
Osteoporosis and the search for risk factors
Osteoporosis is the most common metabolic bone 
disease and is estimated to aff ect more than 200 million 
people worldwide [1]. About 30% of women and 20% of 
men over 50 suff er from osteoporosis or osteoporotic 
fractures [1]. Osteoporotic fractures are not only asso-
ciated with increased mortality in both sexes, but are also 
responsible for about 1% of the worldwide disability 
caused by prevalent noncommunicable diseases [1]. 
Current pharmacological interventions for osteoporosis 
focus on hormone replacement therapy and anti-
resorptive treatment with bisphosphonates [2]. Anabolic 
therapy with parathyroid hormone (PTH) peptides has 
also been used for severe osteoporosis [3]. In addition, 
prevention strategies such as physical exercise and 

dietary vitamin D were introduced to reduce lifetime risk 
of osteoporosis [4]. Despite these eff orts, osteoporosis 
and osteoporotic fractures are still a serious public health 
issue, with low diagnosis and treatment rates. Deeper 
understanding of the pathophysiology of osteoporosis 
and predisposition to fracture is necessary [5].

Bone mineral density (BMD) is a widely used index for 
diagnosis of osteoporosis and fracture prediction [5]. 
Other traits, such as bone geometry, bone size, and 
fracture (the outcome of osteoporosis) have also been 
used in genetic studies of osteoporosis [6]. Osteoporosis 
involves an imbalance between the activity of osteoclasts 
and osteoblasts that determines bone remodeling [7]. 
Osteoclasts are derived from monocytes; they digest and 
remove mature bone tissue (a process known as resorp-
tion) [8]. Osteoblasts are derived from multipotential 
mesenchymal stem cells (MSCs); they synthesize bone 
matrix and form new bone that replaces previously 
resorbed tissue [8]. Bone remodeling is controlled by 
complex genetic and environmental factors that act 
together. Identifi cation of genes that infl uence variations 
in bone-related traits will provide insight into the genetic 
architecture of osteoporosis [9].

In genetic studies of osteoporosis, candidate gene asso-
ciation analysis is a conventional approach for detecting 
genetic variants associated with disease suscep tibility; 
however, a major li mitation of the candidate gene 
approach is that the ‘right’ candidate genes are sometimes 
diffi  cult to identify because of our limited knowledge 
about the pathophysiology of osteoporosis [10]. With 
recent advances in molecular genetic technologies, it has 
become feasible to perform whole-genome studies to 
search for osteoporosis risk genes [11]. Th is hypothesis-
free approach has an important advantage in identifi -
cation and assessment of susceptibility genes as it does 
not require any prior assumptions or knowledge about 
the genes [12]. Depending on experimental technologies 
and analytical approaches, genome-wide scans may 
include linkage, association, gene expression, proteomic, 
and epigenetic studies [13]. Here, we summarize recent 
fi ndings of such genome-wide studies of osteoporosis 
and we discuss their implications for pathogenesis and 
for the development of targeted interventions.
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Genome-wide linkage studies
Genome-wide linkage studies (GWLSs) are conducted to 
identify genomic regions associated with inherited 
diseases or traits in generations of families comprising 
affected and unaffected individuals by examining whether 
molecular markers (usually microsatellite markers spaced 
throughout the entire human genome) co-segregate with 
the diseases or traits under study [14]. GWLSs are 
designed to identify genomic regions contributing to 
predisposition to complex human diseases, and they do 
not require any information on the potential functions of 
genomic regions [15]. Before the advent of genome-wide 
association studies (GWAS), GWLSs had been widely 
used for genetic mapping of human diseases, and have 
successfully mapped contributing genes for many 
Mendelian diseases.

Traditional GWLSs have focused on individual diseases 
or traits (such as BMD) using univariate analytical 
approaches. For example, Styrkarsdottir et al. [16] con-
ducted a GWLS for hip and spine BMD in a large number 
of extended families with osteoporosis in Iceland and 
identified bone morphogenetic protein gene BMP2 on 
chromosome 20p12.3; they followed up this discovery 
with association analysis. Kammerer et al. [17] performed 
a GWLS using BMD data at the forearm and hip for 664 
individuals from 29 Mexican-American families. They 
obtained evidence for quantitative trait loci (QTL) on 
chromosome 4p affecting forearm BMD overall, and on 
chromosomes 2p and 13q affecting hip BMD in men [17].

Univariate analysis generally ignores the relationship 
between study traits, and this may result in loss of 
statistical power in gene identification for osteoporosis 
[18]. The problem can partially be overcome by bivariate 
analysis, which can improve the power to detect QTLs, 
especially when the effects of QTLs are too small to be 
detected by univariate analysis. Between 2007 and 2009, 
bivariate GWLSs identified significant loci influencing 
BMD and other bone-related traits such as bone size, 
total body lean mass [19], body fat mass [20], and age at 
menarche [21].

In an effort to improve the power of GWLSs, Ioannidis 
et al. [22] conducted a meta-analysis of GWLSs of bone 
mass that included 11,842 individuals. This large-scale 
meta-analysis provided replication evidence for several 
QTLs identified in previous studies and also identified a 
new QTL on chromosome 18p11-q12.3 [22]. The limita-
tions of GWLSs are related to limited statistical power, 
genetic heterogeneity, population stratification, sparse 
marker density, and phenotypic heterogeneity, which have 
resulted in difficulty in replicating study findings [18].

