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ABSTRACT
Immune checkpoint inhibitors (ICIs) have revolutionised 
cancer treatment. However, immune-related adverse 
events (irAEs) are a common side effect which can 
mimic infection. Additionally, treatment of irAEs with 
corticosteroids and other immunosuppressant agents can 
lead to opportunistic infection, which we have classed as 
immunotherapy infections due to immunosuppression. 
However, emerging reports demonstrate that some 
infections can be precipitated by ICIs in the absence of 
immunosuppressive treatment, in contrast to the majority 
of reported cases. These infections are characterised by a 
dysregulated inflammatory immune response, and so we 
propose they are described as immunotherapy infections 
due to dysregulated immunity. This review summarises 
the rapidly emerging evidence of these phenomena and 
proposes a new framework for considering infection in 
the context of cancer immunotherapy.

INTRODUCTION
In 1957, Macfarlane Burnet wrote ‘The failure in 
cancer is due not to any weakness of the organism, 
but to a change in the character of the cells, rendering 
them in one way or another insusceptible to the 
normal control’.1 Subsequently, evading immune 
destruction was identified as a critical hallmark 
of cancer.2 The 2018 Nobel Prize was awarded to 
James Allison and Tasuku Honjo for the discovery 
that cancer cells could exploit programmed cell 
death protein 1 (PD-1) and cytotoxic T-lymphocyte 
associated protein 4 (CTLA-4) signalling to avoid 
immune destruction.3

PD-1 is an immune checkpoint molecule 
expressed on effector T cells and binds to PD-L1 
and PD-L2 on antigen-presenting cells (APCs). 
Tumour cells can also express PD-L1 as a method 
of evading immune destruction, whereby PD-1/
PD-L1 signalling supresses effector T-cell priming 
and proliferation. CTLA-4 is another coinhibitory 
receptor expressed on effector T cells. CTLA-4 
competes with the costimulatory receptor CD28 
on effector T cells for binding with activation 
ligands CD80/86, found on APCs. CD28 binding to 
CD80/86 is essential for T-cell receptor signalling, 
and hence CTLA-4, which binds to CD80/86 with 
greater affinity, effectively prevents effector T-cell 
activation. CTLA-4 and PD-1 are expressed on 
effector T cells following chronic, sustained antigen 
exposure.4–6

PD-1 and CTLA-4 signalling thus acts as a ‘brake’ 
to balance and prevent an over-exuberant damaging 
immune response, for example, in chronic infection. 
PD-1/PD-L1 signalling can be inhibited using mono-
clonal antibodies against PD-1 (eg, pembrolizumab 

and nivolumab) and PD-L1 (eg, durvalumab, 
atezolizumab and avelumab). CTLA-4 signalling can 
similarly be blocked using monoclonal antibodies 
such as ipilimumab and tremelimumab. Immune 
checkpoint inhibitors (ICIs) have revolutionised 
cancer treatment, with improved survival demon-
strated in many forms of cancer, including lung 
cancer, melanoma, colorectal cancer, hepatocellular 
carcinoma, renal cell carcinoma, bladder cancer, 
Merkel cell carcinoma and Hodgkin’s lymphoma.4 
ICIs require close monitoring as they are associated 
with autoimmune phenomena known as immune-
related adverse events (irAEs).4

Immune-related adverse events
IrAEs are a common side effect of ICIs, with an 
incidence between 54% and 76% according to a 
metanalysis of trial data.7 IrAEs can affect any body 
system, and management often involves treatment 
with glucocorticoids such as prednisolone and 
other immunosuppression such as anti-TNF therapy 
for steroid refractory cases. From the pulmonary 
perspective, immune-related pneumonitis occurs 
more commonly with PD-1 blockade and has 
several radiological presentations including crypto-
genic organising pneumonia, non-specific intersti-
tial pneumonia, hypersensitivity pneumonitis, acute 
interstitial pneumonia and pulmonary sarcoid reac-
tions.5 Combination ICI therapy appears to increase 
the risk of irAEs.8 The pathogenesis of irAEs may be 
mediated by T-cell autoimmunity, impaired regula-
tory T-cell (Treg) function, TH17 helper T cells and 
T cell-mediated autoantibodies.4 Notably, irAEs 
can mimic infection.9 Recently, it has been hypoth-
esised that immune checkpoint blockade may 
cause increased immune recognition of commensal 
bacteria, such as gut microbiota, perhaps via attenu-
ated Treg function, and this immune recognition of 
commensal bacteria can cause expansion of TH17 
cells that have the potential to migrate and poten-
tially cause irAEs.10

