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This paper presents the design of the generalized Double Humped (DH) logistic map, used for pseudo-
random number key generation (PRNG). The generalized parameter added to the map provides more con-
trol on the map chaotic range. A new special map with a zooming effect of the bifurcation diagram is
obtained by manipulating the generalization parameter value. The dynamic behavior of the generalized
map is analyzed, including the study of the fixed points and stability ranges, Lyapunov exponent, and the
complete bifurcation diagram. The option of designing any specific map is made possible through chang-
ing the general parameter increasing the randomness and controllability of the map. An image encryption
algorithm is introduced based on pseudo-random sequence generation using the proposed generalized
DH map offering secure communication transfer of medical MRI and X-ray images. Security analyses
are carried out to consolidate system efficiency including: key sensitivity and key-space analyses, his-
togram analysis, correlation coefficients, MAE, NPCR and UACI calculations. System robustness against
noise attacks has been proved along with the NIST test ensuring the system efficiency. A comparison
between the proposed system with respect to previous works is presented.
� 2018 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction The first objective of this work is to present the generalization
Chaotic systems have gained a lot of interest for researchers
lately, whether in their continuous or discrete forms. As for the dis-
crete form, chaotic systems can be represented as maps, offering a
great share in many research fields [1,2], such as theory of business
cycle [3], chemistry [4], dynamics of tumor cells [5], communica-
tion [6] and encryption [7]. The discrete chaotic maps are highly
sensitive to initial conditions and control parameters, which
increase their randomness, unpredictability yet, being determinis-
tic and easily reproducible. These are the main reasons why they
are used in designing pseudo-random sequence generators (PRNG)
for encryption purposes [8,9].

The one dimensional (1D) double humped (DH) logisticmapwas
introduced by Coiteux [10]. It shows a double hump in its first itera-
tion graph, and hence comes its name. TheDHmaphas a fixed bifur-
cation diagramaswell as a fixed chaotic range,with no control on its
chaotic behavior. By using a generalization technique; through add-
ing an extra general parameter to the equation; it givesmore control
to the chaotic behavior of themap facilitating the design of anymap,
rendering itmore suitable for different applications. The generaliza-
tion technique was previously introduced to generalize other logis-
tic maps, such as the generalization of the logistic map based on
fractional power introduced by Radwan [11], as well as the general-
ization of the logistic map in the fractional order domain by Ismail
et al. [12]. The conventional DH map was previously used for PRNG
in a biomedical image encryption application versus the delayed
logistic map presented by Ismail et al. [13].

Medical images have become a key stone in the diagnosis and
the follow up of almost all diseases. These images offer the first
hand for physicians to help in patients’ examination and treatment.
Different technologies facilitate the existence of such medical
images, as they can be generated through Computed Tomography
(CT) for example, or Magnetic Resonance Imaging (MRI), or X-
rays and many other techniques [14]. The patient’s history is not
just a plain text any more, but it also includes a lot of images doc-
umenting the development of his case to be saved in his record.
These medical records are archived in a digital format and may
need to be transmitted between doctors or hospitals for different
clinical services via networks. Since the records contain a lot of pri-
vate information about the patient, this has raised the need for
developing more security techniques for this data to be transmit-
ted and safely saved, through biomedical image encryption. Many
image encryption techniques were previously used based on differ-
ent technologies as the use of chaotic systems for key stream
generation.
of the double humped logistic map, adding more control on its
chaotic behavior, enabling it to be more flexible to fit in many
applications. To the best of our knowledge, it is the first time to dis-
cuss the dynamics analysis of the DH map mathematically based
on Cardano’s formula [15]. The dynamics analysis of the proposed
generalized map is discussed including fixed points, stability anal-
ysis, transient responses, bifurcation diagrams and chaotic regions.
The complete bifurcation diagram, including the positive side as
well as the negative side bifurcation, which is rarely discussed in
literature, is also presented.

The second objective of this work is to show how different
designs of the proposed generalized map are used for pseudoran-
dom key stream generation for encryption. An image encryption
system is presented based on the generalized double-humped
(GDH) map. The images under test are two standard images, as
well as medical images including MRI images for patients suffering
from Alzheimer disease (AD) and Parkinson disease and X-ray
images. Different tests are applied to the proposed encryption sys-
tem, including key sensitivity and key-space analyses, histogram
analysis, correlation coefficients, the Mean Absolute Error (MAE),
the number of pixel change rate percentage (NPCR), the unified
averaged changed intensity (UACI), and entropy calculations, as
well as robustness against noise attacks, ensuring the effectiveness
of the system. NIST test results are also introduced. Finally, a com-
parison between the presented work and other previous systems
presented in literature is also detailed.

This paper first discusses the dynamics of the normal double
humped logistic map. The generalized DH logistic map is then
introduced including its dynamics analysis for both positive and
negative sides of bifurcation. A complete overview for previously
investigated image encryption systems is summarized. An image
encryption system based on the proposed map is presented as an
application. The security analysis of the encryption system is
detailed afterwards. Comparison is introduced with previous work
presented in literature and finalized by the conclusion.

Dynamics of the double humped logistic map

The one dimensional DH logistic map is so called as it exhibits a
double hump in its first iteration as shown in Fig. 1(a). The DH map
follows the equation:

xnþ1 ¼ rðxn � 1Þ2ð1� ðxn � 1Þ2Þ; ð1Þ
where r is the growth rate. Fig. 1(a) shows three successive function
iterations of the DH logistic map, while Fig. 1(b) shows the 3D plots
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Fig. 1. DH logistic map (a) Higher order generations for r = 8 and (b) Different function iterations.

S.M. Ismail et al. / Journal of Advanced Research 10 (2018) 85–98 87
of the function iterations versus the growth parameter r, with a 2D
projection view of the fifth and sixth iterations. The first iteration
xnþ1 in Fig. 1(a) has three intersection points, where f ðxÞ ¼ 0, which
arex ¼ 0;1 and 2.

