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A B S T R A C T

In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials.
Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting
the time to clinical diagnosis based on fixed impairment levels, as opposed to predicting impairment in time
windows comparable to the duration of a clinical trial. Here we evaluate an approach to both detect atrophy
patterns associated with early degeneration and provide a prognosis of motor impairment within 3 years, using
data from the TRACK-HD study on 80 premanifest HD (pre-HD) individuals and 85 age- and sex-matched healthy
controls. We integrate anatomical MRI information from gray matter concentrations (estimated via voxel-based
morphometry) together with baseline data from demographic, genetic and motor domains to distinguish in-
dividuals at high risk of developing pronounced future motor impairment from those at low risk. We evaluate the
ability of models to distinguish between these two groups solely using baseline imaging data, as well as in
combination with longitudinal imaging or non-imaging data. Our models show improved performance for motor
prognosis through the incorporation of imaging features to non-imaging data, reaching 88% cross-validated
accuracy when using baseline non-longitudinal information, and detect informative correlates in the caudate
nucleus and the thalamus both for motor prognosis and early atrophy detection. These results show the plau-
sibility of using baseline imaging and basic demographic/genetic measures for early detection of individuals at
high risk of severe future motor impairment in relatively short timeframes.

1. Introduction

Huntington's disease (HD) is a neurodegenerative disorder that
manifests as a triad of motor, cognitive and behavioral impairments
that typically develop in adulthood. Current treatments for HD target
symptom management. However, evidence of neurodegeneration be-
ginning in HD many years before clinical diagnosis (Sheinerman and
Umansky, 2013; Stout et al., 2011; Tabrizi et al., 2013) calls for in-
terventions that will delay its onset or slow its progression prior to
symptom manifestation (Lang, 2010; Paulsen et al., 2006). In that
context, it is very important to consider alternative estimates of HD
progression at presymptomatic stages of the disease (pre-HD) (Long
et al., 2017) or assessments of future impairment for reliable pre-HD
prognosis.

HD is caused by a single genetic mutation, a CAG repeat expansion
in the huntingtin gene that allows its detection before symptom mani-
festation. Despite existing evidence that the CAG repeat length and age

of onset are associated with disease progression (Penney et al., 1997),
the heterogeneous clinical nature of this disease can only be partially
explained by these factors (Ross et al., 2014). Therefore, it is important
to find potential biomarkers of disease progression in addition to the
number of CAG repeats.

In an effort to find biomarkers from multiple domains, observational
studies such as TRACK-HD (Tabrizi et al., 2009) and PREDICT-HD
(Paulsen et al., 2008) have followed hundreds of subjects across several
years. Several publications based on these studies have focused on
addressing two research problems: the characterization of early de-
generation in HD and the estimation of motor impairment through HD
progression. In the context of the first research question, localized
atrophy patterns were detected through descriptive statistical ob-
servations using gray matter concentration (GMC) estimates through
voxel-based morphometry (VBM) in pre-HD (Ciarochi et al., 2016),
early HD (Hobbs et al., 2010; Kassubek et al., 2004) and throughout
multiple stages of HD (Tabrizi et al., 2009, 2013). VBM-based
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predictive multivariate approaches were also tested to infer the con-
dition of unseen subjects using cross-validation strategies (Klöppel
et al., 2009; Kostro et al., 2014). In longitudinal analyses, changes in
brain volumes (Aylward et al., 2011) and white matter microstructure
(Domínguez et al., 2016; Shaffer et al., 2017) were analyzed to detect
variations specific to pre-HD (in juxtaposition to healthy controls) in an
effort to detect clinically relevant biomarkers to measure disease pro-
gression. The other problem of interest, the characterization of motor
impairment in HD, has been extensively studied due to the nature of HD
diagnosis (Biglan et al., 2009; Long et al., 2014). In fact, most ap-
proaches aimed at the detection of potential structural neuroimaging
biomarkers have been designed to find correlates of time-to-motor
onset. These studies include descriptive statistical approaches based on
volumetric analyses of pre-defined regions of interest (ROI) (Biglan
et al., 2009; Paulsen et al., 2010), as well as predictive univariate
(Paulsen et al., 2014) and multivariate strategies (Long and Paulsen,
2015) for motor onset estimation. While the inference of motor con-
version is informative given the nature of HD diagnosis, prognostic
models of future motor impairment that transcend the conversion
phenotype are essential to detect pre-HD individuals at higher risk of
deterioration.