Nevertheless, GWLSs have provided valuable infor ma-
tion for future fine-mapping studies and have also 
provided a basis for comparison and cross-validation of 
study results using different approaches (for example, 

gene expression and proteomic studies) [23]. So far, more 
than 60 QTLs for BMD have been reported on all 
chromosomes except chromosome Y [8], with a few 
replicated in multiple studies, such as 7p21-22, 11q12-13, 
15q13, and Xq27 [8]. Table  1 summarizes the main 
findings of GWLSs for osteoporosis.

Genome-wide association studies
GWASs provide an unbiased approach by which a large 
number of participants are genotyped for dense genetic 
markers (normally single nucleotide polymorphisms, 
SNPs) covering the whole genome to identify suscep-
tibility genes for human diseases or traits. Compared 
with GWLSs, GWASs can capitalize on all meiotic 
recombination events in a population, rather than only 
those in the families studied, and thus have higher 
statistical power and mapping resolution. Over the past 
decade, GWASs have become one of the most popular 
tools for gene mapping of complex human diseases or 
traits [24]. Various different strategies have been adopted 
in GWASs, including individual studies (for example, in 
single or multiple ethnicities) and meta-analyses.

GWASs for osteoporosis-related traits have primarily 
been performed for single ethnicities [25]. For example, 
Hsu et al. [26] integrated a GWAS of Caucasians with 
gene expression profiling of various human tissues and 
identified three novel genes associated with BMD  - 
RAP1A (encoding a Ras oncogene family member), 
TBC1D8 (TBC1 domain family member 8), and 
OSBPL1A (oxysterol binding protein-like 1A) - and repli-
cated the identification of OPG (osteoprotegerin) [26]. 
GWASs have also been conducted in populations of 
different ethnicities [27]. Koller et al. [28] found that 
SNPs (rs1298989 and rs1285635) in CATSPERB (encod-
ing the catsper channel auxiliary subunit β) were asso-
ciated with femoral neck BMD in both premenopausal 
European-American women and African-American 
women [28]. Ichikawa et al. [29] found that one SNP in 
the C6orf97/ESR1 (estrogen receptor 1) region was signi-
fi cantly associated with BMD in premenopausal white 
women and premenopausal black women.

Besides SNPs, other genetic variants have also been 
studied. Copy number variants (CNVs; that is, dupli-
cation or deletion of a relatively large segment of DNA) 
have been analyzed in GWASs [27]. For example, Liu et 
al. [30] reported a CNV (CNP267) on chromosome 
2q12.2 that was significantly associated with hip bone 
size in both Chinese Han and Caucasian samples. A 
candidate gene, FHL2 (four-and-a-half-LIM gene), is 
located downstream of CNP267 [30].

A simple and efficient way to improve statistical power 
over individual GWASs is meta-analysis of multiple 
GWASs [31-33]. Recently, the Genetic Factors for 
Osteoporosis (GEFOS) consortium published a large 
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meta-analysis of GWASs of lumbar spine and femoral 
neck BMD [33]. Seventeen GWAS datasets were 
analyzed, comprising 32,961 individuals of European and 
East Asian ancestry [33]. A total of 56 loci (32 of which 
were new) were found to be associated with BMD, and 
several of these loci clustered within specific pathways, 
including those involved in mesenchymal stem cell 
differentiation, endochondral ossification, the RANKL/
RANK/OPG pathway (involving receptor activator of 
nuclear factor (NF)-κB, its ligand, and osteoprotegerin) 
and the Wnt signaling pathway [33]. It should be noted 
that homogeneous phenotypes (for example, types of 
fractures or skeletal sites of BMD) are necessary for 
meta-analysis to provide dependable results.

In addition to univariate GWASs, multivariate GWASs 
have been conducted to identify pleiotropic genes 
underlying diseases with shared genetic susceptibility to 
reveal the interconnected pathophysiological networks 
for a spectrum of common human diseases [34]. A 
bivariate GWAS for femoral neck bone geometry and 
body lean mass  - two major risk factors for musculo-
skeletal disease  - was conducted in Chinese people and 
US Caucasians [35], and SNPs in four genes (the 
hexokinase gene HK2, the uromodulin gene UMOD, and 
microRNA genes MIR873 and MIR876) showed strong 
association with both traits [35].

Although the number of GWASs has grown dramati-
cally during the last five years [36,37], GWASs have 
several limitations, such as small sample size, dependence 
on minor allele frequency and genetic effects, stringent 
statistical significance, and the difficulty of replication 
across studies [38]. Using empirical data, we recently 
performed theoretical analyses to address the usefulness 
and limitations of GWASs and meta-analyses (our un-
published observations). The results suggested that 
discordant findings in GWASs and meta-analyses are not 
unexpected, even for true susceptible genes. We 
concluded that although meta-analyses can detect many 
more true and novel loci for complex diseases than 
individual GWASs, they should not be used as a gold 
standard to evaluate the results of individual GWASs. In 
particular, individual GWASs in homogeneous popula-
tions can detect true disease genes that meta-analyses 
might have low power to replicate.

So far, over 30 GWASs have been published on osteo-
porosis and related traits [25,26,28-57], and these have 
identified over 50 genes or genomic loci; examples are 
shown in Table 2. About 20 genes have also been detected 
in multiple GWASs (Table  2). Some of the identified 
genes are involved in well-established pathways, such as 
the RANKL/RANK/OPG pathway and the Wnt signaling 
pathway, that are important for bone metabolism [44].