The minima and the maxima of fðxÞ, are extracted by solving
f 0ðxÞ ¼ 0. This gives three values for x, which are x ¼ 1, and
x ¼ 1� 1=

ffiffiffi
2

p
. Checking f 00ðxÞ at each point gives:f 00ð1Þ ¼ 2r, indi-

cating that the point x ¼ 1 is a minimum,f 00ð1� 1=
ffiffiffi
2

p
Þ ¼ �4r, thus

the two points x ¼ 1� 1=
ffiffiffi
2

p
are maxima.

The fixed points of the map (1), are calculated by equating
x� ¼ f ðx�; rÞ, this gives the first fixed point x�1 ¼ 0, and the solution
of the equation:

x3 � 4x2 þ 5xþ 1=r � 2 ¼ 0: ð2Þ
gives the other three roots, that will depend on the value of the
parameter }r}.

In general, to solve an equation in the form of

ax3 þ bx2 þ cxþ d ¼ 0, Cardano’s formula [15] can be used, which
says that the roots of the 3rd order degree equation are:

x2 ¼ Sþ T � b
3a

; ð3aÞ

x3 ¼ �ðSþ TÞ
2

� b
3a

þ i
ffiffiffi
3

p

2
ðS� TÞ; ð3bÞ

x4 ¼ �ðSþ TÞ
2

� b
3a

� i
ffiffiffi
3

p

2
ðS� TÞ; ð3cÞ

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 þ R2

q
3

r
, T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 þ R2

q
3

r
, Q ¼ 3ac�b2

9a2 and

R ¼ 9abc�27a2d�2b3

54a3 .
Define a constant D as:

D ¼ Q3 þ R2 ð4Þ
If D > 0, then the equation has one real root and two complex

conjugate roots. If D ¼ 0, the roots are all real, with two equal
roots. While for D < 0, all the roots are real and unequal.
Following Cardano’s formula to solve Eq. (2), where
a ¼ 1; b ¼ �4; c ¼ 5 and d ¼ 1

r � 2, then Q ¼ � 1
9 and R ¼ 2a�27

54a . To
have unequal real roots then D should be less than zero. Solving
(2) for these values, gives the parameter r > 6:75.

Stability analysis of the map is studied at the fixed points. The
first derivative of the function is to be calculated; the fixed points
are stable if jf 0ðx�; rÞj < 1, or saddle points if jf 0ðx�; rÞj > 1. The first
derivative of the function is:
f 0ðxn; rÞ ¼ r½2ðxn � 1Þ � 4ðxn � 1Þ� ð5Þ
At the first fixed point x�1 ¼ 0, this point is stable if jf ð0; rÞj < 1.

This takes place for r < 0:5. It can be shown that for the range
0 < r < 0:5, there is only one fixed point which is x ¼ 0. The second
range is for 0:5 < r < 6:75, as just being proved, the function has
two fixed points. Three fixed points appear at r ¼ 6:75, while for
6:75 < r < 8, the function has four fixed points. This is fully illus-
trated graphically in Fig. 2(a).

The Bifurcation diagram of the DH map shown in Fig. 2(b), is
very similar to the conventional logistic map bifurcation diagram.
The only difference that here, there are repeated bifurcations as r
increases, as well as some gaps with a large one around r ¼ 7. More
than one chaotic region can be easily noticed in this diagram.
Zooming through the diagram, when r is approximately between
6.75 and 7.0, the function converges to a single value. There
appears another large gap around r ¼ 5, zooming into that region,
there appears a 2-cycle function. Another gap appears at around
r ¼ 3:6, where the function shows a 3-cycle in the range between
3:4 < r < 3:6. All the different ranges are illustrated in Fig. 2(b)
for all the regions specified. As a 3-cycle appears, the DH logistic
map develops a chaotic behavior according to Sharkovsky’s
Theorem.

For any dynamical system, Lyapunov exponent is a quantitative
measure of the sensitive dependence of this system on the initial
conditions. A positive Lyapunov exponent is a chaos indicator
[16], while a negative exponent indicates normal system behavior.
The maximal Lyapunov exponent (MLE), for discrete maps
xnþ1 ¼ fðxnÞ, for an orbit starting with x0 can be defined as



Fig. 2. The DH map (a) fixed points for different ranges of r, (b) bifurcation diagram, (c) MLE, (d) Complete bifurcation diagram for c ¼ 1, (e) stability ranges for different r and
c, and (f) transient responses for positive and negative r.
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kðx0Þ ¼ limn!1
Pn�1

i¼0
1
n lnjf

0ðxiÞj. Fig. 2(c) shows the Lyapunov expo-
nent of the conventional DH map.

The previous discussion shows a fixed chaotic behavior of the
DH map, over which no control can be done, whether controlling
the chaotic range, or the value of r at which the function turns
chaotic, or the value of the function at that point. To gain control
on the bifurcation diagram parameters, and in order to be able to
design specific maps, an extra generalized parameter can be added
to the equation to make it more general and controllable through
changing the value of this parameter and in consequence change
the chaotic behavior of the map.
Generalized double humped (GDH) logistic map

This section introduces the generalization of the DH logistic
map through adding an extra parameter c to the original equation
to have:

xnþ1 ¼ rðxn � cÞ2ðc2 � ðxn � cÞ2Þ ¼ f ðx; r; cÞ; ð6Þ

where c 2 Rþ. The dynamics analysis of the proposed generalized
equation is to be discussed hereby, once for the positive values of
r, followed by the negative values, covering the complete bifurca-
tion diagram of such map, shown in Fig. 2(d), for c ¼ 1.
Positive side bifurcation

Solving to get the fixed points of the map (6), equate

x� ¼ fðx�; r; cÞ as x� ¼ rðx� � cÞ2ðc2 � ðx� � cÞ2Þ, this gives the first
fixed point x�

1 ¼ 0, the second fixed point is calculated by solving
the equation:

1þ rðx� � cÞ3 � rcðx� � cÞ2 ¼ 0: ð7Þ
Let ðx� � cÞ ¼ y, thus turning into a third order equation:

y3 � cy2 þ 1
r
¼ 0: ð8Þ

Using Cardano’s formula as mentioned before:

Q ¼ �c2

9
;R ¼

�27
r þ 2c3

54
; ð9Þ

From (4), D ¼ Q3 þ R2,

D ¼ 1
4r2

� c3

54r2
; ð10Þ

To have unequal real roots then D should be less than zero,
reaching:

r >
13:5
c3

ð11Þ
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Solving for S and T, and using Eq. (3), the roots of the general-
ized DH map Eq. (6) are:

y2 ¼ Sþ T þ c
3
; ð12aÞ

y3 ¼ �ðSþ TÞ
2

þ c
3
þ i

ffiffiffi
3

p

2
ðS� TÞ; ð12bÞ

y4 ¼ �ðSþ TÞ
2

þ c
3
� i

ffiffiffi
3

p

2
ðS� TÞ; ð12cÞ

where the equation original roots are x� ¼ yþ c, resepectively.
To calculate the maximum values of the function x, then

rðxn � cÞ2ðc2 � ðxn � cÞ2Þ > 0, should be solved, thus reaching:

xmax ¼ 2c; ð13Þ
Solving the first derivative of the logistic equation f 0ðx; r; cÞ ¼ 0,

gives the critical points of the function where the function has a
maximum. Three critical points can be found xc1 ¼ 0 and
xc2;3 ¼ c � cffiffi

2
p . For the first critical point, f ðxc1 Þ ¼ 0. For the second

and third critical points, f ðxc2;3 Þ ¼ r c4
4 , which must be less than

xmax ¼ 2c, giving the value of the maximum value of rmax.

rmax ¼ 8
c3

: ð14Þ

The first derivative of the function is:

f 0ðxn; rÞ ¼ 2r½c2ðxn � cÞ � 2ðxn � cÞ3�: ð15Þ
At the first fixed point x�

1 ¼ 0, this point is stable if
jf 0ð0; r; cÞj < 1. This takes place for r < 0:5. For the other three fixed
points x�

2,x
�
3and x�

4 which are the roots of Eq. (12); at each fixed
point, a surface is drawn presented in Fig. 2(e). The graphs show
the ranges at which the function is stable, jfðx�; r; cÞj < 1, while
elsewhere it is unstable. This depends on the values of r and c for
each fixed point. Fig. 2(f) shows the transient response of the
GDH map for different values of the generalization parameter c
ensuring chaotic behavior of the map at such values. As for the pos-
itive bifurcation side, the transient response is shown for c ¼ 0:85,
r ¼ 13:0266, and for c ¼ 1:5, r ¼ 2:37037.
Fig. 3. The DH map bifurcation diagram (a) different values of c for þr, (b) 3D snapshots
The effect of the generalized parameter c is shown in Fig. 3(a),
where c has a zooming effect on the bifurcation diagram of the
DH map according to Eqs. (13) and (14). The presence of the
parameter c offers the possibility of designing any specific DH
map according to a required value of xmax or rmaxwhich gives con-
trol on the chaotic range of the map which is not possible without
having this parameter. Fig. 3(b) presents 3D snapshots of the DH
bifurcation diagram versus r and c.

Negative side bifurcation

The GDH map could be seen from the other side where the
effect of the negative values of r on the chaotic range can be
inspected following the equation:

xnþ1 ¼ �rðxn � cÞ2ðc2 � ðxn � cÞ2Þ: ð16Þ
The critical points are calculated by solving the equation

f 0ðx; r; cÞ ¼ �r½2c2ðxn � cÞ � 4ðxn � cÞ3� ¼ 0. This gives three critical
points xc1 ¼ 0 and xc2;3 ¼ c � cffiffi

2
p . For the first critical point,

f ðxc1 Þ ¼ 0. For the second and third critical points, f ðxc2;3 Þ ¼ �r c4
4 ,

which is equal to xmin. Solving for f ðxminÞ ¼ xmax, the expression of
xmax could be reached to be equal to:

xmax ¼ r2

2
c7

r3

128
c9 þ r2

8
c6 þ 5r

8
c3 þ 1

� �
ð17Þ

Substituting in xmax ¼ f ðxmaxÞ, rmax value could be calculated
numerically from the following equation:

rc3
1

2563 r
15c45 þ 3

16ð2562Þ r
14c42 þ 63

16ð2562Þ r
13c39

"

þ 95
131072

r12c36 þ 363
65536

r11c33 þ 455
16384

r10c30 þ 369
4096

r9c27

þ 43
256

r8c24 þ 1
16

r7c21 � 33
64

r6c18 � 315
256

r5c15 � 11
16

r4c12 � 25
16

r3c9

�5
2
r2c6 � 2

�
� 1 ¼ 0 ð18Þ
versus c for þr, (c) for different values of c for �r, (d) 3D snapshots versus c for �r.
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Fig. 2(f) shows the function variations of the GDH map for dif-
ferent values of c, versus n, for c ¼ 0:7, r ¼ �4:267 and c ¼ 1:2,
r ¼ �0:842. The effect of the generalized parameter c on the
negative bifurcation diagram is shown in Fig. 3(c), for different val-
ues of c, while Fig. 3(d) shows 3D snapshots of the bifurcation dia-
grams showing the zooming effect of c on the map.