Consequences of natural immune checkpoint loss 
of function
Immune checkpoints help prevent activity against 
self. Consequently, polymorphisms in CTLA-4 and 
PD-1 are associated with autoimmune sequalae 
such as Addison’s disease, coeliac disease, Graves’ 
disease, type 1 diabetes mellitus, myasthenia gravis, 
rheumatoid arthritis and systemic lupus erythema-
tosus.4 6

In addition, genetic mutations in these receptors 
predict that pharmacological targeting of immune 
checkpoints may have infectious complications. 
CTLA-4 haploinsufficiency with autoimmune 
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sequelae (CHAI) and lipopolysaccharide-responsive and beige-
like anchor protein (LRBA) deficiency with autoantibodies, Treg 
defects, autoimmune infiltration and enteropathy (LATAIE) 
are human genetic disorders associated with deficient CTLA-4 
expression and function. CHAI and LATAIE manifest with 
multiorgan lymphocytic infiltration, Treg defects and autoanti-
body production, and are also associated with recurrent infec-
tions, particularly respiratory infections.11 A review of the 
phenotype of patients with LATAIE revealed 71% suffered from 
recurrent infections (upper respiratory tract, lower respiratory 
tract and urinary infections). Reported bacterial infections 
included a range of pathogens, such as Escherichia coli, Klebsi-
ella pneumoniae, Haemophilus influenzae, Pseudomonas aeru-
ginosa, Campylobacter and Staphylococcus aureus. Reported 
viral infections include cytomegalovirus (CMV), adenovirus, 
norovirus and varicella zoster, and Candida infections are also 
described.12 Although these genetically determined phenotypes 
have more severe manifestations than CTLA-4-associated irAEs, 
they provide some insight into the natural consequences of loss 
of CTLA-4 function. Interestingly CTLA-4 mutations have also 
been associated with more severe TB infection in an African 
population study.13 With respect to PD-1/PD-L1, PD-1-deficient 
mice are highly susceptible to TB infection, 14 15 and a case of 
inherited PD-1 deficiency associating with TB has very recently 
been reported.16

Given the emerging evidence of increased infection in patients 
treated with ICIs and evidence that immune checkpoint defi-
ciency can be associated with recurrent infections, we were 
interested in evaluating the infectious sequelae of ICI therapy. 
Furthermore, we aimed to characterise the pattern of these infec-
tious complications to inform future clinical management strate-
gies and the associated research agenda.

Literature search
We performed a literature search to identify reports of adult 
patients with cancer who were found to have developed infec-
tions after ICI initiation. The search protocol was registered on 
PROSPERO (CRD 4202141634, see online supplemental appen-
dices 1–2). We searched Medline (Ovid 1996–week 4 February 
2021) using advanced search, for the following keywords: 
(“Infection” or “Infectious Disease”) and (“Immune checkpoint 
inhibitor” or “PD-1” or “PD-L1” or “CTLA-4”). Additional 
limits were placed to include articles relevant to humans and 
those published in the English language. This search yielded 
1294 results. Thirty-four additional relevant studies were identi-
fied through coauthor suggestion, references and citations. After 
screening for suitability by viewing the title, abstract, intro-
duction and conclusion, and removing duplicates, 95 full-text 
articles were assessed. Seventy-nine studies were included for 
analysis (figure 1). Information on cancer type, ICI used, concur-
rent immunosuppression and available descriptive statistics was 
collected. Online supplemental table S1 summarises the studies 
of immunotherapy-associated infection.