Table 1. Examples of genome-wide linkage studies of osteoporosis and related traits*

Study participants No. of markers Phenotype Results Refs

3,730 men and 4,374 women 
from the Framingham 
Osteoporosis Study

209,546 SNPs. Genotypic call 
rates ≥97%, HWE P ≥ 0.01; 
MAF ≥0.2

Hip and spine BMD heel 
ultrasound, geometric indices of 
the hip

For BMD, 9p and 11p, LOD ≥3.0; for 
ultrasound, 4p, LOD = 3.9, 16p, LOD = 3.8, 
22p, LOD = 4.0; for femoral neck width, 7p, 
LOD ≥5.0

[23]

4,498 individuals from 451 
pedigrees

410 TBLM and spine BMD in women 15q13, LOD = 4.86 [19]

TBLM and spine BMD 7p22, LOD >2.2; Xq25, LOD >3.5 [19]

TBLM and BMD at both spine  
and hip in women

7q32, LOD = 2.67 [19]

TBLM and BMD at both spine  
and hip in men

7q21, LOD = 2.52; 13p11, LOD = 325 [19]

1,323 individuals from 207 
extended Icelandic families 

1,100 Hip BMD 16q, LOD = 1.99 [16]

Spine BMD 18p, LOD = 2.12 [16]

664 individuals from 29 
Mexican-American families

416 Forearm BMD 4p, LOD = 4.33; 12q, LOD = 2.35 [17]

Trochanter BMD in both men  
and women

6p, LOD = 2.27 [17]

Neck BMD only in men 2p, LOD = 3.98 [17]

Trochanter BMD only in men 13q, LOD = 3.46 [17]

11,842 individuals from 9 
groups

Varied between 270  
and 1,008

Lumbar spine BMD only in 
women; lumbar spine BMD in 
both women and men; femoral 
neck BMD

LOD >1.6 for 1p13.3-q23.3, 12q24.31-qter, 
3p25.3-p22.1, 11p12-q13.3, 1q32-q42.3, 
18p11-q12.3, 9q31.1-q33.3, 17p12-q21.33, 
14q13.1-q24.1, 9q21.32-q31.1, and 
5q14.3-q23.2

[22]

*HWE P, Hardy-Weinberg Equilibrium P-value; LOD, logarithm of odds; MAF, minor allele frequency; TBLM, total body lean mass.
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Overlap between results obtained from GWLSs and 
GWASs has been limited. COL1A1 (encoding Collagen 
type I α1) is among the very few genes detected by both 
GWLS and GWAS [18,43]. The limited overlap may be 
due to false positive or false negative results, or because 
the linkage approach is more likely to find functional rare 

variants that are enriched in large pedigrees, whereas 
GWAS mainly aims to identify common variants [46,47].

Gene expression studies
Unlike GWASs and GWLSs, which search for genetic 
variants at the DNA level, gene expression analysis can 

Table 2. Examples of genome-wide-association studies of osteoporosis and related traitsa

 Total Significant Discovery Replication   Candidate gene/  
Genotyping markers  markers participants participants Phenotype  P-value  related pathwayb Refs 

Affymetrix 500K 
array set

342,854 
SNPs. HWE 
P ≥ 0.0001; 
MAF ≥5%

rs9630182, rs2036417, 
rs7125774; rs8057551, 
rs8061992, rs7199138

495 females 
and 488 males, 
unrelated 

2,557 
phenotyped 
white 
individuals 
from 750 
families

Femoral neck 
BMD

3.98×10-7 
to  
6.74×10-3

IL21R and PTH/PTH 
pathway 

[52]

Affymetrix 500K 
array set

281,533 SNPs. 
Genotypic call 
rates ≥90%; 
HWE P ≥ 0.001; 
MAF ≥5%

rs13182402 700 elderly 
Chinese Han

906 Chinese, 
4,054 US 
Midwest 
Caucasians, 
2,953 US 
Framingham 
samples

BMD; low-
trauma 
osteoporotic 
fractures

2.08×10-9 
to  
6.39×10-6 

ALDH7A1 [40]

Infinium assay 
Human 610-
quad chip

564,214 SNPs. 
Genotypic call 
rates ≥95%; 
HWE  
P ≥ 0.0001; 
MAF ≥1%

rs2273061 800 unrelated 
Hong Kong 
Chinese 
females

720 Hong Kong 
and 17,378 of 
European or 
Asian descent

BMD 5.27×10-8 
to  
3.47×10-5

JAG1; Wnt and Notch 
pathways

[46]

High-density 
oligonucleotide 
arrays

224,507 SNPs. 
Genotypic call 
rates ≥90%; 
HWE P ≥ 10-6

rs7605378 1,747 (190 
cases and 1,557 
controls) in 
Japan

5,206 (2,092 
cases, 3,114 
controls) in 
Japanese 

1.51×10-8 FONG [45]

Affymetrix 
genome-wide 
human SNP 
array 6.0 

689,368 SNPs. 
HWE P ≥ 0.01; 
MAF ≥1%

rs17743190, rs3857454, 
rs3907327, rs17799762, 
rs17799805, rs1385530, 
rs17799462, rs3857453, 
rs3857449, rs10484943, 
rs196670, rs16890720

1,627 Han 
adults

1,728 from 
Midwestern 
US (Kansas 
City, MO and 
Omaha, NE)

Spine bone  
size 

6.2×10-5 
to  
1.8×10-6

HMGN3 [50]

Affymetrix 
GeneChip 
human 
mapping SNP 
6.0 array

194 CNVs CNP267 1,627 Chinese 
Han

2,286 unrelated 
US Caucasians 

Hip bone  
size

4.73×10-3 
and  
5.66×10-3

FHL2 [30]