An application: image encryption system

Overview on encryption systems

There were previous encryption systems presented in literature
based on the chaos theory such as the one introduced by Pisarchik
et al. [17], proposing direct encryption and decryption of digi-
tal images with chaotic map lattices. The image encryption algo-
rithm was based on many logistic maps in cascaded loops. While
a secure cryptosystem was presented for color images by Pisarchik
and Zanin [18], it was based on chaotically coupled chaotic maps,
depending on mixing conventional logistic maps, offering good
confusion and diffusion properties. A Partial encryption chaos-
based systemwas presented by Soma and Sen to encrypt gray scale
images [19]. The algorithm depended on bit plane decomposition
of the original image then encrypted using pseudorandom binary
number generator based on couple tent map. Telem et al. pre-
sented a robust gray image encryption system using conventional
logistic map and artificial neural network [20]. The initial condi-
tions of the logistic map were derived using an external secret
key. A chaos-based symmetric image cryptosystem employing
the Arnold cat map for bit-level permutation and the logistic
map for diffusion, unlike the other systems based on pixel-level
permutation, was presented by Zhu et al. [21]. While Pareek
et al. proposed, a simple encryption algorithm for gray images
based on diffusion and substitution processes, offering high
encryption rate [22]. Moreover, a simple encryption system using
fractional-order logistic map for key generation was presented by
Ismail et al. [12], having larger key space and extra degree of free-
dom using the fractional-order parameter in the key. A stream
cipher system was also proposed by Ismail et al. [13], using
delayed version of the logistic map comparing it to the same sys-
tem while using the double-humped logistic map versus different
security analysis aspects. Abd-El-Hafiz et al. presented the mathe-
matical aspects of a generalized sine map with arbitrary powers
and scaling factor, and two image encryption applications were
introduced based on the generalized sine map [23]. The first sys-
tem only performed pixel value substitutions, while the second
system performed both permutations and substitutions.

Based on Lorenz chaotic system and perceptron model in a neu-
ral network, a chaotic image encryption system was proposed by
Wang et al. [24]. Using the deoxyribonucleic acid (DNA) coding, a
novel confusion and diffusion method for image encryption was
proposed by Liu and Wang [25]. The chaotic map used was the
piecewise linear chaotic map (PWLCM), and each nucleotide was
transformed into its base pair using the DNA complementary rule.
Also, an image encryption scheme was introduced by Wang et al.
[26], depending on DNA sequence operations and the pseudoran-
dom sequences produced by the spatiotemporal chaos system
which was coupled map lattice (CML). Moreover, based on the
mixed linear-nonlinear coupled map lattices, a new image encryp-
tion algorithm was presented by Zhang and Wang [27,28], where
bit-level pixel permutation was used allowing the lower and
higher bit planes to permute mutually without any extra storage
space. Wang et al. also proposed a new block image encryption
scheme based on hybrid chaotic maps (Arnold cat map) and
dynamic random growth technique [29]. A stream-cipher algo-
rithm based on one-time keys and robust chaotic maps for colored
image encryption was presented by Liu and Wang [30]. The piece-
wise linear chaotic map was used to generate a pseudo-random
key sequence. They also presented a bit-level permutation and
high-dimension chaotic map was used to encrypt color image
[31]. The scrambling mapping was generated by PWLCM, and then
the Chen system was employed to confuse and diffuse the red,
green and blue components, simultaneously. Some other encryp-
tion systems were also presented in literature [32–39] using chao-
tic maps whether for grayscale or colored images.

Proposed system

The employed GDH map, being a chaotic map, can be used for
pseudorandom number key generation (PRNG) to be used in an
image encryption system to secure biomedical images. The block
diagram of the proposed encryption system is shown in Fig. 4(a).
The key stream used for encryption consists of the GDH parame-
ters, which are the map initial value x0, the growth rate r and
the generalization parameter c. The pseudo random numbers are
generated by recursively solving the map to get ðxÞ. For each iter-
ation, the 8 Least Significant Bits of the new value of ðxÞ is xored
with a new pixel from the image to be encrypted. The output is
to be xored again with a delay block output, which gives a 0 output
for the first iteration only. Then in the successive iterations, it pro-
vides the previously encrypted pixel. This process is repeated for
all the image pixels to reach the final encrypted image. Fig. 4(b)
shows a set of six test images used for the encryption system eval-
uation, with different sizes. The test image could be any medical
image including MRI, CT or X-ray images as well as any natural
image. Two standard images are traditionally used in the image
processing field, which are Lena and Barbara. The other four are
medical images, which are a Lung-XRAY, an MRI image of a patient
suffering of Alzheimer disease (AD), a Parkinson disease MRI and
finally a knee sagittal MRI image.

Table 1 shows the encrypted versions of the input images for
different values of c, for both positive and negative bifurcation
sides. For each case, a wrong decrypted image is presented as well;
this is in response to adding a value of 0:001% of the corresponding
c in the decryption process, compared to the value used in the
encryption process. From the results shown, the image cannot be
restored, which represents a very high sensitivity of the key gener-
ator to the generalization parameter.

Security analysis

The efficiency of any encryption algorithm could be defined by
using some numerical security analyses. In this section, the perfor-
mance analysis measures like key space analysis and parametric
sensitivity analysis, histogram analysis, uniformity variance analy-
sis, correlation analysis, entropy as well as differential attacks anal-
yses are presented to ensure the efficiency of the proposed system.
The images used in security analyses of the cryptosystem proposed
is the set of two standard images (Lena and Barbara) as well as
some medical images.

Pixel correlation analysis

The correlation test is one of the frequently used methods for
testing an encryption system, where the correlation is calculated
by [7]:

CXY ¼ covðX;YÞffiffiffiffiffiffi
DX

p ffiffiffiffiffiffi
DY

p ; ð19Þ

where covðX;YÞ calculates the covariance between X and Y and DX

is the variance of X. Since the image pixels are highly correlated to
each other, a decrease in the correlation coefficients of the horizon-



Fig. 4. (a) Image encryption system block diagram, (b) Test images used for encryption, Pixel correlation diagrams of (c) Lung-Xray image and (d) its encrypted image for þr
and c ¼ 1:5.
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tal, vertical, and diagonal pixels of the image is an indication of the
encryption system strength. Table 2 presents the correlation coeffi-
cients for the all the source images and the encrypted images in
details, for different values of c, for both positive and negative bifur-
cation sides, showing very low correlation coefficients. Fig. 4(c) and
(d) presents the correlation results for the Lung-X-ray image and its
encrypted version for positive r with c ¼ 1:5 GDH map used for key
generation.



