standard error ((D) = o/p); note that in most subplots
above, the standard error is too small to see), while the dashed lines are the standard deviations. (Online version in colour.)

What figure 2 highlights, which the dense ensembles in figure 1 could not, is the rich and varied
behaviour characteristic of sparse graphs. For example, the distance measures with maxima at
p= % (HAM HI M FRO, POD, DJ§, etc.) are still seen in figure 2, but the emphasis is instead on the
degree as opposed to the edge density; given that most real-world networks are sparse [45], this
view of the same parameter is especially informative.

Importantly, while the qualitative behaviours discussed here are general features of the models
and distances, the quantitative value of the average within-ensemble graph distance also depends
on network size. There are no specific structural transitions to discuss around this dependency,
but it can be an important problem when comparing networks of different sizes without a good
understanding of how network distances might behave. Interested readers can find our results in
electronic supplementary material, A, where we use G, ) to vary network size while keeping
all other features fixed.

(iii) Small-world graphs

The final homogeneous graph ensemble studied here is the WS model. This model generates
networks that are initialized as lattice networks, and edges are randomly rewired with probability,
pr. At certain values of p,, we see two key phenomena occur:

(v) “Entry” into the small-world regime: Even as the edges in the network are minimally
rewired, the average path length quickly decreases relative to its initial (longer) value.
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Within-ensemble graph distances: G, w (= 500)
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Figure 2. Mean and standard deviations of the within-ensemble distances for G, (1)) networks. Here, we generate pairs of
ER networks with a given average degree, (k), and measure the distance between them with each distance measure. In each
subplot, we highlight (k) =1and (k) = 2. In each subplot, the mean within-ensemble graph distance is plotted as a solid
line with a shaded region around for the standard error ((D) % o(p); note that in most subplots above, the standard error is

too small

(vi)

to see), while the dashed lines are the standard deviations. (Online version in colour.)

This is highlighted by the blue curve in figure 3, corresponding to L, /Lo, where Lo is the
average path length before any edges have been rewired. For the parameterizations used
in this study, the largest (negative) slope of this curve is at p, ~ 2 x 1073. We might expect
a within-ensemble graph distance to be sensitive to this or nearby values of p,, as this
region corresponds to changes in the graphs’ common structural features.

“Exit” from the small-world regime: After enough edges have been rewired, the network
loses whatever clustering it had from originally being a lattice, reducing to approximately
the clustering of an ER graph. This is highlighted by the violet curve in figure 3,
corresponding to Cp/Cp, where C is the average clustering before any edges have been
rewired. For the parameterizations used in this study, the largest (negative) slope of this
curve is at p, ~ 3 x 1071, Again, we might expect a within-ensemble graph distance to be
sensitive to this large decrease in clustering.

Together, the above features characterize WS networks. Importantly, we are interested in
whether a distance measure is sensitive to these ‘entry” and ‘exit’ values of p,; sensitive here
is deliberately broadly defined. For instance, as in the case of CSE, we observe a reduction in
within-ensemble graph distance at a rate that almost exactly resembles the rate at which C,/Co

decays.

Alternatively, a distance measure can be sensitive to these critical points by having a local

maximum at or around the critical point. In the case of POR, we see that the within-ensemble
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Within-ensemble graph distances: Watts—Strogatz (n =500, k= 8)
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Figure 3. Mean and standard deviations of the within-ensemble distances for Watts—Strogatz networks. Here, we generate
pairs of Watts—Strogatz networks with a fixed size and average degree but a variable probability of rewiring random edges, p;.
In each subplot, we also plot the clustering and path length curves as in the original Watts—Strogatz paper [19] to accentuate
the ‘small-world’ regime with high clustering and low path lengths. The mean within-ensemble graph distance is plotted as a
solid line with a shaded region around for the standard error ((D) & op); note that in most subplots above, the standard error
is too small to see), while the dashed lines are the standard deviations. (Online version in colour.)

graph distance is maximized at approximately the same point as the largest (negative) slope of
the L, /Lo curve.