Prospective randomised clinical trial data
Trial data have not demonstrated a significantly increased rate 
or risk of infection following ICI treatment.17 A review of phase 
I trial data revealed infection-related adverse events in 18% of 
patients, and the OR of infection was not statistically different 
from molecular targeted agents for cancer.18 One study of 
patients with non-small cell lung cancer (NSCLC) treated with 
pembrolizumab reported complications of pneumonia (1.5%), 
lung infection (0.3%), oral candidiasis (0.3%) and urinary tract 

infection (0.3%).19 Another randomised controlled trial (RCT) 
reported a case of pneumonia and severe varicella zoster infection 
following nivolumab for NSCLC.20 Eight cases of drug-related 
infection, including one severe varicella zoster infection, were 
reported in a nivolumab trial for melanoma.21 Sepsis following 
atezolizumab for bladder cancer has also been reported.22 
However, while RCTs are the gold standard for determining 
treatment efficacy by minimising bias, they do not adequately 
assess all potential treatment harms, especially if infrequent.23 
Typically, these only come to light in postmarketing surveillance 
when greater numbers of patients are treated.24 Additionally, 
while the total reported infections is small, there may be under-
reporting in trials as causality to ICIs is not clearly established. 
Thus, analysis of other forms of data such as clinical observa-
tional data is required.

Opportunistic infections associated with irAE treatment
The European Society of Clinical Microbiology and Infec-
tious Diseases provided a consensus statement which suggested 
that ICIs do not intrinsically increase the risk of infection, but 
rather immunosuppressive therapy to treat irAEs can predis-
pose to opportunistic infection.17 This followed a retrospective 
cohort review from Del Castillo et al, who analysed records 
740 patients with melanoma who received ICIs over a 4-year 
period and recorded the number of infections requiring hospi-
talisation or antimicrobial treatment.25 Seven per cent of patients 
developed infection and 17% of these patients died. The vast 
majority (73.2%) of patients had CTLA-4 blockade with ipilim-
umab; 14.9% had PD-1 blockade, while 11.7% had combination 
ICI therapy. Eighty-five per cent of infections were bacterial, 
with 13/23 being pneumonia. Two cases of invasive pulmo-
nary aspergillosis, three Pneumocystis jirovecii pneumonia, one 
candidemia and one strongyloidiasis case were reported. Risk 
factors for infection included corticosteroid administration 
(OR 7.71, p<0.0001), infliximab (OR 4.74, p<0.0001) and 
combined PD-1/CTLA-4 blockade (OR 3.26, p 0.0017).25

There are multiple case reports which have also high-
lighted instances of opportunistic infection following irAE 

Figure 1  Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) chart.
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immunosuppression with a variety of causative pathogens 
including Aspergillus fumigatus,26–31 P. jirovecii,31–34 John 
Cunningham (JC) virus,35 CMV31 33 36–38 and Campylobacter39 
(summarised in table  1). These reports highlight the need to 
have a low threshold of investigation for opportunistic infec-
tion following irAE treatment and consideration of P. jirovecii 
prophylaxis. In addition to prior immunosuppressive cancer 
treatments, comorbidities such as COPD in patients with lung 
cancer and the immunosuppressive tumour microenvironment 
are risk factors for infections.40 41

ICI-associated infection independent of immunosuppression
While the predominant infection risk post-ICI treatment is likely 
to be due to immunosuppression, there is mounting evidence of 
a second mechanism that leads to increased incidence of infec-
tion. For example, Fujita et al reviewed 167 records of patients 
who received nivolumab for NSCLC, and 19.2% (32 patients) 
were treated for infection.42 There were 33 infections; 78.1% 
were bacterial and included Streptococcus pneumoniae, H. influ-
enzae, K. pneumoniae, methicillin-resistant S. aureus, methicillin-
sensitive S. aureus, Staphylococcus schleiferi, Mycobacterium 
tuberculosis (Mtb) and other unknown presumed bacterial infec-
tion. Of the total infections, 6.3% were fungal and included A. 
fumigatus and Candida albicans infection, while 18.8% were 
viral and included varicella and influenza. Diabetes significantly 
increased the risk of infection (OR 3.61, p=0.028).42 Of note, 
this study exclusively analysed PD-1 blockade in the form of 
nivolumab. Unlike the Del Castillo et al study, there was no 
significant difference in the number of infections with use of 
corticosteroids or other immunosuppressive agents, suggesting 
an alternative mechanism.