Table 1
Encrypted and wrong decrypted images with different values of parameter c for �r.
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Key space analysis

The key space should be large enough to resist brute-force
attacks. The key consists of three control parameters, the initial
condition x0, the growth rate r and the generalization parameter
c. Each parameter consists of 64 bits, rendering the key length
equal to 192 bits long, with a precision of 10�16. The key space size
employed in this work is 2192 ¼ 1057.

Key sensitivity analysis

Chaotic maps are known that they are highly sensitive for any
small change in the initial conditions or the system parameters.
Sensitivity analysis is done for every parameter of the key genera-
tor used for encryption. Changing a very small perturbation of
D ¼ �0:001% of the parameter under test, the encrypted image
should be no longer restored to the original image. This indicates
how the system is highly sensitive to very small changes in the
key parameters insuring the encryption system high security level.
Fig. 5 shows the resultant decrypted images for Lena image, in case
there is a change of D ¼ �0:001% of the map parameters r, c or the
initial condition x0 for both positive and negative bifurcation sides
of the map. For the negative side, for example, the initial condition
x0 ¼ 0:1, is once taken as 0:10001 and another time 0:099999, with
only 0:00001 difference, while fixing r ¼ �1:46; c ¼ 1. The images
cannot be decrypted to Lena again; this is due to the high sensitiv-
ity for the generalized logistic map proposed for generating the
key.

Fig. 6(a) and (b) show two ciphered Lena image for parameters
values x0 ¼ 0:1,r ¼ 2:37037, while changing c ¼ 1:5 and
cþ D ¼ 1:499985, respectively, with only 0:00001 difference. The
two ciphered images are completely different with the difference
image shown in Fig. 6(c). The simulation analysis show that the
algorithm presented is key-sensitive, where a minor change in
any of the key parameters results in a significant change in the
ciphered results.
The decrypted images are also being compared quantitatively,
by measuring the correlation coefficient between two decrypted
images upon having a slight change in the decryption key com-
pared to the encryption key used for encryption. The case under
study is the decrypted images shown in Fig. 5 for the negative
bifurcation side, including images in Fig. 5(g), (h) and (i), where
the decryption key has a slight change in the initial condition x0,
in the growth rate r and in the generalization parameter c, respec-
tively. Table 2 shows that there is no clue about the plain image
could be found upon having a little change in the key. The correla-
tion coefficient calculated for each case is approaching zero. These
results confirm the proposed system effectiveness.

To have a quantity analysis of any key, mutual information (MI)
calculation is employed to evaluate the key sensitivity of any two
ciphered images for example (y and z), which are encrypted ver-
sions by different keys on the same plaintext image, upon changing
a very small D ¼ �0:001% of the key parameters r, c or x0. The
higher the sensitivity of the key, the lower the value of the mutual
information of (y and z). The mutual information is calculated fol-
lowing the equation:

MI ¼ Hyþ Hy� hyz; ð20Þ
where Hy is the entropy of the ciphered image y, Hz is the entropy of
the ciphered image z, and hyz is the mutual entropy between both
images. For each key parameter, the MI is measured while fixing
the other parameters, listed in Table 2. The plaintext images used
are the standard images Lena, Barbara and Cameraman of extension
‘.bmp’. The information shared between the two ciphered images is
close to zero, indicating the high key sensitivity of the system.

Histogram analysis

The distribution of information of pixel values inside any image
can be shown using histogram analysis [7]. If the histogram of the
image after being encrypted is uniformly distributed, this is con-
sidered an indication of the encryption system strength. Table 3



Table 2
Correlation coefficients and key sensitivity analysis.

Positive bifurcation þr

Lena Barbara Lung-X-ray

H V D H V D H V D

Source image 0.8915 0.9494 0.8699 0.9232 0.9744 0.9186 0.9945 0.9973 0.9923
ENC c ¼ 0:85 0.0082 0.0025 0.0027 0.0076 0.0029 0.0002 0.0035 0.0002 �0.0013

c ¼ 1 �0.0005 �0.0019 0.0003 �0.0006 �0.0018 �0.0012 0.0035 0.0002 �0.0012
c ¼ 1:5 �0.0013 0.0080 �0.0094 �0.0013 �0.0047 0.0007 �0.0060 0.0018 0.0012

AD-MRI Parkinson-MRI Knee-MRI

H V D H V D H V D

Source image 0.9627 0.9512 0.9223 0.9047 0.9432 0.8572 0.9746 0.9873 0.9690
ENC c ¼ 0:85 0.0075 �0.0048 0.0039 0.0103 �0.0031 �0.0029 0.0052 0.0039 �0.0011

c ¼ 1 0.0075 �0.0059 �0.0041 �0.0026 0.0057 0.0012 �0.0042 �0.0045 �5.0682e�04
c ¼ 1:5 �0.0022 0.0025 0.0036 0.0004 0.0027 �0.0020 �0.0032 0.0036 �0.0032

Negative bifurcation �r
Lena Barbara Lung-X-ray

H V D H V D H V D

Source image 0.8915 0.9494 0.8699 0.9232 0.9744 0.9186 0.9945 0.9973 0.9922
ENC c ¼ 0:7 0.0110 �0.0054 0.0018 0.0115 0.0016 �6.7028e�04 0.0035 0.0018 0.0014

c ¼ 1 0.0133 �0.0154 �0.0032 0.0121 0.0023 8.3084e�04 �0.0014 0.0021 �3.9151e�04
c ¼ 1:2 �0.0076 0.0012 0.0019 0.0053 �5.8486e�04 �1.6640e�04 0.0022 �0.0012 0.0018

AD-MRI Parkinson-MRI Knee-MRI

H V D H V D H V D

Source image 0.9627 0.9512 0.9223 0.9047 0.9432 0.8572 0.9746 0.9873 0.9690
ENC c ¼ 0:7 0.0121 0.0070 �0.0014 0.0223 0.0020 1.0177e�04 0.0085 0.0021 0.0018

c ¼ 1 0.0100 �0.0050 0.0086 0.0252 6.1136e�04 �0.0027 0.0083 �0.0011 0.0012
c ¼ 1:2 �0.0098 0.0026 �0.0065 0.0073 8.5364e�04 0.0013 0.0075 0.0065 0.0017

