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a b s t r a c t 

Since elevated plasma triglycerides are an independent risk factor for cardiovascular diseases, lipoprotein lipase 

(LPL) is an interesting target for drug development. However, investigation of LPL remains challenging, as most 

of the commercially available assays are limited to the determination of LPL activity. Thus, we focused on the 

evaluation of a simple in vitro real-time fluorescence assay for the measurement of LPL activity that can be 

combined with additional cell or molecular biological assays in the same cell sample. Our procedure allows for a 

more comprehensive characterization of potential regulatory compounds targeting the LPL system. 

The presented assay procedure provides several advantages over currently available commercial in vitro LPL 

activity assays: 

1. 12-well cell culture plate design for the simultaneous investigation of up to three different compounds of 

interest (including all assay controls). 

2. 24 h real-time acquisition of LPL activity for the identification of the optimal time point for further 

measurements. 

3. Measurement of LPL activity can be supplemented by additional cell or molecular biological assays in the 

same cell sample. 
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Specification Table 

Subject area: Biochemistry, Genetics and Molecular Biology 

More specific subject area: Investigation of lipoprotein lipase activity 

Method name: Cell culture based real-time fluorescence assay for the measurement of LPL activity 

Name and reference of original method: Name: Abcam Lipoprotein Lipase Assay Kit (Fluorometric) (ab204721) 

Source: [1] 

Method details 

Background 

Lipoprotein lipase (LPL) mediates the release of free fatty acids (FFAs) from triglyceride-rich 

lipoproteins, like chylomicrons and very low-density lipoproteins (VLDL). Therefore, LPL represents 

a key enzyme for the regulation of cellular lipid homeostasis by providing FFAs for cellular energy

supply and intracellular energy storage as well as a control mechanism for plasma triglyceride 

levels [2] . The activity of LPL is primarily regulated by post-translational modifications. The family

of angiopoietin-like (ANGPTL) proteins, whose expression is controlled by peroxisome proliferator- 

activated receptors (PPARs), appeared as potent physiological inhibitors of LPL activity [3–5] . LPL

dysfunction or dysregulation can result in elevated plasma triglycerides [6 , 7] . There is growing

evidence that elevated plasma triglycerides are an independent risk factor for cardiovascular diseases 

[8 , 9] , making the LPL system an interesting target for drug development [10 , 11] . Hence, determination

of LPL activity is a useful tool for the identification of potential lead compounds from natural or

synthetic origins. Commercially available kits for the measurement of LPL activity are based on 

radiolabeled ( 3 H or 14 C), fluorogenic or chromogenic substrates [12–14] . These substrates are degraded

by LPL and their reaction products can be detected at defined times [15] . Unfortunately, most

commercial kits are optimized for post heparin plasma samples and are therefore not suitable for

initial characterization of potential drug compounds in in vitro systems. Next, the few commercial LPL

assays that are optimized for in vitro application require cell harvesting and homogenization. Thus, 

cells cannot be used for further cell or molecular biological investigations, which would allow a more

comprehensive characterization of the respective test compound [1 , 16] . For example, the measurement

of LPL activity combined with subsequent RT-qPCR or Western blot analyses can serve as a useful tool

for the identification of transcriptional regulators of LPL activity. 

For this reason, we decided to develop a simple cell culture based real-time fluorescence assay for

the measurement of LPL activity that can be combined with cell and molecular biological analyses

of the same cell sample. In our method, LPL activity is measured using a fluorescently labeled and

quenched LPL substrate in combination with isolated VLDL for stimulation of LPL activity. 