This study addresses the aforementioned research problems. The
first aim of this work is to identify regions with aberrant GMC covar-
iation that provide an enriched characterization of pre-HD, giving
complementary information to that obtained with descriptive statistics.
The discrimination of pre-HD subjects from healthy controls allows us
to detect signatures of atrophy at early disease stages and assess the
information carried by GMC for future motor impairment prediction.
Our classification approach, which makes use of VBM processing,
achieves results comparable to previous work (Klöppel et al., 2009;
Kostro et al., 2014). For the second research question, the character-
ization of motor impairment in HD, we propose a prognostic model
within a relatively short time frame. To this end, we explore methods
for motor impairment prognosis in pre-HD on a follow-up visit 3 years
later in two tasks. First, we evaluate the prognostic prediction power
achieved with imaging data only, with future motor impairment being
quantified via the total motor score (TMS) of the unified Huntington's
disease rating scale (UHDRS) (Huntington Study Group, 1996). By
analyzing baseline GM integrity and longitudinal atrophy progression
we can detect the information carried by accumulated atrophy effects
and changes over time, as well as interactions between them. For the
next task, we analyzed the effects of incorporating baseline GMC from
each subject along with baseline data from other modalities (age, CAG
repeats and TMS). Our results show that GMC from a single visit, along
with basic demographic and genetic measurements, has prognostic
power and can identify brain regions with aberrant baseline structure
that could be useful for target-based clinical trials.

2. Methods

2.1. Study

TRACK-HD is a multinational longitudinal observational study
whose goal is to identify changes that occur from health to early-stage
HD through measurements within the genetic, clinical, motor and
brain-imaging domains, among others. The cohort is evenly divided
into pre-HD individuals, early HD individuals and age- and sex-matched
controls.

2.2. Participants

We used data from 179 subjects (HD gene carriers and healthy
controls) enrolled in the TRACK-HD study, each of them with imaging
data available for at least one visit other than baseline and having re-
ported TMS in visits 1 and 4, as shown in Fig. 1a. The average number
of visits per subject with available MRI data was 3.9. Our predictive

models were only trained with healthy controls and pre-HD individuals
with absence of HD diagnosis throughout all the visits. Data from those
subjects that converted to HD were used only for post-hoc validation of
the trained models. The set of healthy controls was selected to be clo-
sely matched to the pre-HD sample in terms of group size, age and sex.
The resulting training dataset was composed of 80 pre-HD individuals
and 85 controls. The number of individuals who were not part of the
training set because they converted to manifest HD during the study
was 14. Basic demographics and CAG-based information for pre-HD
individuals are reported in Table 1.

TRACK-HD exclusion criteria included age below 18 or above 65,
major psychiatric, neurological or medical disorder or a history of se-
vere head injury, as described elsewhere (Klöppel et al., 2015). The
study was approved by the local ethics committees and all participants
gave written informed consent according to the Declaration of Helsinki.

2.3. TMS adjustment and discretization

The focus of this work is to detect pre-HD individuals at high risk of
motor deterioration. For this reason, we trained models that could
discriminate subjects with pronounced future motor impairment (high
risk) from those with mild future motor impairment (low risk), rather
than devising models to estimate their actual motor scores. To account
for the age dependent increase of TMS in healthy controls (Paulsen
et al., 2014), we made a linear fit between the TMS of healthy controls
and their age and removed the “normal aging” effects from the TMS
estimated for pre-HD subjects (i.e., used residualized scores). High
(low) risk groups were composed of subjects with TMS values above
(below) the third (first) quartiles of the TMS distribution at visit 4 in
pre-HD. Each group is composed of 20 subjects, the data from the re-
maining 40 subjects (intermediate risk) being used only for post-hoc
validation of the trained models.

2.4. MRI data acquisition

3 T MRI data from 2 different scanner systems (Siemens Tim Trio
and Philips Achieva) and 4 sites were acquired as described elsewhere
(Klöppel et al., 2015; Tabrizi et al., 2009).

T1-weighted image volumes were acquired using a 3D MPRAGE
acquisition sequence with the following imaging parameters:
TR= 2200ms (Siemens)/7.7 ms (Philips), TE=2.2ms(S)/3.5 ms(P),
FA=10°(S)/8°(P), FOV=28 cm(S)/24 cm(P), matrix size
256× 256(S)/224× 224(P), 208(S)/164(P) sagittal slices to cover the
entire brain with a slice thickness of 1.0mm with no gap. T2-weighted
image volumes were acquired with identical field of view, acquisition
matrix, and slice thickness as T1-weighted images, and were used to
provide complementary information for improved brain extraction
from raw images. All volumes passed rigorous quality control by IXICO.

