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The Rhodococcus strain WMMA185 was isolated from the marine sponge Chondrilla nucula as part of ongoing drug discovery
efforts. Analysis of the 4.44-Mb genome provides information regarding interspecies interactions as pertains to regulation of
secondary metabolism and natural product biosynthetic potentials.
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Drug resistance is now commonplace for microbial human
pathogens and approaches to discovering new antibiotics,

indeed, completely new antibacterial chemotypes, continue to be
developed to counter this problem (1). Accordingly, the number
of natural products (as possible drug leads) available for screen-
ing, their producers and their production conditions must neces-
sarily increase. In support of this tenet, the production of natural
products by one producing organism in the presence of another
organism has garnered tremendous interest (2–6). Such co-
culturing of microorganisms has proven extremely effective for
coaxing microbes into making natural products that would not
otherwise be produced. This approach to new natural product
generation underscores the importance of having genomic infor-
mation available for co-cultured organisms (6). Importantly, the
structural diversity of natural products enabled by co-culturing
stems, in large part, from the diversity of co-cultured organisms.

The genus Rhodococcus is a Gram-positive bacterium within
the subgroup actinobacteria whose members are commonly asso-
ciated with bioremediation and biocatalytic processes (7–9); ste-
roids, nitriles, lignins, and organosulfur agents are but a few
compound classes degraded by rhodococci (10). Additionally, al-
though rare, select Rhodococcus spp. are human pathogens; patho-
genicity has been associated with similarities to Mycobacterium
spp. (11, 12).

Genome analyses of the few reported Rhodococcus spp. high-
light tremendous biosynthetic potential despite a scarcity of iso-
lated secondary metabolites (13). Recently, cocultures of Rhodo-
coccus spp. with other actinobacteria, including Streptomyces spp.
(14, 15) and Micromonosporaceae (2) have been shown to produce
otherwise undetectable secondary metabolites. In particular, ma-
rine invertebrate-associated Rhodococcus sp. WMMA185 induced
biosynthesis in other marine actinobacteria via interspecies inter-
actions; the precise nature of these interactions awaits further in-
vestigation. Using genomic data from WMMA185, mechanisms
of biosynthetic regulation and interspecies communication may
be deciphered in an effort to access unexploited (or cryptic) bio-

synthetic potentials from actinobacteria or, for that matter,
WMMA185 itself.

Rhodococcus sp. strain WMMA185 was isolated in 2011 from a
marine sponge Chondrilla nucula collected off the coast of the
Florida Keys. WMMA185 was isolated from a plate prepared using
R2A medium supplemented with 50% artificial seawater (ASW).

The complete genome of Rhodococcus sp. WMMA185 was se-
quenced at the Duke Center for Genomic and Computational
Biology (GCB) using PacBio RS II (Pacific Biosciences) technol-
ogy. Reads were assembled using the HGAP assembler (16) into a
single contig. Open reading frames were predicted by Prodigal
(17) and annotated using HMMer models for the TIGRfam (18),
KEGG (19, 20), and PFAM (21, 22) databases. The genome was
found to be 4.44 Mb in length and has 64.08% G�C, and 90.39%
coding density. The organism’s secondary metabolic content/
potential was assessed using anti-SMASH (23, 24), PRISM (25),
and custom pipelines. Among other cluster types, a total of two
type I polyketide (PKS), eight nonribosomal peptide (NRPS), and
two terpene biosynthetic gene clusters were identified within the
WMMA185 genome.

Accession number(s). The complete genome sequence of Rho-
dococcus sp. strain WMMA185 has been deposited at the DDBJ/
EMBL/GenBank under the sequence GenBank accession no.
CP017014.
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