Required reagents and equipment 

(1) VLDL isolation 
• 50 ml fasted blood sample 
• EDTA monovettes 
• Centrifuge applicable for at least 1870 × g 
• Ultracentrifuge thick wall tubes 
• Ultracentrifuge 
• Ultracentrifuge rotor applicable for at least 20 0,0 0 0 × g 

(2) Cell culture 
• 12-well cell culture plates 
• Adherent cells 
• Fetal bovine serum (FBS) 
• L-glutamine-penicillin-streptomycin (PSG) 
• Cell type specific cell culture medium 

• Cell type specific phenol red free cell culture medium (for THP-1 macrophages: RPMI-1640, 

R7509, Sigma Aldrich) 
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• VLDL isolated form blood samples of healthy volunteers (alternatively: order commercially

available VLDL) 
• Fluorescently labeled, quenched LPL substrate (ab214552, Abcam, Cambridge UK) 
• Orlistat (O4139, Sigma Aldrich; negative control) 

(3) Fluorescence-based real-time measurement of LPL activity 
• Microplate reader coupled to an atmospheric control unit applicable for fluorescence

measurements (Ex/Em = 485/520 nm) 
• Microplate reader temperature: 37 °C 

• CO2 concentration: 5% (v/v) 

rocedure 

The description of the following experimental procedure will be illustrated by the human THP-1

acrophage cell model. However, this method may be suitable for various adherent cell lines that

xpress active LPL. 

(1) Isolation of VLDL (alternatively: order commercially available VLDL) 

Note: VLDL is an essential part of the assay procedure. It is used as positive control, because

stimulation of LPL activity by VLDL has been already established as positive control for plasma

measurements of LPL activity [12] . 

• Use 50 ml blood obtained from fasted donors with plasma triglyceride concentrations of >

0.90 mmol/l 

Note: Plasma triglyceride concentrations of > 0.90 mmol/l was previously described as a suitable

range for VLDL-based LPL assays [12] . 

• Collect the blood in 9 ml EDTA-monovettes (02.10 6 6.001, Sarstedt) 
• Centrifuge blood samples at 1870 × g for 10 min at 15 °C for plasma separation 

• Transfer plasma into 4 ml thick-wall polycarbonate tubes (355,645, Beckmann Coulter) for

ultracentrifugation 

• Ultracentrifugation is performed for 4 h at 15 °C and 269 200 × g (50,0 0 0 rpm, used rotor:

Type 50.4 Ti, Beckman Coulter) 
• Collect separated VLDL in 2 ml tubes 

Note: The separated VLDL phase is very narrow and can easily be mixed with the plasma fraction

below. Be careful not to shake the thick-wall tubes when taking them out of the ultracentrifuge.

Use a 1 ml pipette for collecting the VLDL phase by placing the pipette tip on the tube wall and

moving it carefully around the tube. 

• Determine the protein concentration of the VLDL samples ( e.g., Lowry or Bradford assay) 
• Isolated VLDL can be stored under nitrogen atmosphere at 4 °C 

Note: It is necessary to utilize the isolated VLDL within one week for the respective experimental

procedures to ensure high VLDL quality and to avoid lipid oxidation. 

(2) Cell culture 
• The assay procedure described below is based on the use of 12-well cell culture plates (92,012,

TPP Techno Plastic Products, Trasadingen, Switzerland) 
• Use 1 × 106 THP-1 monocytes per well for macrophage differentiation (add 100 ng/ml phorbol-

12-myristate-13-acetate (P1585, Sigma Aldrich) and 50 μmol/l β-mercaptoethanol (4227.3, Carl

Roth) together with RPMI-1640 (R8758, Sigma Aldrich) cell culture medium supplemented

with 10% (v/v) FBS Superior (S0615, Sigma Aldrich) and 0.1% (v/v) PSG solution (G1146, Sigma

Aldrich)) 
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Note: The number of wells used for the assay depends on the experimental design. However, there

are four fixed controls included in each assay run to ensure reliability of the procedure: (i) an

untreated control, (ii) the orlistat negative control without VLDL, (iii) the VLDL positive control, 

and (iv) the orlistat negative control in combination with VLDL. Keep in mind to include these

four controls in your experimental design. The current 12-well assay design including all assay 

controls allows the simultaneous analysis of up to three different test compounds. 