Here, insensitivity to these critical points is also an informative property to highlight in a
distance measure. As one example, HAMappears to be otherwise unaffected by the ‘exit’ from the
small-world regime, with distances increasing steadily despite the model generating networks
with dramatic structural differences.

Lastly, we ask whether the within-ensemble graph distance of random networks (i.e. when
pr— 1) is greater than that of small-world networks; this is indicated by a within-ensemble
graph distance curve that is higher at p, =1 than those between 1072 < p, <107! in figure 3.
This property holds for distance measures that depend on node labelling (e.g. JAC, HAM H M
FRO, POD) but also for DJS—which is intuitive, since more noise increases the variance of the
degree distribution—as well as a few puzzling distances: QJS, DCN and the two based on the
non-backtracking matrix, NBD and DNB (figure 4).

(b) Results for sparse heterogeneous ensembles

The sparse graph setting is much closer to that of real networks, which often also have heavy-
tailed degree distributions [46]. This motivated the selection of the following two heterogeneous,
sparse ensembles.
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Within-ensemble graph distances: soft configuration model (n=1000, k=12)
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Figure 4. Mean and standard deviations of the within-ensemble distances for soft configuration model networks with varying
degree exponent. Here, we generate pairs of networks from a (soft) configuration model, varying the degree exponent, /, while
keeping (k) constant (n = 1000). In each subplot, we highlight > = 3. The mean within-ensemble graph distance is plotted
as a solid line with a shaded region around for the standard error ((D) &= o (p; note that in most subplots above, the standard
error is too small to see), while the dashed lines are the standard deviations.

(i) Soft configuration model: heavy-tailed degree distribution

We study these graphs using a (soft) configuration model with a power-law expected degree
distribution; i.e. the expected degree « of a node is drawn proportionally to « 7. From this model,
we expect two important features that graph distance measures could recover:

(vii) For y <3, we know the variance of the degree diverges in the limit of large graph size
n [46]. Since there should be large variations on the degree sequences for two finite
instances, we might also expect the graph distances to produce maximal distance (D).

(viii) We might also expect a monotonic decay in the within-ensemble graph distance as y
increases. For large y, most expected node-degrees will be approximately the average
degree, making the network as a whole structurally similar to an ER graph. On the other
hand, when y is small (especially when y < 3), there is a wide diversity in the degrees
of nodes within the graph, and of the expected degrees of nodes across graphs (since
expected degrees are i.i.d. sampled from a Pareto distribution).

Out of the 20 studied, most distances capture both of these features. Since y tunes the degree-
heterogeneity (larger y yielding more homogeneous graphs), a decrease in the average distance
among pairs of graphs might be expected. For large y, most expected node-degrees will be
approximately the average degree, making the network as a whole structurally similar to an ER
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graph. On the other hand, when y is small (especially when y < 3), there is a wide diversity in
the degrees of nodes within the graph, and of the expected degrees of nodes across graphs (since
expected degrees are i.i.d. sampled from a Pareto distribution). Thus a reasonable expectation
would be that pairs of graphs on average become further apart as y is decreased. This is observed
in many distances, but with the exceptions of Q'S and REP, which each instead exhibit maxima
at certain finite values of y > 2. Additionally, several distances (HAM POR, NBD and NES) appear
to decay monotonically beyond some very small value of y, below which they have a slightly
smaller value. This fact could have arisen as a finite-size effect or due to some other details of the
implementation, since fluctuations become highly pronounced as y — 2.

Only one graph distance produces completely unexpected behaviour: DCN yields (D) that
monotonically increases with the scale exponent y of the degree distribution, and its standard
deviation is minimized when y ~ 3. We will expand upon this in the following section.

(ii) Nonlinear preferential attachment

The final ensemble we include here is the nonlinear preferential attachment growth model.
By varying the preferential attachment kernel, parameterized by «, we can capture a range of
network properties:

(ix) As a — —oo, this model generates networks with maximized average path lengths,
whereby each new node connects its m links to nodes with the smallest average degree;
conversely o — oo generates star-like networks [47], an effect known as condensation.

(x) At o =1, linear preferential attachment, we see the emergence of scale-free networks
[23], whereas uniform attachment « =0 gives each node an equal chance of receiving
the incoming node’s links.