Kanjanapan and Yip recently published a cohort study of 327 
patients with primarily NSCLC (36%) and melanoma (47%).43 
The majority (77%) of patients had PD-1/programmed cell 
death 1 ligand 1 (PD-L1) therapy; 9% had CTLA-4 therapy; and 
14% had combination therapy. The rate of infection up to 12 
months post immunotherapy was 27%; age was the only iden-
tified risk factor for infections post-ICI initiation (HR 1.73, 
p=0.04), while corticosteroid use and diabetes mellitus were not 
risk factors for post-ICI infection. The rate of infection in the 
pre-ICI period was 34%, but notably infectious episodes were 
defined through positive culture or PCR, potentially allowing 
inclusion of commensal colonisation such as S. aureus on the 
skin (55 identified in the pre-ICI period and defined as infec-
tion). Furthermore, given the long study period of 7 years, it is 

not possible to directly compare the rates of infection pre-ICI 
and post-ICI. However, there was still a significant number of 
infections in the post-ICI period, and corticosteroids were not a 
statistically significant risk factor.43

Furthermore, a recent study retrospectively evaluated infec-
tious sequelae in 200 patients in a French registry treated with 
PD-1 (98.5%) and PD-L1 inhibitors (1.5%). Of these patients, 
60% had melanoma, and 35.5% had NSCLC.44 Infections 
occurred in 18% between 19 and 132 days after ICI initiation, 
of which 58.3% were suspected pulmonary infection, which 
improved with antibiotics; 19.4% were skin infections; 19.4% 
were urinary tract infections; and 2.9% were gastrointestinal 
infections. There were no cases of P. jirovecii or other typical 
opportunistic infections. No association with corticosteroids, 
or other immunosuppressant medication, was reported in this 
study, again suggesting that immunosuppression was not the 
primary driver.44

These more recent studies together suggest that other factors 
other than corticosteroids and immunosuppression may play a 
role in post-ICI infection. There are diverse reports of infec-
tion, in which it appears the hyperinflammatory dysregulated 
immunity associated with ICIs drives pathogenesis. We propose 
these can be characterised as immunotherapy infections due 
to dysregulated immunity (ITI-DI) to distinguish them from 
immunotherapy infections due to immunosuppression. ITI-DI 
may be considered an entirely different pathological mechanism 
whereby the excessive host immune response due to inhibition 
of immune checkpoints counterintuitively favours the pathogen 
(figure 2).

Emerging examples of ITI-DI
Mtb and atypical mycobacterial infection (AMI)
TB reactivation was one of the first ICI-associated infections to 
be described. Currently, there are at least 19 case reports of Mtb 
reactivation following PD-1/PD-L1 blockade45–60 (figure 3 and 
online supplemental table S1). A review of the US Food and Drug 
Administration Adverse Events Reporting (FAERS) system for 
the incidence of Mtb revealed 72 cases of Mtb following PD-1/
PD-L1 blockade. The reporting OR for Mtb infection with PD-1/
PD-L1 inhibitors was 1.79 (95% CI 1.42 to 2.26) (p<0.0001),61 
demonstrating increased risk of active TB. In addition, due to 
the clinical similarity in features of cancer progression and myco-
bacterial infection, it seems likely that cases are under-reported 
through underdiagnosis.60 Similarly, analysis of a single-centre 

Table 1  Immunotherapy infections due to immunosuppression
Authors Study types ICI class Immunosuppressive agents Pathogen

Arriola et al, Del Castillo et al, Schwarz et al, Liu et 
al, Si et al25 31–34

Case report, cohort CTLA-4, PD-1, PD-L1 Corticosteroids, TNF-α antagonists, 
mycophenolate mofetil

Pneumocystis jirovecii

Lord et al, Kyi et al, Del Castillo et al, Gupta et 
al, Oltolini et al, Liu et al, Malek et al, Taima et 
al25–31 128

Case report, cohort CTLA-4, PD-1, PD-L1 Corticosteroids, TNF-α antagonists, 
rituximab, mycophenolate mofetil, 
tacrolimus, rapamycin

Aspergillus fumigatus

Del Castillo et al, Liu et al25 31 Case report, cohort CTLA-4, PD-1, PD-L1 Corticosteroids, TNF-α antagonists Candida albicans