Correlation coefficients between different decrypted images shown in Fig. 5

Decrypted images compared Correlation coefficient
Fig. 5(g) and (h) 0:0065
Fig. 5(g) and (i) 0:0080
Fig. 5(h) and (i) 0:0072

Mutual information among key parameters

Positive bifurcation þr

x0 ¼ 0:1 r ¼ 8 c ¼ 1

Lena 0:1892 0:1921 0:1912
Barbara 0:1920 0:1888 0:1899
Cameraman 0:0208 0:0210 0:0209
Average 0:1340 0:1339 0:1340

Fig. 5. Sensitivity analysis to system parameters.

S.M. Ismail et al. / Journal of Advanced Research 10 (2018) 85–98 93



(a) (b) (c)

mean=0, var=0.0001
CC = 0.9049

mean=0, var=0.0005
CC = 0.8173

mean=0, var=0.001
CC = 0.7695

(d) (e) (f)

S and P noise, d=0.001
CC = 0.9969

S and P noise, d=0.005
CC = 0.9845

S and P noise, d=0.01
CC = 0.9650

(g) (h) (i)

Fig. 6. Key sensitivity of parameter c (a) ciphered image c, (b) ciphered image c þ D and (c) difference between (a) and (b), Deciphered images of noisy plain-images with
Gaussian noise in (d), (e) and (f) and with salt and pepper noise in (g), (h) and (i).
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shows the histogram of the plain images as well as the ciphered
images for þr at c ¼ 1, x0 ¼ 0:1 and r ¼ 8, displaying flat his-
tograms for the images after encryption. The histograms of the
ciphered images show completely uniform and significantly differ-
ent than the fluctuating histograms of the plain images, which is
important in resisting any statistical attack. The uniformity of the
ciphered image gray scale, infers that no useful information could
be retrieved upon performing any statistical attack on the ciphered
image.

The uniformity of the histogram analysis can be quantified by
measuring the minimum value, the maximum value as well as
the variance of the histogram of the plain-image. Moreover, the
minimum value, the maximum value as well as the variance of
the histogram of the ciphered-image are calculated. The efficiency
of the system is validated when comparing the range of the mini-
mum and maximum values of the plain-image versus the corre-
sponding range of the ciphered image, calculated as (maximum-
minimum). It is very clear that the ciphered-image, having an
approximately flat histogram, has a very small range in comparison
with the plain-image fluctuating histogram. Also, the variance val-
ues calculated for the plain-image histogram is much more less
than the variance value calculated for the ciphered-image his-
togram, validating the uniformity of the histogram analysis of
the proposed cryptosystem. These results of the variance,
minimum-maximum range values are enumerated in Table 3, for
different standard images of different sizes. Discussing one case
for example, for plain-image Lena of size 512� 512, the range
between the minimum and maximum values is 2723, while the



Table 3
Histogram of the original and the encrypted images for þr and variance analysis.

Lena Barbara

Lung-X-ray AD-MRI

Parkinson-MRI Knee-MRI

Variance analysis of the uniformity of ciphered images

Plain-Image Ciphered Image

Test Image Size Min Max Range Variance Min Max Range Variance

Lena 256 � 256 0 584 584 3.0708e+04 205 308 103 281.2314
Lena 512 � 512 0 2723 2723 6.3473e+05 947 1127 180 976.8627
Baboon 256 � 256 0 964 964 1.0790e+05 213 300 87 267.2078
Baboon 512 � 512 0 2708 2708 7.5246e+05 910 1110 200 1025
Barbara 512 � 512 0 2217 2217 3.8369e+05 935 1108 173 942.6353
Camman 256 � 256 0 2596 2596 1.6190e+05 213 306 93 257.1686
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range of the corresponding ciphered-image is only 180. Moreover,
for the same case, the variance of the plain-image is found to be
6:3473eþ 05, while the variance of the ciphered image is only
976:8627, validating the uniformity of the flat histogram obtained
after encryption.
Entropy analysis

Information entropy is one of the most important parameter for
measuring randomness. The image information content can be
measured using the entropy H, if the probability distribution of
the image is known. For a random variable with a probability dis-
tribution Pk, the entropy can be calculated for n values as follows
[7]:

H ¼ �
Xn
k¼1

Pklog2ðPkÞ: ð21Þ

The entropy is measured in bits. Ideally if H is equal to 8, this
means that the information is totally random. The entropy values
presented are approximately 8 which validates the encryption sys-
tem efficiency. Table 4 shows the entropy results for all the set of
images, for both positive and negative bifurcation sides versus dif-
ferent values of the generalization parameter c.
Classical types of attacks

There are four types of classical cryptanalytic attacks based on
the amount of information known to the cryptanalyst, and these
types are:

� Ciphertext only: In this method, the opponent has access to a
string of ciphertext. He does not have access to corresponding
plaintext.

� Known plaintext: In this method, the opponent knows a string
of plaintext, and the corresponding ciphertext. Using this infor-
mation, it is required to decrypt the rest of the ciphertext.
� Chosen plaintext: In this method, the opponent can access the
encryption device and chooses a string of plaintext and con-
struct its corresponding ciphertext string. By this information,
it is easy to determine the encryption key.

� Chosen ciphertext: In this method, the opponent can access the
decryption device and chooses a string of ciphertext and con-
struct its corresponding plaintext string.