When « =1, this ensemble theoretically generates networks with power-law degree
distributions (with degree exponent, y =3 [24]), which is reminiscent of the results in figure 5
where we measure the within-ensemble graph distances while varying y .

Various mean within-ensemble distances are maximized in the range « €[1,2], which is
indicative of the diversity of possible graphs that can be produced by the preferential attachment
mechanism in the small-o regime. For « « 0, newly arriving nodes connect primarily to the
lowest-degree existing nodes (for example, leading to long chains of degree-2 nodes when m = 1),
making many distance measures record i.i.d. pairs of graphs as similar. For « > 0, new nodes
tend to connect to the highest-degree existing node, leaving a star-like network—then likewise
many graph-pairs are deemed very similar. In the intermediate range (e.g. linear preferential
attachment, « = 1), a much wider variety of possible graphs can arise. Thus on average, i.i.d.
pairs are (usually) measured as furthest apart in that range.

For preferential attachment networks, we again see curious behaviour for DCN where,
unlike most other distance measures, heterogeneous graphs with 1 <« < 2 have smaller within-
ensemble graph distances than more homogeneous graphs « < 0. Upon closer examination, we
know why this happens, and to conclude this section, we will walk through the anatomy of DCN
and show why its behaviour is often different than the other distance measures studied here,
especially for heterogeneous networks.

The descriptor, ¢ that DCN is based off of is an affinity matrix of the graph (constructed from
a belief propagation algorithm, see electronic supplementary material, B, for full methodology),
while the distance is calculated using the Matusita distance (similar to the Euclidean distance).
The authors note that they selected this distance because they found that it gave more desirable
results: ‘- - - it “boosts” the node affinities and, therefore, detects even small changes in the graphs
(other distance measures, including [Euclidean distance], suffer from high similarity scores no
matter how much the graphs differ)’ [2]. What the choice of the Matusita distance has apparently
obscured, however, is a greater specificity for distinguishing heterogeneous networks. We know
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Within-ensemble graph distances: preferential attachment networks (n =500, m=2)
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Figure 5. Mean and standard deviations of the within-ensemble distances for preferential attachment networks. Here, we
generate pairs of preferential attachment networks, varying the preferential attachment kernel, o, while keeping the size and
average degree constant. As @« — o0, the networks become more and more star-like, and at o =1, this model generates
networks with power-law degree distributions. The mean within-ensemble graph distance is plotted as a solid line with a
shaded region around for the standard error ((D) & op; note that in most subplots above, the standard error is too small
to see), while the dashed lines are the standard deviations. (Online version in colour.)

this because of preliminary experiments where the Matusita distance is swapped out for a Jensen—
Shannon divergence (as in, for example, CSE); this resulting within-ensemble graph distance is
maximized for heterogeneous networks (1 <« < 2).

Finally, as we note in §i, we are not asserting that a graph distance measure should detect
the unique behaviour of linear preferential attachment (¢ =1). Nor are we advocating for
practitioners to abandon the use of DCN. What we are claiming, however—and why we chose
to focus on DCNin this section—is that we need useful benchmarks for understanding the effects
of choosing one descriptor-distance pairing over another. Furthermore, this benchmark should be
based on the within-ensemble graph distances from well-known ensembles.

4. Discussion

Graph ensembles are core to the characterization and broader study of networks. Graphs sampled
from a given ensemble will highlight certain observable features of the ensemble itself, and in
this work, we have used the notion of graph distance to further characterize several commonly
studied graph ensembles. The present study focused on one of the simplest quantities to construct
given a distance measure and a graph ensemble, namely the mean within-ensemble distance
(D). Note, however, that there are many ensembles for which the present methods could be
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repeated, as well as more graph distance measures, and infinitely many other statistics that could
be examined from the within-ensemble distance distribution. Despite examining the within-
ensemble graph distances for only five different ensembles, we observed a richness and variety of
behaviours among the various distance measures tested. We view this work as the starting point
for more inquiries into the relationship between graph ensembles and graph distances.