Meta-analysis 1,200 SNPs 467 SNPs 19,195 
Northern 
Europeans 

Femoral neck 
and lumbar 
spine BMD

<5×10-8 SPTBN1, CTNNB1, 
MEPE, STARD3NL, 
FLJ42280; ARHGAP1, 
DCDC5, SOX6, FOXL1, 
HDAC5 ESR1, SP7, 
and others; Wnt and 
MAPK pathways

[31]

Meta-analysis 96 SNPs 32,961 of 
European and 
East Asian 
ancestry

Replication 
in 50,933 
individuals 

Lumbar spine 
and femoral 
neck BMD

<5×10-8 FAM210A, SLC25A13, 
LRP5, MEPE, SPTBN1, 
DKK1; RANK-RANKL-
OPG and Wnt 
pathways

[33]

aAbout 20 genes have been detected in multiple GWASs, including ARHGAP1 [31,32], C6orf97 [29,32], CLCN7 [25,43], CTNNB1 [31,53], DCDC5 [31,53], ESR1 
[29,31,32,48,53,57], FLJ42280 [31,53,55], FOXL1 [31,53], GPR177 [31,53,54], HDAC5 [31,53], LRP4 [31,32,56,57], LRP5 [31,33,53], MEPE [31,33,53], PTH [43,52], STARD3NL 
[31,53], SOST [53,56], SOX6 [31,41,51,53], SPTBN1 [31,33,57], TNFSF11 [55,56], TNFRSF11A [31,37,55,56], TNFSF11B [31,53,56,57], and ZBTB40 [31,53]. bFor gene 
abbreviations and explanations of pathways, see Table 5.
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simultaneously detect gene expression (at the RNA level) 
for tens of thousands of genes. It is a powerful scanning 
tool to investigate biochemical processes and inter medi-
ates of pathways that are linked with pathophysiology of 
osteoporosis [58]. Gene expression studies of osteo-
porosis have been conducted both in vivo and in vitro.

Because of the difficulty in obtaining sufficient amounts 
of fresh osteoblasts, osteoclasts, and osteocytes, most 
gene expression studies have been conducted using cell 
cultures. In vivo studies using blood monocytes have also 
been reported. Monocytes are important sources of 
cytokines and chemokines, are involved in immune 
system functions and have been related to bone meta bo-
lism. Peripheral blood monocytes (PBMs) are the pre-
cursors of osteoclasts [59], and thus represent an 
important sample for studying the molecular mecha-
nisms of osteoporosis in vivo. Chen et al. [60] found that 
STAT1 (encoding signal transducer and activator of 
transcription 1) was significantly upregulated in the low 
versus the high BMD groups in both Chinese and 
Caucasian people, suggesting its importance in the 
etiology of osteoporosis. However, this was a pilot study 
conducted with a relatively small sample size and the 
findings need to be confirmed in other populations.

In vitro studies of osteoporosis using cell cultures have 
provided a wealth of information on the pathophysiology 
of osteoporosis [61]. Trost et al. [62] conducted a study 
on cultures of osteoblasts isolated from osteoporotic and 
non-osteoporotic human bone tissue samples. They 
found higher levels of protein synthesis and lower levels 
of cell proliferation in osteoblasts from osteoporotic 
tissue than in those from non-osteoporotic tissue [62]. 
MSCs, the precursors of osteoblasts, have also been 
investi gated in gene expression studies of osteoporosis 
[63]. Kulterer et al. [64] identified the expression of ID4 
(encoding inhibitor of DNA binding dominant negative 
helix-loop-helix protein), CRYAB (alpha-crystallin B 
chain), and SORT1 (sortilin) in osteogenic differentiation 
of MSCs. Furthermore, Tanabe et al. [65] identified four 
genes  - EPHA5 (ephrin type-A receptor 5 gene), NOV 
(nephroblastoma overexpressed), NDN (necdin), and 
RUNX2 (runt-related transcription factor 2)  - as stage-
specific markers of osteogenic differentiation of MSCs.

Gene expression studies have also provided useful 
information about the molecular mechanisms of bone 
healing [66-68]. Oleanolic acid was reported to have an 
osteoprotective effect in rats with ovariectomy-induced 
osteoporosis; its ability to stimulate osteoblastic differ en-
tiation might be related to the Notch signaling pathway 
[69]. Li et al. [70] explored the anabolic and catabolic 
effects of intermittent and continuous treatments with 
three different PTH peptides in bone metabolism. A large 
number of genes, including SLPI (encoding secretory 
leuko cyte peptidase inhibitor), TFPI2 (tissue factor 

pathway inhibitor), SOCS3 (cytokine signaling suppres-
sor) and GRO1 (melanoma growth stimulating activity 
α), were verified to be functional in the regulation of 
bone remodeling using PTH treatment [70]. These in-
vesti gations might thus provide insights into mecha nisms 
underlying PTH treatment of osteoporosis.

High-throughput microarrays have been informative in 
genetic studies of osteoporosis, but studies using PBMs 
and MSCs are not expected to be as useful as studies of 
osteoclasts, osteoblasts, and osteocytes. Because of the 
relatively small sample size and relatively poor signal/
noise ratio for genes with low expression levels, most 
microarray technology using human blood or monocyte 
samples has produced results that have not been 
replicated well. Also, novel transcripts, gene fusion, and 
alternative splicing may not be detected because of the 
dependence on commercial chips. To address these 
issues, transcriptome sequencing (RNA-seq) could be an 
attractive alternative [71].

Taken together, recent gene expression studies have 
shown that osteoporosis involves numerous genes and 
pathways (some of which were also identified in GWLSs 
or GWASs and some of which were novel) with complex 
regulatory mechanisms that are controlled by hormones, 
cytokines, or various receptors [72-74]. Examples of 
these studies are summarized in Table 3.