2.5. MRI data processing and feature extraction

A longitudinal extension of the “optimized” VBM protocol (Good
et al., 2001) of the FMRIB Software Library (FSL) (Jenkinson et al.,
2012) was used to evaluate interactions of baseline GM patterns and
their changes across visits to discriminate groups of interest. We fol-
lowed a procedure similar to the one proposed by Douaud and collea-
gues (Douaud et al., 2009) with some modifications. First, the T1-
weighted anatomical volumes were adjusted for subject orientation
changes across visits through a robust, inverse consistent rigid body
registration between time points (Reuter et al., 2010), generating a
template space and an associated image for each subject. These images
were used along with masks estimated from their T2-weighted volumes
to do brain extraction of raw T1-weighted volumes (see Fig. 2). The
resulting images were then segmented into 3 tissue partial volumes
(GM, white matter and cerebrospinal fluid concentrations) that re-
present the probability of each voxel belonging to a given tissue. GMC
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volumes were averaged across visits and the resulting mean volumes
from each subject were incorporated on the aforementioned optimized
VBM protocol to generate a study-specific GM template. Then, GMC
volumes of each subject/visit were nonlinearly normalized into this
template and smoothed with an isotropic Gaussian kernel with sigma of
1.7 mm (~4mm full width at half maximum). From these images, we
retrieved estimates of baseline GMC and its longitudinal decline (GMC
slopes) across time.

All preprocessing steps were implemented via FSL and FreeSurfer
(Fischl, 2012) utilities, parallelized for large-scale computation using
Nipype (Gorgolewski et al., 2011) in Python.

To correct for natural GM shrinkage associated to healthy aging in
our pre-HD-specific analysis, we made a voxel-wise linear estimation of

Fig. 1. Available multimodal data features and
schematics of classification tasks. (a) Multimodal
features extracted from subjects with MRI scans for
at least two given visits (baseline visit inclusive)
were used. Baseline information of interest for each
subject was composed of structural brain measures,
number of CAG repeats, age, CAG-Age Product (CAP)
score and TMS. TMS at visit 4 was used to infer fu-
ture motor impairment. (b) Visual representation of
GMC imaging features. (c) Schematics of cross-vali-
dation approach applied to classify subjects based on
genetics (healthy controls and pre-HD individuals) or
future TMS (pronounced and mild impairment).

Table 1
Basic demographics and genetics-based information of study participants.
Information is itemized for healthy controls, pre-HD individuals with no HD
diagnosis througout the study and pre-HD individuals who converted to man-
ifest HD. Age, CAG repeats and CAP scores are reported in terms of
mean ± SD.

Age Sex (M:F) CAG CAP

Controls 44.1 ± 8.9 38:47
Pre-HD (no diagnosis) 41.0 ± 8.3 37:43 42.9 ± 2.1 45.9 ± 7.1
Pre-HD (converted) 40.6 ± 10.5 8:6 43.8 ± 3.1 51.0 ± 8.3
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the baseline GMC changes as a function of age for healthy controls and
regressed out this effect from GMC images from pre-HD subjects. This
estimation is based on evidence of linear degradation of GM across time
during adulthood (Giorgio et al., 2010; Walhovd et al., 2005).

In addition to imaging-based features, we used basic baseline in-
formation from demographic, genetic and motor domains to detect
individuals at high risk of deterioration in pre-HD. This information is
represented by the individuals' number of CAG repeats together with
their baseline age and TMS. Another non-imaging feature of interest is
the CAG-age product (CAP) score, which is the product of the number of
CAG repeats of an individual and its age (Zhang et al., 2011). Here we
use a normalized CAP score such that
CAP=100×AGE× [(CAG− 35.5)÷ 627], where the score at dis-
ease onset is approximately 100.

2.6. Group analyses

In this work we applied statistical tests and classification ap-
proaches to estimate the information embedded in imaging data
(baseline GMC or GMC slopes) and clinic-demographic variables
(baseline age, TMS, CAG and CAP) to detect pre-HD individuals and to
infer future motor impairment within pre-HD. Specifically, we focused
in 3 aims: 1) detection of atrophy patterns and classification of pre-HD
with imaging data, 2) prognosis of motor impairment in pre-HD in-
dividuals with imaging data, and 3) prognosis of motor impairment in
pre-HD individuals with multimodal data. For the first aim, we eval-
uated the information carried by GMC differences between pre-HD in-
dividuals and healthy controls by using baseline GMC maps only. For
the second aim, we analyzed whether baseline GMC and longitudinal
changes of GM integrity throughout visits could be used to infer future
TMS within the population of pre-HD individuals. Finally, after asses-
sing the information carried by imaging data, we evaluated the pre-
dictive power of non-imaging features alone and in combination with
baseline structural imaging to infer future motor impairment in pre-HD.