One promising future direction for the study of within-ensemble graph distances is the
prospect of deriving functional forms for various distance measures, as we do for JAC, HAMand
FROin electronic supplementary material, C. Other distance measures, such as DJS, likely have
approximate analytical expressions derived for certain graph ensembles.

We have here only studied the behaviour of graphs within a given ensemble and
parameterization, which is essentially the simplest possible choice. This leaves wide open
any questions regarding distances between graphs sampled from different ensembles—or even
different from two different parameterizations of the same ensemble. These will be the topic of
follow-up works. Nevertheless, such follow-ups will likewise only cover a very small fraction of
all possible combinations.

We hope that our approach will provide a foundation for researchers to clarify several aspects
of the network comparison problem. First, we expect that practitioners will be able to use the
within-ensemble graph distance in order to rule out suboptimal distance measures that do not
pick up on meaningful differences between networks in their domain of interest (e.g. what is an
informative ‘description-distance” comparison between brain networks may not be as informative
when comparing, for example, infection trees in epidemiology). Second, we expect that this work
will provide a foundation for researchers looking to develop new graph distance measures (or
hybrid distance measures, such as Hl M that are more appropriate for their particular application
areas.

There were 20 different graph distances used in this work, with undoubtedly more that
we have not included. Each of these measures seek to address the same thing: quantifying
the dissimilarity of pairs of networks. We see the current work as an attempt to consolidate
all such methods into a coherent framework—namely, casting each distance measure as a
mapping of two graphs into a common descriptor space, and the application of a distance
measure within that space. Not only that, we also suggest that stochastic, generative, graph
models—because of known structural properties and certain critical transition points in their
parameter space—are the ideal tool to use for characterizing and benchmarking graph distance
measures.

Classic random graph models can fill an important gap by providing well-understood
benchmarks on which to test distance measures before using them in applications. Much like in
other domains of network science, having effective and well-calibrated comparison procedures
is vital, especially given the great diversity of graph ensembles under study and of networks in
nature.

Data accessibility. The experiments in this paper were conducted using the net r d Python package github.com/
netsiphd/netrd [48]. Replication materials can be found at github.com /jkbren/wegd.

Authors’ contributions. All authors contributed to the conception of the project. H-H., A.D. and L.H.D. devised the
formalism used in this work. H.H., B.K. and S.M. conducted simulations of the within-ensemble distances.
S.M. led the development of the net r d software package that was used to perform the analyses. All authors
contributed to writing the manuscript. All authors approved the final version and agree to be accountable for
all aspects of the work. H.H. and B.K. contributed equally.

Competing interests. We declare we have no competing interests.

Funding. B.K. acknowledges support from the National Defense Science and Engineering Graduate Fellowship
(NDSEG) Program. G.S. and C.M. acknowledge support from the Natural Sciences and Engineering Research
Council of Canada and the Sentinel North program, financed by the Canada First Research Excellence Fund.
L.H.D. and A.D. acknowledge support from the National Science Foundations grant no. DMS-1829826. This
work was supported in part by the Network Science Institute at Northeastern University and the Vermont
Complex Systems Center.

PHL06L07 9Lk 1 205§ 204g edsy/jeuol/BioBulysiigndiiaosiefos


github.com/netsiphd/netrd
github.com/netsiphd/netrd
github.com/jkbren/wegd

Acknowledgements. The authors thank Tina Eliassi-Rad, Dima Krioukov, Johannes Wachs and Leo Torres for
helpful comments about this work throughout.

References

1.

2.

10.

11.

12.

13.

14.
15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

Berlingerio M, Koutra D, Eliassi-Rad T, Faloutsos C. 2012 NetSimile: a scalable approach to
size-independent network similarity. (http:/ /arxiv.org/abs/1209.2684)

Koutra D, Vogelstein JT, Faloutsos C. 2016 DeltaCon: principled massive-graph similarity
function with attribution. ACM Trans. Knowl. Discov. Data 10, 1-43. (doi:10.1145/2824443)

. Tsitsulin A, Mottin D, Karras P, Bronstein A, Miiller E. 2018 NetLSD: Hearing the shape of

a graph. In Proc. of the 24th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining.
2347-2356. (doi:10.1145/3219819.3219991).