Proteomic studies
Proteomics is the large-scale study of proteins, allowing 
analyses of the entire complement of proteins in a cell or 
sample simultaneously, and made possible today by tech-
nological advances in computing and data processing. 
These approaches have been used to characterize bio-
chemical interactions and protein signaling in bone 
remodeling [75,76]. Like gene expression studies, recent 
proteomic studies of osteoporosis have focused on 
osteoblasts and osteoclasts and their precursors [77-80].

Saad and Hofstaetter [81] identified 16 proteins that 
may have a role in osteoblast matrix mineralization. Choi 
et al. [82] investigated differentiation of MSCs and osteo-
blastogenesis and identified SMOC1 (SPARC-related 
modular calcium-binding protein) as an important extra-
cellular matrix protein in osteoblast differentiation. By 
using both gene and protein expression analyses in aged 
bone, MSC-derived adipocytes were also shown to have 
potential roles in regulating osteoblast differentiation 
through transforming growth factor β (TGF-β)-mediated 
canonical Wnt signaling [83]. A proteomic study con-
ducted using PBMs identified a novel annexin protein, 
ANXA2, that was upregulated twofold in Caucasians 
with extremely low BMD compared with those with 
extremely high BMD [39]. ANXA2 protein significantly 
promoted monocyte migration across an endothelial 
barrier in vitro; this suggested that elevated ANXA2 
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protein expression levels in subjects with low BMD may 
be involved in increased PBM migration to bone resorp-
tion surfaces in vivo, where higher numbers of osteoclasts 
might resorb bone at higher rates resulting in decreased 
BMD [39].

A proteomic approach was used to show that specific 
antibodies could suppress bone turnover [84]. Kostenuik 
et al. [85] also reported that the human monoclonal 
antibody denosumab bound to human RANKL but not to 
murine RANKL, human TRAIL, or other human TNF 
family members in direct binding assays. Knock-in tech-
nology was applied to create ‘huRANKL’ mice by replace-
ment with a human RANKL fragment encoded primarily 
by the fifth exon of the RANKL gene [85]. In young 
huRANKL mice, denosumab and OPG-Fc (an osteo pro-
te gerin-immunoglobulin Fc segment complex) each 
reduced the osteoclast surfaces of trabecular bone (spongy 
bone or cancellous bone) by 95% and also increased bone 
density and volume [85]. In adult huRANKL mice, 
denosumab reduced bone resorption, increased the bone 
mass of both cortical bone (a dense type of bone tissue) 
and cancellous bone (the spongy inner layer of bone), and 
improved trabecular microarchitecture [84]. Subse-
quently, Kendler et al. [84] separated 504 postmenopausal 
women over 55 with low BMD who had been receiving 
alendronate therapy (which is used to slow down bone 
loss and increase bone density) for at least 6 months into 
two groups of continued weekly alendronate therapy or 
subcutaneous denosumab therapy. Transition to 

denosumab produced greater increases in BMD at all 
measured skeletal sites and a greater reduction in bone 
turnover than did continued alendronate, with a similar 
safety profile in both groups [84].

Like gene expression studies, proteomic studies have 
also been conducted using relatively small sample sizes, 
and there have been difficulties in replicating results. 
Although proteomic approaches are still at an early stage 
in the bone research field, they represent one of the most 
promising methods for generating insights for human 
osteoporosis and have shown promise for the identi fi-
cation of novel proteins and genes [86-90]. Examples of 
recent proteomic studies of osteoporosis are summarized 
in Table 4.

Epigenome-wide studies
Epigenetic regulation is important for sustaining normal 
growth and development of animals [91]. Dysregulation 
of these mechanisms is involved in many human diseases, 
such as cancer, intellectual disability, and immuno-
deficiency, and in aging [91-94]. DNA methylation, 
histone modifications, and RNA-mediated mechanisms 
are all known to have key roles in epigenetic regulation, 
and they are being investigated in bone disease [95].

DNA methylation involves the covalent transfer of a 
methyl group to the fifth carbon of cytosine in CpG 
dinucleotides in the genome [96]. The influence of CpG 
methylation in human bone has been investigated. Hsiao 
et al. [97] found that suppression of the TRIP10 

Table 3. Examples of gene expression studies of osteoporosis 

  Differentially 
  expressed 
Subjects and samples Treatment genes Important regulated genesa Refs

Human osteoblasts isolated from 
trabecular bone tissue of femoral 
neck and proximal femur

Comparing the gene expression profiles of 
osteoblasts from osteoporotic versus non-
osteoporotic bone tissues

1,606 Upregulated: IBSP, CXCL2; downregulated: PTN, 
COL15A1

[62]

Human MSCs Oleanolic acid 256 Genes involved in osteoblastic differentiation [69]

Ex vivo long-term cultivation ID4, CRYAB, SORT1, TGF-β2, and BMPs [64]

Cell culture NDN, EPHA5, NOV, RUNX2 [65]

Human monocytes of low BMD 
subjects

Isolation from human blood 13 STAT1 [60]

Differentiation and proliferation of 
mouse osteoblast cells 

High cholesterol 992 
upregulated, 
2,290 
downregulated

Upregulated: TGF-β, BMP2, CBFA1, and 
proteins involved in Wnt signaling pathways; 
downregulated: IL-6 and AGER

[61]