Uslu et al, Del Castillo et al, Furuta et al, Guengen 
et al, Oltolini et al, Schwarz et al, Liu et al25 31 33 36–38

Case report, cohort CTLA-4, PD-1 Corticosteroids, TNF-α antagonists, 
Mycophenolate mofetil

Cytomegalovirus

Martinot et al35 Case report, unpublished 
pharmacovigilance registry data (WHO 
and Eudra-Vigilance)

CTLA-4
(PD-1 registry data)

Corticosteroids JC polyoma virus

Del Castillo et al, Oltolini et al, Lee et al, Liu et 
al25 31 39

Case report, cohort CTLA-4, PD-1, PD-L1 Corticosteroids, TNF-α antagonists Other bacteria including non-specified 
organism, bacteraemic sepsis, Pseudomonas 
aeruginosa, Stenotrophomonas maltophilia, 
Corynebacterium striatu, Campylobacter

CTLA-4, cytotoxic T-lymphocyte associated protein 4; ICI, immune checkpoint inhibitor; PD-1, programmed cell death protein 1.
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cohort of 297 patients in Japan with lung cancer receiving 
treatment with pembrolizumab, nivolumab, atezolizumab or 
durvalumab revealed an incidence of Mtb reactivation of 1.7% 
developing 22–398 days after initiation of ICI treatment.62 This 
is higher than the incidence of Mtb reactivation in lung cancer 
reported in the 1980s, when generally higher doses of cytotoxic 
chemotherapy were used.63 Also, a single-centre cohort in South 
Korea identified three cases of Mtb and calculated an incidence 
rate of 394.4 per 100 000 person years, higher than the rate 
in the South Korean population in 2018 and previous studies 
that included patients with lung cancer.64 Finally, a single-centre 
cohort in Singapore showed that 4/191 (2.09%) of patients 
developed Mtb reactivation following PD-1/PD-L1 blockade.65

AMI has also (online supplemental file 1) been associated with 
immunotherapy. We found four cases of atypical mycobacterium 
infection following PD-1/PD-L1 immunotherapy in the absence 
of immunosuppression.66 67 Analysis of the FAERS database 
revealed 13 cases of AMI following PD-1/L1 blockade, similarly 

suggesting elevated risk of infection. The reporting OR for AMI 
was 5.49 (95% CI 3.15 to 9.55, p<0.0001).61

In terms of the underlying mechanism, transgenic murine 
studies have demonstrated that PD-1 knockout mice had 
increased susceptibility to Mtb infection, succumbing even more 
rapidly than interferon gamma (IFN-γ)-deficient mice.14 15 In a 
human 3D cell culture system, PD-1 blockade leads to excessive 
cytokine secretion, and tumour necrosis factor (TNF)-α may 
play a central role.68 Similarly, TB-infected macaques given anti-
PD-1 antibodies develop worse disease, have higher bacterial 
loads as well as elevation of multiple inflammatory cytokines, 
compared with non-PD-1-treated macaques.69 Notably, these 
studies suggest PD-1 blockade negatively affects the host–Mtb 
interaction even in the absence of any immunosuppression, 
favouring pathogen proliferation over host control due to a 
dysregulated immune response.

These emerging clinical observations, animal modelling and 
advanced cell culture studies all suggest that disruption of the 
PD-1/PD-L1 axis results in hyperinflammatory conditions that 
favour mycobacterial growth. Consequently, diverse groups have 
suggested all patients should have interferon gamma release 
assay (IGRA) testing prior to ICI initiation, and there may be 
merit in serial IGRA testing before starting immunosuppressive 
therapies for irAEs.48 70 71 The evidence presented here further 
supports screening of patients for latent Mtb before starting anti-
PD-1 treatment and investigation for mycobacterial infection 
when clinical features are suggestive, especially in high incidence 
settings. Notably, to date, reports of TB primarily centre on the 
PD-1/PD-L1 axis, and there are no cases of CTLA-4 inhibitor 
monotherapy causing Mtb reactivation.