. Bagrow J, Bollt E. 2019 An information-theoretic, all-scales approach to comparing networks.

Appl. Netw. Sci. 45, 1-15. (d0i:10.1007 /s41109-019-0156-x)

. Donnat C, Holmes S. 2018 Tracking network dynamics: a survey using graph distances. Ann.

Appl. Stat. 12,971-1012. (d0i:10.1214/18-AOAS1176)

. Masuda N, Holme P. 2019 Detecting sequences of system states in temporal networks. Sci.

Rep. 9,795. (d0i:10.1038 /s41598-018-37534-2)

. Torres L, Sudrez-Serrato P, Eliassi-Rad T. 2019 Non-backtracking cycles: Length spectrum

theory and graph mining applications. Appl. Netw. Sci. 4, 41 (d0i:10.1007 /s41109-019-0147-y)

. Monnig N, Meyer F. 2018 The resistance perturbation distance: a metric for the analysis of

dynamic networks. Discrete Appl. Math. 236, 347-386. (doi:10.1016/j.dam.2017.10.007)

. Schieber T, Carpi L, Diaz-Guilera A, Pardalos P, Masoller C, Ravetti M. 2017 Quantification

of network structural dissimilarities. Nat. Commun. 13928, 1-10. (d0i:10.1038 /ncomms13928)
Wilson R, Zhu P. 2008 A study of graph spectra for comparing graphs and trees. Pattern
Recognit. 41, 2833-2841. (doi:10.1016/j.patcog.2008.03.011)

Bunke H, Shearer K. 1998 A graph distance metric based on the maximal common subgraph.
Pattern Recognit. Lett. 19, 255-259. (doi:10.1016/S0167-8655(97)00179-7)

Deza MM, Deza E. 2009 Encyclopedia of distances. New York, NY: Springer (esp. Section 1.1, pp.
3-10).

Bento J, Ioannidis S. 2019 A family of tractable graph distances. Appl. Netw. Sci. 4, 1-27.
(d0i:10.1007 /s41109-019-0219-z)

Newman M. 2018 Networks. Oxford, UK: Oxford University Press.

Erdés P, Rényi A. 1959 On random graphs. Publicationes Mathematicae 6, 290-297.
(doi:10.2307 /1999405)

Bollobas B. 1980 A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. Eur. |. Comb. 4, 311-316. (doi:10.1016/50195-6698(80)80030-8)

Dall J, Christensen M. 2002 Random geometric graphs. Phys. Rev. E 66, 016121.
(doi:10.1103/PhysRevE.66.016121)

Penrose M. 2003 Random geometric graphs. Oxford, UK: Oxford University Press.

Watts D, Strogatz S. 1998 Collective dynamics of ‘small-world” networks. Nature 393, 440-442.
(doi:10.1038/30918)

Park J, Newman M. 2004 Statistical mechanics of networks. Phys. Rev. E 70, 066117.
(doi:10.1103 /PhysRevE.70.066117)

Garlaschelli D, Loffredo M. 2008 Maximum likelihood: extracting unbiased information from
complex networks. Phys. Rev. E 78, 015101. (d0i:10.1103 /PhysRevE.78.015101)

Cimini G, Squartini T, Saracco F, Garlaschelli D, Gabrielli A, Caldarelli G. 2019 The statistical
physics of real-world networks. Nat. Rev. Phys. 1, 58-71. (doi:10.1038 /s42254-018-0002-6)
Barabasi A, Albert R. 1999 Emergence of scaling in random networks. Science 286, 509-512.
(doi:10.1126/science.286.5439.509)

Albert R, Barabési A. 2002 Statistical mechanics of complex networks. Rev. Mod. Phys. 74,
47-97. (doi:10.1103/RevModPhys.74.47)

Krapivsky PL, Redner S, Leyvraz F. 2000 Connectivity of growing random networks. Phys.
Rev. Lett. 85, 4629-4632. (doi:10.1103/RevModPhys.74.47)