Bone resorption and formation of 
male mice in high-fat diet

Antioxidant lipoic acid 17 upregulated, 
19 
downregulated 

Upregulated: COL1A1, ALP1, IGF-1, and IL12; 
downregulated: MMP9, CTSK, P53, TGFBR1, and 
IL17a 

[66]

Both pairs of femora and tibiae of 
Sprague-Dawley female rats

Three different PTH peptides, PTH(1-34), 
(1-31), and (3-34)

SLPI, TFPI2, SOCS3, GRO1, RANKL, PHEX, GPRC5C, 
and CXCR4

[70]

aFor gene abbreviations and explanations of pathways, see Table 5.
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(encoding thyroid receptor-interacting protein 10) 
promoter by DNA methylation resulted in acceleration of 
MSC-to-osteocyte differentiation [97]. Delgado-Calle et 
al. reported [98] that the SOST gene (encoding sclerostin, 
an inhibitor of bone formation) was dramatically up-
regulated by demethylating agent AzadC, and that DNA 
methylation strongly hindered RANKL and OPG 
expression [99].

Histone modifications can regulate gene expression by 
influencing interactions between DNA and histones, for 
example by acetylation and methylation of conserved 
lysine residues in the amino-terminal tail domains [100]. 
Histone modification has been studied in a variety of 
cancers, such as prostate, breast, lymphoma, and ovarian 
cancer [54]. However, studies of osteoporosis are scarce, 
with the limited information suggesting a role in 
developmental processes that may be related to bone 
metabolism [101].

RNA interference (RNAi) and noncoding RNAs (such 
as microRNAs) have drawn much attention in the field 
[95]. You et al. [102] reported that the zinc finger protein 

Zfp467 stimulated osteoblast differentiation of cultured 
adipose-derived stem cells, and that Zfp467-targeted 
RNAi could restore bone function and structure in an 
ovariectomy-induced osteoporotic mouse model.

In summary, some novel factors and mechanisms have 
been identified in a limited number of epigenetic studies 
of bone pathogenesis. However, further epigenome-wide 
studies will be needed to investigate the role of these 
epigenetic mechanisms in osteoporosis.

Implications for pathogenesis
Most of the genetic variants or genomic regions that have 
so far been identified by GWASs of osteoporosis-related 
traits have been intronic or intergenic [71]. These variants 
or regions could be transcription factor binding sites that 
regulate or affect gene expression [71], but precisely how 
they might influence bone mass awaits further investi-
gation. Ultimately, GWAS is an indirect genetic mapping 
approach that relies on linkage disequilibrium, so further 
studies are needed to pinpoint functional variants by 
deep sequencing and functional molecular studies.

Table 4. Examples of proteomic studies of osteoporosisa

Participants or cells/treatment Identified protein expression Related functions/pathways Refs

Human bone MSCs 64 secreted proteins upregulated, especially SMOC1 Osteoblast mineralization [82]

Human PBMs ANXA2 Osteoclast differentiation [39]

Human osteocytes LRP4 A sclerostin interaction partner [87]

Chinese with low BMD SOD 2 upregulated Located in circulating monocytes (potential 
osteoclast precursors)

[89]

Osteoblast differentiation in mouse 
osteoprogenitor MC3T3-E1 cells

Upregulation of IQGAP1, gelsolin, moesin, radixin, 
and CFL1 

Cytoskeleton regulation [79]

Upregulation of FLNA, LAMA1, LAMA5, COL1A1, 
COL3A1, COL4A6, COL5A2; downregulation of 
COL4A1, COL4A2, and COL4A4

Focal adhesion signaling [79]

Osteoblast differentiation in MC3T3-E1 
preosteoblast cells/ leukocyte common 
antigen-related tyrosine phosphatase

ALP, BSP, DLX5, OCN, and RUNX2 Erk activation [80]

Osteoblasts and osteoclasts induced from 
RAW 264.7 macrophage cell line (from murine 
blood)/Er-Xian Decoction treatment 

In osteoblasts: 8 proteins upregulated Hmgb1, acidic ribosomal phosphoprotein 
P0, histone H2, carbonyl reductase 1, ATP 
synthase, aldolase A, and GDIα

[78]

In osteoblasts: 3 proteins downregulated Carbonic anhydrase 3, prohibitin, hemiferrin, 
far upstream element-binding protein

[78]

In osteoclasts: 3 proteins upregulated Vimentin, protein disulfide isomerase 
associated 3 and α-fetoprotein

[78]

In osteoclasts: 1 protein downregulated Calnexin [78]

Rat primary calvarial osteoblast/Kaempferol 9 proteins upregulated, 9 downregulated Including cytoskeletal proteins, intracellular 
signaling protein, chaperone, extracellular 
matrix protein, and proteins involved in 
glycolysis and cell-matrix interactions

[77]

Ovariectomized rats SOD1, ATP synthase, and COMT Protection against bone loss [90]

aFor gene abbreviations and explanations of pathways, see Table 5.
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Table 5. Key pathways associated with osteoporosisa

Genes Full names Refs

RANK/RANKL/OPG pathway

TNFSF11 TNF (ligand) superfamily, member 11 (RANKL) [55,56] 

TNFRSF11A TNF receptor 11a, NF-κB activator (RANK) [26,37,55 ] 

TNFRSF11B TNF receptor 11b (OPG) [26,53,56] 

TNF-R1/TRAIL signaling pathwayb

CFLAR CASP8 and FADD-like apoptosis regulator [37]

NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 [37]

TNFSF10 TNF (ligand) superfamily, member 10 [37]

TNFRSF1B, TNFRSF10B TNF receptors [37]

TRAF3 TNF receptor-associated factor 3 [37]