Hepatitis B virus
Hepatitis B-infected patients were excluded from the initial 
immunotherapy RCTs. Subsequently, there are multiple reports 
of hepatitis B reactivation, including cases where immunosup-
pression has been absent.72–76 Furthermore, Burns et al analysed 
the FAERS database for reported cases of hepatitis B and deter-
mined the reporting OR for reactivation with pembrolizumab 
to be 2.32 (95% CI 1.11 to 4.28, p=0.013),77 thus highlighting 
elevated risk of viral reactivation with pembrolizumab. Consis-
tent with this, in a retrospective cohort study of 114 patients 
with cancer with a history of hepatitis B who received ICIs, 5.3% 
developed reactivation of hepatitis B virus.76 All six patients had 
undetectable viral DNA at baseline and received PD-1/PD-L1 
blockade. Absence of antiviral prophylaxis was the only signifi-
cant risk factor (OR 17.50, 95% CI 1.95 to 157.07, p=0.004). 
Notably, 12.7% were on concurrent corticosteroids, which were 
not a significant risk factor, suggesting ICI treatment may have 
been causative.76 Additionally, a systematic review of patients 
with hepatitis B or C revealed that, although ICIs were generally 
safe, 2.8% showed an increase viral load among 106 patients not 
on antiviral treatment.78 Furthermore, Lee et al retrospectively 
reviewed records of 62 patients with hepatitis B-related hepa-
tocellular carcinoma. Of the six patients who did not receive 
antiviral treatment, one developed reactivation of hepatitis B 
after being treated with nivolumab, while none of the patients 
who had antiviral therapy developed reactivation of hepatitis 
B, suggesting this may prevent reactivation with ICI.79 Notably, 
viral titres do not appear to be monitored routinely in all centres. 
One review identified that only 6 out of 35 patients with hepa-
titis B/C infection had pretreatment and post-treatment viral 
titres available and did not identify any reactivation, though it 
is unclear if these patients were on antiviral therapy.80 Another 

Figure 2  Spectrum of immunotherapy-associated infections. 
While immunosuppression alone can cause infectious complications, 
the dysregulated immunity that results from immune checkpoint 
inhibition can lead to different patterns of infection reactivation due 
to excessive inflammation, thereby resulting in a spectrum of disease 
phenotypes. ITI-DI, immunotherapy infections due to dysregulated 
immunity; ITI-IS, immunotherapy infections due to immunosuppression; 
Mtb, Mycobacterium tuberculosis; C diff, Clostridium difficile; CMV, 
cytomegalovirus; HBV, hepatitis B virus.

Figure 3  Development of pulmonary TB on triplet chemotherapy. 
Comparison of diagnostic CT scan performed 2 weeks before treatment 
(A) with the CT scan at the time of TB diagnosis (B) shows regression of 
the tumour with immune checkpoint inhibition but new consolidation 
with cavitation. Adapted from Crawley et al.56
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retrospective analysis of 19 patients with a history of hepatitis 
B/C revealed only 7 patients had viral titre measurement after 
starting ICI treatment.81

While hepatitis B after ICI treatment can be associated with 
immunosuppression states,74 there is emerging evidence that 
excess inflammation can also promote viral replication. Immu-
nological assays of chronic hepatitis B virus-infected patients 
have associated high concentrations of PD-1-expressing cyto-
toxic T lymphocytes with a reduction in acute flares of hepatitis 
B, while lower number of PD-1-expressing lymphocytes had a 
higher number of acute flares.82 Furthermore, PD-1-expressing 
lymphocytes were also shown to be functional and secrete IFN-γ, 
challenging an assumption that these cells are ‘exhausted’.82 
Excess cytokine release by blocking PD-1/PD-L1 may result in 
destruction of hepatocytes, allowing escape of infectious, previ-
ously latent virus.83

Thus, PD-1-expressing lymphocytes appear to assist with 
viral control, while blockade of PD-1/PD-L1 signalling and the 
resulting hyperinflammatory state may disrupt balanced immune 
control established in latent hepatitis B infection and promote 
viral growth. While immunotherapy may be used safely in 
chronic hepatitis B infection, there is a subset of patients who 
may develop viral reactivation. Hence, appropriate screening 
and monitoring of hepatitis virus status is vital.