The chosen plaintext attack is the most powerful attack and if a
cryptosystem can resist this attack, it can resist other types of
attack as previously reported [34].
Differential attacks

Differential attacks are some measurements done to confirm
the security of a given encryption system [7]. Three common mea-
sures of the differential attacks are the Mean Absolute Error (MAE),
the number of pixel change rate percentage (NPCR) and the unified
averaged changed intensity (UACI). Conventionally, high MAE,
NPCR and UACI values are usually interpreted as a high resistance
of the encryption system to differential attacks. The absolute
change between the encrypted image E and the source image S,
measured by the MAE, is defined as [7]:

MAE ¼ 1
WxH

XH
i¼1

XW
j¼1

jEði; jÞ � Sði; jÞj; ð22Þ

where W and H are the width and height of the source image (S).
The differential attacks study the relation between the normal
encrypted image (E1) and another encrypted image under the effect
of changing one pixel in the original image (E2). E ði; jÞ is the pixel
value at the location ði; jÞ for the corresponding image E.

The percentage of the number of pixel change between the two
images (E1) and (E2) is measured by NPCR, calculated as [7,40]:

NPCR ¼ 1
WxH

XH
i¼1

XW
j¼1

Dði; jÞ � 100%; ð23aÞ



Table 4
Differential Attacks analysis results for different images.

Positive bifurcation þr Negative bifurcation �r

c Entropy MAE NPCR (avg) UACI (avg) c Entropy MAE NPCR (avg) UACI (avg)

Lena 0:85 7.9885 77.7790 75.6256 34.9441 0:7 7.9871 77.2129 75.62561 35.0643
1 7.9889 77.0094 75.6256 34.9527 1 7.9892 77.8253 75.62561 34.8779
1:5 7.9907 78.1754 75.6256 34.8651 1:2 7.9888 77.4624 75.6256 34.9782

Barba 0:85 7.9993 76.2103 75.5000 31.4231 0:7 7.9992 76.2984 75.5000 31.4492
1 7.9992 76.2310 75.5000 31.4618 1 7.9992 76.1708 75.5000 31.4732
1:5 7.9992 76.2261 75.5000 31.4732 1:2 7.9993 76.1374 75.5000 31.4442

Lung 0:85 7.9987 81.2101 75.5000 31.8133 0:7 7.9986 81.2617 75.5000 31.7949
1 7.9985 81.0042 75.5000 31.7341 1 7.9987 81.1266 75.5000 31.7597
1:5 7.9987 81.1531 75.5000 31.8026 1:2 7.9986 81.0291 75.5000 31.7571

AD 0:85 7.9954 87.5625 75.5575 29.7107 0:7 7.9946 88.3132 75.5575 29.7632
1 7.9945 87.7781 75.5575 29.7555 1 7.9957 87.84262 75.5575 29.7861
1:5 7.9946 87.5776 75.5575 29.7563 1:2 7.9956 88.07746 75.5575 29.7857

Parkn 0:85 7.9978 94.3581 75.5000 29.4095 0:7 7.9975 93.83713 75.5000 29.3711
1 7.9977 94.0663 75.5000 29.3684 1 7.9977 93.94367 75.5000 29.3771
1:5 7.9981 94.3686 75.5000 29.4023 1:2 7.9977 94.46904 75.5000 29.3771

Knee 0:85 7.9986 100.0917 75.5000 24.8565 0:7 7.9984 100.1994 75.5000 24.8939
1 7.9988 99.8536 75.5000 24.8268 1 7.9986 100.1060 75.5000 24.8278
1:5 7.9983 100.1856 75.5000 24.9201 1:2 7.9984 100.0359 75.5000 24.8522
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Dði; jÞ ¼ 0 E1ði; jÞ ¼ E2ði; jÞ
1 E1ði; jÞ – E2ði; jÞ

� �
: ð23bÞ

The term UACI measures the average light intensity of the dif-
ferences between the two images (E1) and (E2), and it is calculated
as [7,40]:

UACI ¼ 1
WxH

XH
i¼1

XW
j¼1

jE1ði; jÞ � E2ði; jÞj
255

� 100%: ð24Þ

Table 4 shows the differential Attacks analysis results for the
images for the three cases of c. The NPCR and the UACI results
are calculated as the average of 50 trials.

An efficient cryptosystem should be sensitive to the secret keys
as was shown in the key sensitivity analysis as well as the plain-
text. For all the images under test and for all the cases whether
positive or negative bifurcation maps, in each time two ciphered
images are obtained upon changing only one bit in the plain-
image, and measure the NPCR of the resultant ciphered images.
The values of the NPCR presented in Table 4 shows that upon
changing only one pixel in the plain-image, different ciphered
images are obtained; confirming that the cryptosystem proposed
is sensitive to changing plain image and can resist the chosen
plain-text attack [34].

Moreover, the closer the UACI values to the values presented in
Wu et al. [40], the more the effectiveness of the cryptosystem in
resisting differential attack [34]. The UACI value depends on the
size of the image as can be seen in the table and as reported earlier
by Wu et al. [40].

Robustness against noise

The electronic transmission of ciphered images from transmit-
ter to receiver, may suffer some additive noise in practical life,
which may cause an inevitable error leading to difficulties in
decryption, and this point is very important specially in medical
images transfer through doctors and hospitals. If the cryptosystem
is noise sensitive, then a small change in the ciphered image due to
noise addition may hinder the original image restoration after
decryption [25,39]. The system proposed is being tested to apply-
ing white Gaussian noise to the ciphered image of Lena, with dif-
ferent variances. This type of noise is a reasonable assumption of
randomness caused by real physical channels, and the random
numbers of this noise is uniformly distributed through the
ciphered image. The results shown in Fig. 6(d–f) show how much
the cryptosystem proposed is robust against noise. Moreover, the
same image Lena, is being tested while adding Salt and Pepper (S
and P) noise to the ciphered image, with different densities, and
the decrypted image of each case is shown in Fig. 6 also confirming
the system efficiency against noise attacks. The correlation coeffi-
cients (CC) between the noiseless decrypted image and the noisy
decrypted image are enumerated for each noisy case in Fig. 6. If
the deciphered image is very close to the original whether visually
or numerically through the measurement of the correlation coeffi-
cients, i.e. close to 1, this proves that the system is noise immune,
which is proved in the reported results, as the decrypted images
still maintain the overall information of the original image.
NIST statistical test