Wnt signaling pathway

CTNNB1 Β-catenin [26,53] 

DKK1 Dickkopf-related protein 1 [33,74]

LRP4, LRP5 Lipoprotein receptor related peptides [32,33,53,56,57] 

RSPO3 R-spondin 3 [25] 

SOST Sclerostin [56,57]

WNT4, WNT15 Wnt proteins [61]

Autophagy regulation pathway

ATG5, ATG7, ATG12 Autophagy-related proteins [36]

IFNA4, IFNA5, IFNA7, IFNA8, IFNA13, IFNA14, 
IFNA16, IFNA17, IFNA21,

Interferon α proteins [36]

PIK3C3 Phosphatidylinositol 3-kinase catalytic subunit type 3 [36]

Other pathways

ALDH7A1 Aldehyde dehydrogenase 7 family, member A1 [33]

ARHGAP1 Rho GTPase activating protein 1 [26,32] 

COL1A1 Collagen, type I, α1 [43,66,79]

DCDC5 Doublecortin domain containing 5 [26,53] 

ESR1 Estrogen receptor 1 [29,32,48] 

FLJ42280 Putative uncharacterized protein FLJ42280 [26,53,55]

FOXL1 Forkhead box L1 [26,53] 

GALNT3 UDP-N-acetyl-a-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase 3 [25] 

HDAC5 Histone deacetylase 5 [26,53] 

JAG1 Jagged 1 (Notch ligand) [46] 

MEF2C Myocyte enhancer factor 2C [26] 

MEPE Matrix extracellular phosphoglycoprotein [26,33,53]

STARD3NL STARD3 amino-terminal like protein [26,53]

SOX6 Sex-determining region Y-box 6 [26,41,51] 

SP7 Sp7 transcription factor [26] 

SPTBN1 Spectrin, β, non-erythrocytic 1 [26,33,58] 

TGFBR1 TGF, β receptor I [66]

aGene abbreviations: AGER, Advanced glycosylation end product-specific receptor; ALP1, Actinin-associated LIM protein; ANXA2, Annexin A2; BMP2, Bone 
morphogenetic protein; BSP, Binder of sperm; C6orf97, Chromosome 6 open reading frame 97; CBFA1, Core binding factor A1; CFL1, Cofilin 1; CLCN7, Chloride channel 
7; COL, Collagen; COMT, Catechol-O-methyltransferase; CRYAB, α-crystallin B chain; CTSK, Cathepsin K; CXCL2, Chemokine ligand 2; CXCR4, Chemokine receptor 4; DLX5, 
Distal-less homeobox 5; EPHA5, Ephrin A receptor 5; Erk, Extracellular signal-regulated kinase; FAM210A, Family with sequence similarity 210A; FHL2, Four-and-a-half 
LIM domain; FLNA, Filamin A α; FONG, Formiminotransferase amino-terminal subdomain-containing precursor; GDIα, Rho GDP dissociation inhibitor α; GPR177, G 
protein-coupled receptor 177; GPRC5C, G protein-coupled receptor; GRO1, Melanoma growth stimulating activity α; Hmgb1, High mobility group protein; HMGN3, 
High mobility group nucleosomal binding domain 3; IBSP, Integrin-binding sialoprotein; ID4, Inhibitor of DNA binding dominant negative helix-loop-helix protein; 
IGF-1, Insulin-like growth factor; IL, Interleukin; IL21R, Interleukin 21 receptor; IQGAP1, IQ motif containing GTPase activating protein; LAMA, Laminin α; MMP9, Matrix 
metallopeptidase 9; NDN, Necdin; NOV, Nephroblastoma overexpressed; OCN, Osteocalcin; P53, P53 oncogene; PHEX, phosphate regulating endopeptidase homolog; 
PTH, Parathyroid hormone; PTN, pleiotrophin; RUNX2, Runt-related transcription factor 2; SLC25A13, Aspartate/glutamate carrier; SLPI, Secretory leukocyte peptidase 
inhibitor; SOCS3, Cytokine signaling suppressor 3; SOD1, Superoxide dismutase 1, soluble; SOD2, Superoxide dismutase 2, mitochondrial; SORT1, Sortilin 1; STARD3NL, 
STARD3 amino-terminal like gene; STAT1, Signal transducer and activator of transcription 1; TFPI2, Tissue factor pathway inhibitor; ZBTB40, Zinc finger and BTB domain 
containing 40. bThis pathway also includes TNFSF11, TNFRSF11A, and TNFRSF11B.
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Several genes or proteins have shown remarkable 
association with osteoporosis-related traits in genome-
wide studies, and these have become interesting candi-
dates for further studies. For example, both GWASs and 
gene expression studies have shown that DKK1 (encoding 
a dickkopf-related protein) [31,74], SOST [53], MEPE 
(encoding matrix extracellular phosphoglycoprotein) 
[33], SOX4 (sex-determining region Y-box 4 gene) [25] 
and the spectrin gene SPTBN1 [31,67] were strongly 
associated with BMD. COL1A1 [18,43,66,79] is a candi-
date gene whose association with BMD has been con-
firmed by four types of genome-wide approaches 
(GWLS, GWAS, gene expression, and proteomic studies). 
Also, results from GWAS, gene expression, and proteo-
mic studies have confirmed that RANK, RANKL, OPG, 
and LRP4 (encoding lipoprotein receptor related peptide 
4) have important roles in regulating BMD.