Human Herpesviridae: CMV, varicella-zoster virus (VZV) and 
Epstein-Barr virus (EBV)
CMV, EBV and VZV are herpesviruses that establish a state of 
chronic latent infection in most humans by adulthood.84 While 
there are a number of reports of CMV following immunosup-
pression,36–38 reactivation of CMV,85 86 EBV87 and VZV88 89 in 
the absence of immunosuppression has also been reported, with 
features mimicking irAEs.90 In fact, some evidence suggests CMV 
may actually be an underlying trigger for severe irAEs, as CMV 
is found disproportionately among severe ICI-associated pneu-
monitis and colitis.91 92 A retrospective cohort study analysing 
checkpoint inhibitor pneumonitis (CIP) revealed that CMV 
pp65 positivity rate in patients with severe CIP was much higher 
than that in patients without or with mild ICI pneumonitis (91.7 
vs 20%).91 A cohort study by Franklin et al revealed that CMV 
reactivation was present in all treatment refractory cases through 
detection of CMV DNA in biopsy or plasma, or CMV IgM.92

While immunosuppression could be the causative factor in 
some reported cases, the hyperinflammatory state can promote 
viral pathology. For example, in inflammatory bowel disease, 
colonic inflammation can impair natural killer cell function, and 
this, along with a damaged mucosa from immunopathology, can 
promote viral reactivation.93 This suggests a potential role for 
dysregulated inflammation in a subset of ICI-associated CMV 
infection. ICIs may boost virus-specific T-cell specific activity,94 
and then inflammation driven by interleukin (IL)-6 and IL-17 
may enhance viral persistence by protecting virus-infected cells 
from apoptosis through expression of Bcl-2 and Bcl-xL.95 96 
Additionally, in macaques, CTLA-4/PD-1 blockade can cause 
reactivation of simian immunodeficiency virus (SIV).97 Overall, 
these reports argue for a low threshold for investigating for 
herpesvirus infection before starting immunosuppression for 
potential irAEs.

Fungal infections
While fungal infection can be a direct consequence of immu-
nosuppression, an emerging number of cases of progressive 
fungal infection exacerbated by immunotherapy in the absence 

of immunosuppression are being reported, such as aspergillosis 
(figure 4).98 Dysregulated immunity appears to play a role, indi-
cated by dramatic worsening of chronic progressive pulmonary 
aspergillosis and fulminant deterioration of nasal fungal sinus-
itis postimmunotherapy. Again, clinical presentation can mimic 
cancer progression, with pulmonary cavitation,98 99 erosive skull 
base lesions with bilateral cavernous sinus involvement100 and 
new pulmonary nodules with pleural effusion,101 and so cases 
may well be under-reported. In these situations, immune check-
point blockade may cause an exaggerated immune response to 
fungal colonisation, which could promote fungal growth similar 
to recent studies in Mtb infection.69

Clostridium difficile
Babacan and Tanvetyanon reported five cases of Clostridium 
difficile infection (CDI) and irAE colitis, and interestingly, four 

Figure 4  Development of pulmonary Aspergillus infection on 
nivolumab treatment. Original publication: adapted from Inthasot et 
al,98 reproduced with permission from the publisher.

Figure 5  Potential mechanisms whereby ICIs may lead to reactivation 
of infection and immune-related tissue damage. Sustained antigen 
exposure from persistently infected cells can cause an overexuberant 
immune response harmful to the host. ICs may regulate homeostasis 
in latent infection, while signalling disruption with ICIs may promote 
excessive inflammation, infection reactivation and immunopathology. 
IC, immune checkpoint; ICI, immune checkpoint inhibitor; IL, interleukin; 
PD-1, programmed cell death protein 1.
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of the cases did not have prior exposure to antibiotics and the 
other case did not have any immunosuppressive treatment.102 
Additionally, CDI preceding irAE colitis has been reported.103 104 
Inflammatory bowel disease can present with CDI, even in the 
absence of immunosuppression,105 suggesting that excessive 
inflammation can favour CDI. Given the similar pathophysi-
ology in IBD and irAE colitis,106 there may be a subset of patients 
that develop CDI because of the acquired hyperinflammatory 
state. Evolving evidence demonstrates that ICIs can alter the gut 
microbiota, and CDI may be a manifestation of this.107