Wills P, Meyer F. 2020 Metrics for graph comparison: a practitioner’s guide. PLoS ONE 15,
€0228728. (d0i:10.1371/journal.pone.0228728)

Jurman G, Visintainer R, Furlanello C. 2011 An introduction to spectral distances in networks.
Neural Nets WIRNI0: Proceedings of the 20th Italian Workshop on Neural Nets. 227-234.
(doi:10.3233 /978-1-60750-692-8-227)

Y0610 9k ¥ 205§ 204d edsyjeunol/BioBuysiigndiiaposiefos H


http://arxiv.org/abs/1209.2684
http://dx.doi.org/doi:10.1145/2824443
doi:10.1145/3219819.3219991
http://dx.doi.org/doi:10.1007/s41109-019-0156-x
http://dx.doi.org/doi:10.1214/18-AOAS1176
http://dx.doi.org/doi:10.1038/s41598-018-37534-2
http://dx.doi.org/doi:10.1007/s41109-019-0147-y
http://dx.doi.org/doi:10.1016/j.dam.2017.10.007
http://dx.doi.org/doi:10.1038/ncomms13928
http://dx.doi.org/doi:10.1016/j.patcog.2008.03.011
http://dx.doi.org/doi:10.1016/S0167-8655(97)00179-7
http://dx.doi.org/doi:10.1007/s41109-019-0219-z
http://dx.doi.org/doi:10.2307/1999405
http://dx.doi.org/doi:10.1016/S0195-6698(80)80030-8
http://dx.doi.org/doi:10.1103/PhysRevE.66.016121
http://dx.doi.org/doi:10.1038/30918
http://dx.doi.org/doi:10.1103/PhysRevE.70.066117
http://dx.doi.org/doi:10.1103/PhysRevE.78.015101
http://dx.doi.org/doi:10.1038/s42254-018-0002-6
http://dx.doi.org/doi:10.1126/science.286.5439.509
http://dx.doi.org/doi:10.1103/RevModPhys.74.47
http://dx.doi.org/doi:10.1103/RevModPhys.74.47
http://dx.doi.org/doi:10.1371/journal.pone.0228728
http://dx.doi.org/doi:10.3233/978-1-60750-692-8-227

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Golub G, van Loan C. 2013 Matrix computations. Baltimore, MD: JHU Press. 1421407949
9781421407944.

Jaccard P. 1901 Etude de la distribution florale dans une portion des Alpes et du Jura. Bull. de
la Societe Vaudoise des Sciences Naturelles 37, 547-579. (d0i:10.5169/seals-266450)

Hamming RW. 1950 Error detecting and error correcting codes. Bell Syst. Tech. ]. 29, 147-160.
(doi:10.1016/50016-0032(23)90506-5)

Gao X, Xiao B, Tao D, Li X. 2010 A survey of graph edit distance. Pattern Anal. Appl. 13,
113-129. (doi:10.1109/GlobalSIP.2013.6736904)

Wallis W, Shoubridge P, Kraetz M, Ray D. 2001 Graph distances using graph union. Pattern
Recognit. Lett. 22, 701-704. (doi:10.1016/50167-8655(01)00022-8)

Chowdhury S, Mémoli F. 2017 Distances and isomorphism between networks and the
stability of network invariants. (http:/ /arxiv.org/abs/1708.04727)

Carpi L, Rosso O, Saco P, Ravetti M. 2011 Analyzing complex networks evolution through
information theory quantifiers. Phys. Lett. A 375, 801-804. (doi:10.1016/j.physleta.2010.12.038)
Emmert-Streib F, Dehmer M, Shi Y. 2016 Fifty years of graph matching, network alignment
and network comparison. Inf. Sci. 346, 180-197. (d0i:10.1016/j.ins.2016.01.074)

Meila M. 2007 Comparing clusterings-an information based distance. J. Multivariate Anal. 98,
873-895. (d0i:10.1016/j.jmva.2006.11.013)

Jurman G, Visintainer R, Filosi M, Riccadonna S, Furlanello C. 2015 The HIM glocal metric
and kernel for network comparison and classification. In Proc. of the 2015 IEEE Int. Conf. on
Data Science and Advanced Analytics, DSAA. 1-10. (doi:10.1109/DSAA.2015.7344816).