2.6.1. Classification and feature selection
Discrimination between 2 groups (either pre-HD vs controls or mild

vs pronounced motor impairment) was performed using logistic re-
gression. For our models to make correct predictions both in training

and new data we included a regularization term (Tikhonov, 1963).
Regularization controls for model complexity which typically leads to
overfitting the training data, yielding poor results on test data. In order
to detect a subset of features relevant for classification we applied
elastic-net regularization (Zou and Hastie, 2005). Fig. 1c shows this
approach being applied to imaging data, though it can be generalized to
data from other modalities. Whole-brain voxel-level imaging data was
used as input to the classifier, unless otherwise stated. The optimal
value of regularization parameters was determined within each round
of cross-validation. We used a nested cross-validation scheme composed
of an outer leave-one-out cross-validation with an internal 5-fold cross-
validation for performance estimation and parameter selection, re-
spectively. For the case in which whole-brain data was not used, top-
ranked voxels that conveyed optimal performance were also selected
via univariate selection in the internal cross-validation procedure. To
detect the location of the strongest effects for classification, we com-
puted maps of the mean voxel weights assigned by the classifier.

2.6.2. Additional post-hoc assessments of classification
For aim 3, the contribution of multimodal features to classification

was assessed by also computing the weights of non-imaging features to
the estimation of future motor impairment. In addition, we evaluated
the estimated prediction of our model for data that were not included in
the training set, such as samples from pre-HD individuals with mod-
erate future motor impairment and converted subjects.

2.6.3. Statistical analyses
Between-group univariate effects were estimated for comparison

with multivariate effects. In this way we can detect additional patterns
identified by multivariate techniques. Univariate tests were used under
certain conditions as a first-stage feature selection approach prior to
elastic-net regularization (see Classification and feature selection above).
All univariate statistical tests for group comparisons as well as for
feature selection (where applicable) were Wilcoxon rank-sum tests. For
all brain maps, we controlled for multiple comparisons by estimating a
false discovery rate (FDR) through the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995). For the estimation of confidence in-
tervals for classification performance metrics, we used bootstrap re-
sampling (105 resamples) of test predictions.

Fig. 2. Longitudinal processing to generate baseline GMC images and to estimate their decline across visits.
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2.6.4. Classification performance metrics
The following measures were used to evaluate the performance of

the trained models for both classification of pre-HD individuals and
healthy controls and detection of subjects at high and low risk of de-
terioration within pre-HD.

Accuracy: Fraction of correct classifications among the total number
of analyzed samples.

Sensitivity: Fraction of correct classifications among positive sam-
ples (pre-HD or high-risk).

Specificity: Fraction of correct classifications among negative sam-
ples (controls or low-risk).

Positive predictive value (PPV, or hits): Fraction of correct classi-
fications among samples given a positive prediction (pre-HD or high-
risk).

Negative predictive value (NPV, or correct rejections): Fraction of
correct classifications among samples given a negative prediction
(controls or low-risk).

Brier score: Average square deviation of probability of predictions
and actual outcomes.

3. Results

3.1. Atrophy patterns in pre-HD

First we evaluated the information carried by GMC differences be-
tween pre-HD individuals and healthy controls by using full-brain GMC
maps from these two groups. The results of the logistic regression
classifier with elastic-net regularization are shown in Fig. 3a, the ob-
tained classification accuracy being 70% between pre-HD and controls.
After performing a voxel-wise univariate test of GMC between pre-HD
individuals and healthy controls (Fig. 3b), we found significant group
differences (Wilcoxon rank-sum test, FDR corrected, q < 0.05) loca-
lized bilaterally in the inferior part of the head of the caudate nucleus,
with stronger effects showing up on the right hemisphere. In addition,
we found that the mean voxel weight maps assigned by the classifier
(Fig. 3c) show spatial patterns that are consistent with those of the
univariate maps. However, our multivariate maps have a larger spatial
extent, also showing GMC deficits in pre-HD in voxels that exhibit in-
significant individual effects such as those located in the thalamus.
Notably, these maps do not rely on potential site effects (see Supple-
mentary Material). In summary, we find a consistent pattern of GM
deterioration bilaterally in the inferior part of the caudate nucleus and
we show that this spatial pattern plays an important role in the detec-
tion of pre-HD.

3.2. Prognosis of pre-HD population with imaging data

We then extended our analysis of imaging data by incorporating
voxel-level longitudinal estimates of GMC change for future motor
impairment detection in pre-HD. Fig. 4a shows the classification per-
formance to discriminate groups of individuals with mild and pro-
nounced future motor impairment using baseline GMC, achieving a
classification accuracy of 70%. By using longitudinal changes via GMC
slopes, the model's accuracy is reduced to 67% (Fig. 4b). In addition,
Fig. 4c shows the performance of the classifier when both baseline GMC
and GMC slopes are used in combination, yielding a classification ac-
curacy of 70%.