SARS-CoV-2
In addition to reactivating chronic infections, ICI therapy may 
worsen acute infections associated with immune asynchrony 
such as SARS-CoV-2. Patients with cancer may have higher risks 
of severe complication outcomes with SARS-CoV-2 infection 
regardless of ICI therapy.108 Interestingly, patients with cancer 
may also have a poor vaccine response, with reduced immunoge-
nicity post a single dose of vaccine.109 Furthermore, patients with 
haematological malignancies in particular are at risk of reduced 
seroconversion, prolonged viral shedding and sustained immune 
dysregulation following SARS-CoV-2 infection.110 These factors 
make analysis challenging. However, some reports describe 
rapidly progressive SARS-CoV-2 following ICIs.111 112 In a retro-
spective analysis of 423 cases of patients with cancer diagnosed 
with SARS-CoV-2, ICI use was an independent risk factor for 
hospitalisation (univariate analysis OR 2.53, 5% CI 1.18 to 
5.67, p=0.017; multivariate analysis OR 2.84, 95% CI 1.24 to 
6.72, p=0.013) and requirement for high-flow oxygen support 
or mechanical ventilation (univariate analysis HR 2.38, 95% CI 
1.29 to 4.38, p=0.005; multivariate analysis HR 2.38, 95% CI 
1.29 to 4.38, p=0.004).113 The risk was different in lung cancer 
compared with other solid cancers. For lung cancer, 12/23 (52%) 
patients not on ICIs were hospitalised; 35% developed severe 
respiratory illness, compared with 10/12 (83%) of patients with 
lung cancer on ICIs, of whom 58% developed severe respira-
tory illness. Interestingly, only one of 31 ICI-treated patients 
had corticosteroid therapy prior to SARS-CoV-2 diagnosis. In 
contrast, systemic chemotherapy within 30 days was not a risk 
factor for hospitalisation or severity of illness in this study.113 
Another Italian cohort study identified that ICI as well as chemo-
therapy increased the risk of hospitalisation and death due to 
SARS-CoV-2.114 Therefore, these series support an adverse inter-
action between ICIs and SARS-CoV-2 infection, although other 
studies have not replicated these findings.115–118 Additionally, it 
has been suggested that lung injury induced by SARS CoV-2 may 
increase the risk of subsequent irAE pneumonitis.119

In terms of the underlying mechanism, ICI-induced immune 
asynchrony is a potential explanation for more severe COVID-19 
infection. Patients with SARS-CoV-2 infection who are admitted 
to the intensive care unit have higher plasma concentrations of 
IL-2, IL-6, IL-7, IL-10 and TNF-α, and severe SARS-CoV-2 is 
associated with a cytokine storm.120–122 Of note, high concen-
trations of inflammatory cytokines have predictive potential in 
irAEs and can also correlate with irAE severity in PD-1 immu-
notherapy.123 Additionally, cytokine release syndrome is a rare 
complication of PD-1 immunotherapy.124 Taken together, ICIs 
could promote a cytokine storm in SARS-CoV-2 via immune 
dysregulation, increasing the risk of a harmfully excessive 
response to the pathogen. Recent observations such as the 
potential benefits of tocilizumab, an anti IL-6 agent,125 support 
the hypothesis that severe COVID-19 infection is exacerbated 
by an asynchronous, dysregulated immune state. Clinically, it 

is important to distinguish between SARS-CoV-2 infection and 
irAE pneumonitis in patients on ICIs.126

CONCLUSION
ICIs are transformative drugs that improve survival in many 
forms of cancer, but a common side effect of immunotherapy is 
irAEs. These irAEs are treated with immunosuppression, which 
can cause opportunistic infection. However, an emerging para-
digm is that ICIs can also lead to a new pattern of infections 
resulting from dysregulated immunity, which we term ITI-DI. 
Immune checkpoint activity may be necessary for the establish-
ment of latent infection and a stable symbiosis between pathogen 
and host, and so neutralising these with ICIs may in fact increase 
infection-related immunopathology (figure  5).127 Screening 
for chronic infection such as latent TB and hepatitis should be 
considered before starting ICI therapy, and infection reactivation 
should be considered within the differential diagnosis even in the 
absence of immunosuppression.
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