Mellor A, Grusovin A. 2019 Graph comparison via the nonbacktracking spectrum. Phys. Rev.
E 99, 052309. (d0i:10.1103 /PhysRevE.99.052309)

van Steen M. 2010 Graph theory and complex networks. An Introduction. Amsterdam, The
Netherlands: Maarten van Steen. 978-90-815406-1-2.

De Domenico M, Biamonte J. 2016 Spectral entropies as information-theoretic tools for
complex network comparison. Phys. Rev. X 6,041062. (d0i:10.1103 /PhysRevX.6.041062)
Chen D, Shi DD, Qin M, Xu SM, Pan GJ. 2018 Complex network comparison based on
communicability sequence entropy. Phys. Rev. E 98, 012319. (d0i:10.1103 / PhysRevE.98.012319)
Hammond D, Gur Y, Johnson C. 2013 Graph diffusion distance: a difference measure
for weighted graphs based on the graph Laplacian exponential kernel. In 2013 IEEE
Global Conf. on Signal and Information Processing, GlobalSIP 2013 - Proceedings. 419-422.
(doi:10.1109/GlobalSIP.2013.6736904)

Ipsen M, Mikhailov A. 2002 Evolutionary reconstruction of networks. Phys. Rev. E 66, 046109.
(doi:10.1103 /PhysRevE.66.046109)

Molloy M, Reed B. 1995 A critical point for random graphs with a given degree sequence.
Random Struct. Algorithms 6, 161-180. (doi:10.1002 /rsa.3240060204)

Del Genio CI, Gross T, Bassler KE. 2011 All scale-free networks are sparse. Phys. Rev. Lett. 107,
1-4. (d0i:10.1103 /PhysRevLett.107.178701)

Newman ME]. 2005 Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46,
323-351. (d0i:10.1080/00107510500052444)

Krapivsky PL, Redner S, Leyvraz F. 2000 Connectivity of growing random networks. Phys.
Rev. Lett. 85, 4629. (doi:10.1103 /PhysRevLett.85.4629)

McCabe S, Torres L, LaRock T, Haque SA, Yang C-H, Hartle H, Klein B. 2020 netrd: A library
for network reconstruction and graph distances. https:/ /arxiv.org/abs/2010.16019.

PHL06L07 9Lk 1 205§ 204g edsy/jeuol/BioBulysiigndiiaosiefos


http://dx.doi.org/doi:10.5169/seals-266450
http://dx.doi.org/doi:10.1016/S0016-0032(23)90506-5
http://dx.doi.org/doi:10.1109/GlobalSIP.2013.6736904
http://dx.doi.org/doi:10.1016/S0167-8655(01)00022-8
http://arxiv.org/abs/1708.04727
http://dx.doi.org/doi:10.1016/j.physleta.2010.12.038
http://dx.doi.org/doi:10.1016/j.ins.2016.01.074
http://dx.doi.org/doi:10.1016/j.jmva.2006.11.013
http://dx.doi.org/doi:10.1109/DSAA.2015.7344816
http://dx.doi.org/doi:10.1103/PhysRevE.99.052309
http://dx.doi.org/doi:10.1103/PhysRevX.6.041062
http://dx.doi.org/doi:10.1103/PhysRevE.98.012319
http://dx.doi.org/doi:10.1109/GlobalSIP.2013.6736904
http://dx.doi.org/doi:10.1103/PhysRevE.66.046109
http://dx.doi.org/doi:10.1002/rsa.3240060204
http://dx.doi.org/doi:10.1103/PhysRevLett.107.178701
http://dx.doi.org/doi:10.1080/00107510500052444
http://dx.doi.org/doi:10.1103/PhysRevLett.85.4629
https://arxiv.org/abs/2010.16019

	Introduction
	Formalism of graph distances
	This study

	Methods
	Ensembles
	Graph distance measures
	Description of experiments

	Results
	Results for homogeneous graph ensembles
	Results for sparse heterogeneous ensembles

	Discussion
	References