In terms of the localization of correlated effects of future motor
deterioration, it is evident that these have a spatial complementary
nature for baseline and longitudinal imaging. The location of strong
effects for GM integrity at baseline are mostly found bilaterally in the
inferior part of the head of the caudate nucleus, showing a negative
correlation between GMC in these regions and the severity of future
motor impairment (Fig. 4d). On the other hand, patterns of negative
correlation between longitudinal GM change and future motor dete-
rioration are located in the superior part of the head of the caudate

nucleus, meaning that GM atrophy in these regions is positively cor-
related with motor impairment.

In summary, by incrementing the number of imaging features to be
twice as much as that of a single data source (baseline GMC) the ac-
curacy of the classifier is not degraded. Furthermore, interesting pat-
terns of spatial complementarity are detected for GMC at baseline and
GMC slopes. These findings suggest that these two data sources provide
complementary information. Nonetheless, it seems like the usage of
GMC at baseline visit suffices to obtain good prediction of future motor
decline.

3.3. Prognosis of pre-HD population with multimodal data

The set of non-imaging features composed of baseline metrics such
as age, CAG repeats, CAP score and TMS achieved a classification ac-
curacy of 75% (Fig. 5a). In order to evaluate whether imaging data
could complement non-imaging features for future motor impairment
detection, we integrated non-imaging features on top of baseline GMC.
A group of GMC voxels chosen via feature selection by an internal cross-
validation procedure (see Methods section) was incorporated to the
non-imaging features for future motor impairment inference, and im-
proved the accuracy rate to 88% (with information from 5 voxels, total
set of 9 features as shown in Fig. 5b and c). It can be seen that in-
formative patterns of GMC are highly localized, with the classifier
performance gradually decreasing as more voxels are combined with
non-imaging features.

The location of atrophy patterns that are relevant for classification
of motor impairment is shown in Fig. 5d, the most informative patterns
of GMC being located in the right head of the caudate nucleus and part
of its boundary with the nucleus accumbens. While the best classifica-
tion is achieved by using a small set of voxels, an improved inter-
pretation of the location of informative patterns of GMC would be
achieved by relaxing the spatial constraint for voxel selection. For that
purpose, we arbitrarily allowed our model to select the 1000 most in-
formative voxels. These voxels span the head of the caudate nucleus
bilaterally and expand into the thalamus. Importantly, the extent of
these areas is not influenced by site variability (see Supplementary
material). By analyzing the relative contributions of non-imaging fea-
tures to the estimation of future motor impairment, it can be seen that
baseline TMS, CAG and CAP score are positively correlated with future
motor impairment (weights significantly different from 0 as shown in
Fig. 5e), the highest contribution being provided by baseline TMS,
which is to be expected.

Due to the high reported contribution (relative to other features) of
baseline TMS and localized patterns of GMC to the correct estimation of
future motor impairment, we considered it suitable to do a post-hoc
analysis of the performance of our classification approach when it is
trained with baseline TMS only, a set of base attributes (CAG, age, CAP
score) and through the incremental inclusion of TMS and imaging
features to the model. Table 2 shows that a consistent classification
improvement is achieved through the aggregation of these features. In
addition to the already reported accuracy rate of up to 88%, the in-
corporation of baseline TMS and imaging features improves the Brier
score from 0.23 to 0.16.

It should be stressed that while the presented model has been
trained with a subset of pre-HD subjects with mild and pronounced
motor impairment, it is still capable of providing information about
subjects that do not belong to either of these two groups, such as pro-
spective patients that will develop moderate impairment. Furthermore,
the model can also infer the amount of motor deterioration of pre-HD
individuals who became manifest throughout the study. This is possible
as the raw output provided by a linear classifier is continuous and re-
presents the (signed) distance of an observation to the decision hy-
perplane. To illustrate this point, Fig. 6 shows all the subjects (including
those who will develop moderate impairment and converted subjects)
arranged according to the continuous output of the classifier. Despite
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Fig. 3. GMC detects localized patterns of brain atrophy in
pre-HD individuals and discriminates them from healthy
controls. (a) Full-brain cross-validated classification perfor-
mance of controls and pre-HD individuals. Error bars in-
dicate 95% confidence intervals (bootstrap resampling of
classifier predictions). Horizontal lines show chance perfor-
mance of the classifier (randomization of test labels). (b)
Univariate GMC differences between pre-HD and controls.
Two bilateral clusters are located in the inferior part of the
head of the caudate nucleus (Wilcoxon rank-sum test, FDR
corrected at q < 0.05). Color bar: red: pre-HD > controls,
blue: pre-HD < controls. Units: common logarithm of un-
corrected p-value. (c) Maps of the mean voxel weights as-
signed by the classifier. Multivariate weights are compatible
with univariate maps but extend to other regions such as the
thalamus. Weights shown at an arbitrary threshold of 2.5, in
units of the standard deviation across all voxels, for illus-
tration purposes.(For interpretation of the references to color
in this figure legend, the reader is referred to the web version
of this article.)
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not being provided with the future outcome from moderate and con-
verted subjects, the majority of individuals that develop moderate im-
pairment are located between those with mild and pronounced im-
pairment. In addition, converted subjects are ranked similarly to those

with future pronounced impairment. This shows that even if the clas-
sifier is trained with individuals from two clearly different groups to
improve its performance, it is still capable of providing information
about unseen subjects with various degrees of future motor impairment.