These significant risk factors can be grouped into 
different pathways, which provide insights into the patho-
genesis of osteoporosis. For example, LRP-4, -5, and -6 
can bind Wnt ligands to form a receptor complex and 
initiate the Wnt signaling pathway, which is involved in 
differentiation and growth of cell types such as osteo-
blasts or osteoclasts [103]. However, these proteins are 
also essential oncogenic receptors that may increase the 
risk of cancers by interacting with components of the 
Wnt signaling pathway [104]. RANK, RANKL, and OPG 
are known to be involved in different biological pathways 
that are important for bone mass regulation, such as the 
RANKL pathway, the TNF-R1 signaling pathway and the 
TRAIL pathway [103]. Table 5 summarizes the key genes, 
loci, and pathways associated with osteoporosis and 
related traits.

From genome-wide approaches to targeted 
interventions
Although a large number of genome-wide linkage and 
association studies on osteoporosis have been published 
over the past decade, there have been many unreplicated 
results [27]. As mentioned earlier, factors that may signi-
fi cantly contribute to inconsistencies in genetic studies of 
osteoporosis include inadequate statistical power, popu-
lation stratification, genetic heterogeneity, experimental 
errors, and limited coverage of genomic regions [27]. The 
occurrence of gene-gene interactions and gene-environment 
interactions might also contribute to these challenges.

Significant gene-gene interaction effects have been 
found to influence osteoporosis risk in different studies 
[103]. For example, a role for the CD40/CD40L system 
was revealed in bone metabolism regulation [105]. 
Pineda et al. [105] conducted an association study of 
BMD with SNPs in CD40 and CD40L genes. The study 
indicated a strong interaction between polymorphisms in 
these genes that might have a synergistic role in BMD 

regulation [105]. Also, the role of environmental factors 
and their potential interactions with key genes or loci 
requires further study. Environmental factors such as 
dietary intake and medication can trigger gene responses 
and gene-gene interactions. For example, Sonoda et al. 
[106] found that the SNPs rs2077647 and rs2234693 in 
the estrogen receptor α gene were significantly associated 
with osteoporosis risk, and that the osteoporotic 
haplotype CC at these SNPs was also significantly 
associated with alcohol drinking [106].

The confounding factors and complicated nature of 
osteoporosis indicate that appropriate study design and 
interpretation of results are crucial to ensure repro duci-
bility. Therefore, it is also important to use multi disci-
plinary approaches, such as gene expression profiling, 
proteomics, and epigenetics, which may complement 
each other and provide information for cross-validation. 
Combinations of different genome-wide analyses have 
recently been used in bone research. Lei et al. [59] 
performed gene expression profiling using monocytes 
from 26 Chinese and 20 Caucasian premenopausal 
women with extremely high or low BMD, and identified a 
list of differentially expressed genes, some of which were 
further confirmed by GWAS. By combining information 
from gene expression and genome-wide association 
studies, Farber et al. [107] identified the ASXL2 gene as a 
novel regulator of BMD and osteoclastogenesis. Although 
integrating data from multidisciplinary studies could be 
challenging, such approaches may help to identify some 
of the most interesting susceptibility genes and factors 
for osteoporosis, and could provide leads for the develop-
ment of new targeted preventive interventions and 
treatments.

The estrogen receptor gene ESR1 has been reported to 
be involved in bone metabolism in numerous studies 
[29,31,32,48,53,57]. In current osteoporosis treatments, 
estrogen or estrogen-like medications known as estrogen 
receptor modulators have been clinically applied to 
provide protection against postmenopausal bone loss 
[106]. Such medications can exclusively target the estro-
gen receptor and produce estrogen-like effects in the 
bone, in addition to their effects in decreasing the occur-
rence of breast cancer [106].

Similarly, the role of the RANK/RANKL/OPG pathway 
in osteoporosis has been confirmed in many studies and 
involves several susceptibility genes and factors that 
influ ence bone modeling [103]. Denosumab, which is a 
specific antibody that targets RANKL, may reduce repro-
duction of osteoclasts and may be useful as an approach 
for restoring bone metabolism balance. Administration 
of denosumab has been reported to improve BMD and to 
reduce fractures in postmenopausal women who suffer 
from osteoporosis, although some side effects have been 
reported [108].
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In gene expression studies, PTH has shown an ability to 
stimulate both bone resorption and new bone formation 
[70]. PTH has been used for the treatment of severe 
osteoporosis [108]. The effects of intermittent or 
continuous PTH treatment on bone metabolism are still 
under investigation to understand the underlying mecha-
nisms and optimize its application to osteoporosis [109].

Concluding remarks and future perspectives
Despite extensive efforts, currently there is not sufficient 
information to allow effective assessment of osteoporosis 
risk. The majority of the recently identified risk factors 
are still pending further investigation, and it is therefore 
too early to define novel biological factors as preventive 
or treatment targets for osteoporosis. This does not imply 
that current genome-wide approaches are futile, but 
rather indicates that appropriate implementation of these 
studies might help to reduce potential bias and 
confounding factors.

Genome-wide approaches individually have specific 
limitations. Gene expression is a complex process that is 
regulated simultaneously and interactively at DNA, RNA, 
protein, epigenomic, and environmental levels. There-
fore, a genomic convergence or systems biology approach 
that integrates the information from studies such as 
GWLSs, GWASs, DNA sequencing, gene expression, 
proteomics (including studies of post-translational modi-
fi cations), epigenomics, and gene-environment studies 
may help facilitate the identification of key pathways that 
are globally involved in the pathogenesis of osteoporosis 
and osteoporotic fractures. Ultimately, the functional 
relevance of the identified variants then needs to be 
confirmed by in vivo and/or in vitro molecular biology 
studies.
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