The NIST statistical test suite provides typical tests to measure
the randomness of the encrypted image [41]. In this evaluation,
two standard images were used ‘‘Lena” and ‘‘Man” with resolution
1024� 1024 and four different combinations of the generalized
DH map were applied. Cases 1 and 2 are for positive bifurcation
side of the GDH map, with values (c ¼ 1; r ¼ 8), and
(c ¼ 1:5; r ¼ 2:37037) respectively. On the other hand, cases 3
and 4 are for negative bifurcation side of the GDH map with values
(c ¼ 0:7; r ¼ �4:267), and (c ¼ 1:2; r ¼ �0:842) respectively. The
test results are reported in Table 5, and the success in all the 15
tests further asserts the randomness of the encrypted images.
Discussion and comparisons

This section presents a comparison for the proposed system
with previously introduced systems in literature. For the sake of
fair comparisons, only the standard images with different sizes
are employed in this section. The comparison includes key space
analysis, sensitivity analysis, entropy analysis, and correlation
coefficients calculations. The key space size employed in this work
is 2192 ¼ 1057 which is more than the key space presented else-
where [22,32–34] as being compared in Table 6. Thus, the encryp-
tion system used in this work can resist all kinds of brute force
attacks having a large enough key space.



Table 5
NIST test.

Sample NIST results for encrypted images (1024 � 1024)

Test Case 1 Case 2 Case 3 Case 4

PV PP PV PP PV PP PV PP

Frequency
p

1.000
p

1.000
p

1.000
p

1.000
Block Frequency

p
1.000

p
1.000

p
1.000

p
1.000

Cumulative Sums
p

1.000
p

1.000
p

1.000
p

1.000
Runs

p
1.000

p
1.000

p
1.000

p
1.000

Longest Run
p

1.000
p

1.000
p

1.000
p

1.000
Rank

p
1.000

p
1.000

p
1.000

p
1.000

FFT
p

1.000
p

1.000
p

1.000
p

1.000
Non Overlapping Template

p
0.994

p
0.992

p
0.992

p
0.995

Overlapping Template
p

1.000
p

1.000
p

1.000
p

1.000
Universal

p
1.000

p
1.000

p
1.000

p
1.000

Approximate Entropy
p

1.000
p

1.000
p

1.000
p

1.000
Random Excursions

p
1.000

p
1.000

p
0.975

p
1.000

Random Excursions Variant
p

1.000
p

1.000
p

0.989
p

0.972
Serial

p
1.000

p
1.000

p
1.000

p
0.938

Linear Complexity
p

1.000
p

1.000
p

1.000
p

1.000
Final Result Success Success Success Success

Table 6
Comparison between previous encryption systems and this work.

Key space comparison with existing algorithms

Algorithms Ref [32] Ref [22] Ref [35] Ref [21] Ref [33] Ref [34] This work

Key space 1030 1038 1038 1042 1056 1056 1057

Correlation Coefficients comparison for Lena

Ciphered Image

Directions Plain-Image [21] [24] [25] [26] [29] [33] [36] [37] This work

Horizontal 0.9719 0.0020 0.0004 0.0020 0.0019 0.0057 0.0036 0.0062 0.0020
Vertical 0.9850 �0.0009 �0.0876 0.0021 �0.0007 0.0038 0.0024 0.0023 0.0052 �0.0018
Diagonal 0.9639 0.0016 0.0056 �0.0038 �0.0014 �0.0019 0.0027 0.0039 0.0069 �0.0015

Information Entropy comparison c ¼ 1

Ciphered Image
Test Image Size Original Image [22] [25] [26] [29] [35] [37] [38] This work

Lena 256 � 256 7.5690 7.9970 7.9993
Lena 512 �512 7.4455 7.9952 7.9874 7.9970 7.9994 7.9962 7.9992 7.9993
Baboon 256 �256 6.6962 7.9974 7.9990
Baboon 512 �512 7.3582 7.9860 7.9969 7.9993 7.9971 7.9991 7.9993
Barbara 512 �512 7.6321 7.9867 7.9993
Camman 256 �256 6.9046 7.9780 7.9972 7.9967 7.9969 7.9993
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Referring to Table 2, measuring the MI of ciphered images for
different keys, the highest and least sensitivities are very close,
thus the opponent cannot distinguish which parameter is being
varied in the key. Comparing the average performance of the pre-
sented work of values around 0:1340, which is less than the aver-
age performance obtained by others [27,28].

In Table 6, the entropy of the proposed system is being com-
pared with the results obtained in some references, with the case
of positive bifurcation with the generalized parameter c ¼ 1, show-
ing that the results of this work prove the system to have very good
performance. All the images used for comparison are of extension ‘.
bmp’.

A comparison of the proposed cryptosystem with respect to the
correlation coefficients of ciphered image Lena.bmp, with different
previous works, is also presented in Table 6, highlighting the effi-
ciency of the system.
Conclusions

The generalization of the Double-Humped logistic map was pre-
sented in this paper. The GDH map was used for pseudo-random
number key generation (PRNG) in a medical image encryption sys-
tem. The general parameter added more control on the chaotic
range of the map. Changing the general parameter resulted in a
new special map with a zooming effect of the bifurcation diagram.
The dynamic behavior of the generalizedmap is analyzed, including
the study of the fixed points and stability ranges and the complete
bifurcation diagram. The option of designing any specific map is
made possible through changing the general parameter increasing
the randomness and controllability of the map. An image encryp-
tion algorithm is introduced based on pseudo-random sequence
generation using the proposed generalized DH map offering secure
communication transfer ofmedicalMRI and X-ray images. Different
tests are applied to the proposed encryption system, including sen-
sitivity test, histogram analysis, correlation coefficients, MAE, NPCR
and UACI calculations ensuring the effectiveness of the system.
NIST analysis was performed to prove the system efficiency. Com-
parison was performed relative to other systems presented in liter-
ature validating the proposed system efficiency.
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