Fig. 4. GM integrity at baseline visit along with GM atrophy rates discriminate pre-HD individuals with mild and pronounced future motor impairment. Classification
performance to estimate future motor impairment (a) using GMC at baseline visit only, (b) using GMC slopes and (c) by combining them. All conventions as in Fig. 3a.
Maps of the mean voxel weights assigned by the classifier for (d) GM integrity and (e) GM atrophy rates. GMC at baseline and GM rate of change show spatial
complementarity of multivariate effects in the inferior/superior part of the head of the caudate nucleus, respectively.
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4. Discussion

In this work we evaluate the capacity of GMC to detect aberrant
structural patterns in pre-HD and to estimate future motor impairment
at early stages of the disease using a cross-validated classification ap-
proach. We also demonstrate an improved detection of individuals at
high risk of developing pronounced motor deterioration through the
integration of multimodal data (baseline demographic, genetic and
motor information combined with GMC volumes). The generated

prognostic models estimate future motor impairment of individuals at
preclinical stages in HD several years before clinical onset. Our study
focused on the characterization of future motor impairment of pre-HD
individuals who did not manifest symptoms throughout the study.
However, post-hoc analyses show that reasonable predictions can be
made for pre-HD subjects that converted to manifest HD in this time
period. Our approach also shows the potential of GMC information in
identifying structural correlates of motor impairment, indicating po-
tential regions with abnormal baseline structure that could be used for
target-based clinical trials that aim to slow disease progression in pre-
HD.

We first evaluated our method for the detection of atrophy patterns
in pre-HD compared to control subjects. For this task we obtained a
whole-brain classification accuracy rate of 70%. This result is com-
parable with those obtained for inter-site classification performance in
pre-HD within TRACK-HD, which used information from voxels in the
striatum only (Kostro et al., 2014), while it surpasses the results pre-
sented for the PREDICT-HD study (Klöppel et al., 2009). Patterns of
reduced GM in pre-HD detected in the caudate nucleus confirm findings
in earlier studies and the aforementioned classification approaches.
While GM loss in the thalamus is evident in early HD (Douaud et al.,
2006; Kassubek et al., 2004), findings in pre-HD are not in entire
agreement (Thieben et al., 2002; Van Den Bogaard et al., 2011). This
may be explained to some extent by the fact that non-negligible GM

Fig. 5. The incorporation of baseline GMC to multimodal data significantly increases the estimation of future motor impairment. Classification performance to
estimate future motor impairment (a) using baseline non-imaging features (CAG repeats, age, CAP score and TMS) and (b) by adding baseline GMC information. All
conventions as in Fig. 3a. (c) Classification accuracy rate decreases as more voxels are combined with non-imaging features. As less informative voxels for future
motor impairment estimation (according to internal cross-validation) are incorporated to non-imaging features, the classification accuracy gradually decreases, with
the optimal value being obtained for the 5 most informative voxels (9 features total). (d) Most informative voxels and their spatial extent as additional voxels are
incorporated in the classification. The red cluster conveys the location of the 5 voxels that provide improved classification accuracy of future motor impairment,
while the voxels in the blue cluster show the spatial extent of the informative voxels as they grow up to 1000. The voxels in the blue cluster clearly span the caudate
nucleus bilaterally, including the thalamic region. (e) Unitary-scaled mean weights of non-imaging features for the estimation of future motor impairment. Error bars
indicate 95% confidence intervals.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Aggregation of baseline TMS and imaging to genetic/demographic features
provides improved estimation of future motor impairment. Standard features
used for estimation of motor onset (CAG, age and CAP score) are enriched with
baseline TMS and GMC features. A consistent improvement of the classifier
performance is obtained when these features are sequentially incorporated for
classification.

Features Accuracy Sensitivity Specificity PPV NPV Brier

CAG, CAP & age 0.66 0.65 0.66 0.62 0.65 0.23
TMS 0.73 0.70 0.75 0.74 0.70 0.21
CAG, CAP, age & TMS 0.75 0.75 0.75 0.75 0.75 0.21
Imaging + CAG, CAP,

age & TMS
0.88 0.85 0.90 0.89 0.85 0.16
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multivariate effects were detected in the thalamus in spite of showing
insignificant individual effects for pre-HD detection. In fact, this finding
is consistent with results from another multivariate analysis, which
detected GMC reduction covariation in both the thalamus and the
caudate nucleus in pre-HD (Ciarochi et al., 2016). These findings re-
assured that our features extracted with VBM were informative enough
to extend our work from pre-HD detection to motor deterioration pre-
diction within pre-HD.

While motor impairment has been extensively analyzed in HD to
find putative markers based on imaging and clinical assessments or to
characterize its progression (Biglan et al., 2009; Long et al., 2014;
Paulsen et al., 2014), these analyses rely on the knowledge of the time
to disease manifestation of the evaluated individuals. Such an approach
focuses on the estimation of the chances of motor conversion in a given
time period in the future as opposed to assessing the degree of future
motor impairment developed at early disease stages. Here we have
presented a multivariate, cross-validated approach that incorporates
baseline GMC information on top of non-imaging baseline metrics for
an accurate detection of individuals at higher risk of developing pro-
nounced motor deterioration in pre-HD, as measured by future TMS.
Accuracy improves from 75% to up to 88% when imaging data is in-
corporated. The only precedent of the use of cross-validated classifi-
cation approaches using imaging data for future motor impairment
detection was applied for the prediction of HD motor diagnosis (Long
and Paulsen, 2015), which reported a Brier score of 0.11 (the lower the
score, the more accurate the model is) when incorporating imaging
features to predict the probability of an individual becoming manifest
in the next 5 years. The Brier score achieved by our best model (0.16,
see Table 2) is very close to this value. It should be stressed though that
our approach is more challenging for two reasons: we estimate future
motor impairment within a shorter time frame (3 years from baseline
visit) and we do so for motor impairment within pre-HD, where im-
pairment signals are generally less pronounced (Biglan et al., 2009). We
argue that the inclusion of baseline GMC makes our model more robust

to the inherent inter- and intra-rater variability of TMS (Acton, 2012).
Overall, we show that baseline GM integrity is informative enough to
boost future motor impairment estimation in pre-HD within the TRACK-
HD study population relative to genetics and baseline impairment.

Further analysis of our findings let us detect informative patterns for
later motor impairment estimation in the imaging and non-imaging
feature domains, as well as the interactions among them. Reduced
baseline GM integrity in the head of the caudate nucleus and the tha-
lamus on both hemispheres is a strong correlate of future motor im-
pairment in pre-HD, in addition to being informative for pre-HD de-
tection (see Figs. 3 and 5). We also show that the nucleus accumbens is
informative for future motor impairment estimation, consistent with
previous findings for pre-HD and early HD detection (Douaud et al.,
2006; Hobbs et al., 2010; Van Den Bogaard et al., 2011), suggesting
that high GM atrophy in these regions within pre-HD can also be as-
sociated to high risk of pronounced future motor impairment. Evidence
of atrophy in the thalamus and the nucleus accumbens being correlated
to TMS in pre-HD (Van Den Bogaard et al., 2011) supports this claim. It
should also be noticed that the effects on the thalamus would have been
neglected if our model was based on single variable effects, as it can be
seen by comparing Fig. 3b and c. In terms of the influence of non-
imaging features, we observe that the highest contribution to motor
impairment estimation is provided by baseline TMS. Furthermore, TMS,
CAG and CAP score (along with loss of GMC in the caudate nucleus and
thalamus) are positively correlated with future motor impairment. In
contrast, age exhibits a consistently negative multivariate association
([−0.64, −0.36], CI= 95%) with the predicted variable. This ob-
servation may be related to the exclusion of manifest subjects, which
imposes a negative correlation between CAG repeats and age. This
shows that our multivariate approach is able to detect interactions
between features, providing a fully integrated interpretation of data
from multiple domains. To our knowledge this is the first VBM-based
predictive approach that looks at interactions between multimodal
features for future motor impairment prediction in pre-HD. Our mul-
timodal analysis could be further enriched by incorporating additional
measures of brain structure integrity such as white matter micro-
structure, it being highly relevant for pre-HD characterization as it
seems to precede gray matter degeneration (Gregory et al., 2015;
Shaffer et al., 2017). Despite being appealing, such an analysis is be-
yond the scope of our work.

We also analyzed the localization of correlates of future motor im-
pairment when combining GM integrity at baseline and longitudinal
atrophy progression. Our results show that reduced baseline GMC in the
inferior part of the head of the caudate nucleus is predictive of future
motor onset, whereas longitudinal atrophy patterns are localized in the
superior part of the head of the caudate nucleus. This may suggest that
loss in GM integrity in the ventral striatum is a first-stage putative
marker of motor impairment and we speculate that this area is typically
affected in early stages of the disease before symptom onset. On the
other hand, longitudinal atrophy in the dorsal striatum later over the
course of pre-HD would become a second-stage correlate of impair-
ment. In any case, the found association between the caudate nucleus
longitudinal GM reduction and future motor impairment is consistent
with previous evidence of changes in caudate volume being associated
with cognitive decline and disease severity (Domínguez et al., 2016). In
terms of the attained classification results, the inclusion of atrophy rates
to GM integrity did not boost the performance of our model. This may
be explained by the limited amount of visits for which both imaging and
TMS are available (at most 4). We hypothesize that a more robust es-
timation of structural atrophy would have been complementary to
baseline GMC for future motor impairment detection provided that
more time points were available. Unfortunately the extension of

Fig. 6. Model learned from groups with mild and pronounced motor impair-
ment within pre-HD can be applied to intermediate and converted HD cases.
Scatter plot of the ranked continuous output of the classifier and the ranked
future TMS using 5 most informative voxels for classification of future motor
impairment (according to internal cross-validation) and non-imaging features
(baseline age, TMS, CAG repeats and CAP score). Individuals with intermediate
future motor impairment are assigned a continuous output by the classifier that
lies between groups with future mild and pronounced impairment.
Furthermore, converted HD individuals are assigned consistently along with
pronounced HD subjects.
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TRACK-HD, the TRACK-ON study, does not provide TMS information.
Our proposed methodology has shown the predictive power of lo-

calized patterns of gray matter integrity and non-imaging features to
characterize pre-HD and, within this group, to predict future motor
impairment. The influence of confounders on the reported imaging
patterns has been reduced by closely matching healthy controls and
pre-HD individuals in terms of number of samples, age and sex.
Alternatively, we have removed effects of normal aging within pre-HD
for future motor decline prediction. However, spurious associations
could be related to other potential confounders. An important factor to
control for are scanner differences or even differences in imaging lo-
cations (sites). We discovered that there are no associations between
groups of interest and site, as it is shown in the Supplementary Material.
Nevertheless, we rerun our classification analyses after accounting for
site variability to verify that the reported brain locations associated to
the presence of HD gene mutation and increased risk of future motor
impairment remained unaltered, which is indeed the case (please refer
to the Supplementary material for those results). Similarly, we eval-
uated the influence of HD comorbidities in our results. These show that
it is unlikely that comorbidities influenced the spatial patterns of gray
matter integrity associated to the groups of interest in this work. We
should also keep in mind that the more confound factors are considered
in a study setup, the more complicated its design becomes. In other
words, there is a trade-off between the number of considered con-
founders to control for on a study and its actual viability.

It is important to point out that while this work uses data from
various sites from the TRACK-HD study, our results should be tested on
data from an independent study to validate the replicability of these
findings. It is also worth mentioning that in order to investigate motor
impairment at early stages of the progression of HD we focused on its
pre-symptomatic stage, which could potentially introduce sample se-
lection bias. An additional caveat concerns the small number of subjects
(165) relative to other studies, which is further reduced to discern be-
tween pre-HD individuals with later mild or pronounced motor im-
pairment. The number of samples is reduced at the cost of achieving an
improved signal-to-noise ratio for the detection of motor impairment.
We would also like to raise awareness about the interpretation of GMC;
it does not represent volumetric differences in GM, but differences in
voxel concentration in the acquisition space (not on the generated
study-specific template) (Henley et al., 2010). Even if they represented
volumetric differences, there is some evidence that suggests that neuron
density does not correlate to GMC (Eriksson et al., 2009).

Although we do not use subjects with future motor impairment
between mild and pronounced levels to train our model, this does not
prevent us from including them in the evaluation of our classifier as it
gives a continuous output before applying a cutoff value to assign ca-
tegorical classes. By evaluating this continuous output for individuals
with later intermediate motor impairment, we see that this group is

approximately located between clusters with mild or severe impairment
(see Fig. 6) in spite of the model not having access to their future motor
scores. We also analyzed the response of the classifier on those pre-HD
individuals that transition to HD manifestation during the study and
show that they are assigned to a cluster of subjects that is closely linked
to individuals with pronounced future motor impairment. This suggests
that our model is able to detect a continuum of motor impairment in
pre-HD that may potentially be used to assess future impairment of pre-
HD individuals that transition to HD between baseline and follow up
visits, as outlined in Fig. 7. Such estimates could provide a baseline
against which both active and placebo treatment could be compared.

Overall, this work provides strong evidence that GMC used on top of
standard demographic, genetic and motor features can be used to ac-
curately detect future motor impairment within pre-HD. In fact, in-
formation from a single visit is sufficient for this purpose and the model
is also capable of detecting brain regions associated with impairment
within pre-HD. In that sense the presented approach could potentially
be used in clinical trials for early detection of pre-HD individuals at
high risk of developing pronounced future motor impairment. Targeted
therapies could be applied to at-risk individuals on brain impairment
correlates detected by our model to potentially make future motor
symptoms milder or even slow disease progression.
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