• THP-1 monocytes are differentiated for 96 h in 2 ml cell culture medium per well 
• Remove cell culture supernatant from the fully matured THP-1 macrophages 
• Wash cells twice with phosphate-buffered saline (PBS) 
• Pre-incubate cells according to the respective experimental procedure (here for 24 h) in 1 ml

phenol red-free RPMI-1640 medium (R7509, Sigma Aldrich) under serum-free conditions 
• Shake the cell culture plate carefully to ensure homogenous distribution of the compounds 

Note: It is necessary to replace standard RPMI-1640 cell culture medium by phenol red-free RPMI-

1640 for incubation to avoid fluorescence interferences. For the basic assay procedure without 

any test compounds, cells are only pre-incubated with 50 μM orlistat in the respective wells for

24 h. 

• Add VLDL in a concentration equivalent to 50 μg/ml protein together with 0.5 μl quenched,

fluorescently labeled LPL substrate to the pre-incubated cells 
• Shake the cell culture plate carefully to ensure homogenous distribution of the compounds 

Note: The LPL substrate used for the experimental procedure is a standardized, commercially 

available product from Abcam (Cambridge, UK ab214552). It is a component of the commercial

LPL assay kit offered by the company and therefore validated for reliable functionality. 

Nevertheless, we recommend to pooling LPL substrates of different batches to reduce variability 

between measurements. The quenched substrate fluoresces upon hydrolysis by LPL, so that 

the measured fluorescence intensity (FI) values are proportional to the amount of hydrolyzed 

substrate and thus LPL activity. The use of commercially available substrates for determination 

of LPL activity has also been described in other methodical approaches [12 , 13] . 

(3) Fluorescence based real-time measurement of LPL activity 

Note: In our experimental setup, the FLUOstar Omega microplate reader coupled to an atmospheric 

control unit (BMG Labtech, Ortenberg, Germany) was used for FI determination. As an initial

step, a suitable measurement procedure should be prepared for the respective experimental 

design of every assay procedure. In our approach, we determined FI values of the used wells

hourly over 24 h at Ex/Em = 485/520 nm (recommended wavelength for the LPL substrate).

As an additional preparation step, a temperature of 37 °C and a CO 2 concentration of 5% (v/v)

should be set at least one hour before each measurement. 

• Place the cell culture plate in the plate reader and start the prepared measurement procedure. 
• The determined FI values can be used for the assessment of LPL activity for any test compound.
• Adherent cells can be used for subsequent investigations. 

Note: The described assay conditions do not require harvesting of the cells. Thus, LPL activity

measurement can be supplemented by additional cell or molecular biological analyses for a 

more comprehensive characterization of the test compounds. We have currently performed 

Nile red staining and cell viability assays after the determination of LPL activity. However, the

combination with other molecular biological methods, such as Western blot, RT-qPCR or any 

other in vitro application is possible in principle. 
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ethod validation 

The aim of this study was to establish a simple fluorescence-based in vitro assay to allow the initial

haracterization of potential regulatory compounds targeting the LPL system. We decided to develop

his procedure because commercially available LPL assays were not suitable for this demand. 

Preliminary experiments revealed that the standard RPMI-1640 cell culture medium had to be

eplaced by phenol red-free RPMI-1640 for cell incubation to avoid fluorescence interferences. To

nable determination of LPL activity, we used a quenched, fluorescently labeled LPL substrate (similar

pproach as described in [12 , 13] ) in our incubation procedure. The quenched substrate fluoresces

pon hydrolysis by LPL, so that the measured FI values are proportional to the amount of hydrolyzed

ubstrate and thus LPL activity. Further, we decided to use VLDL as positive control, because

timulation of LPL activity by VLDL has already been shown in plasma measurements [12] . In addition,

rlistat, a well-established and clinically used LPL inhibitor [17–19] was added as a negative control. 

For the initial establishment of the assay procedure, human THP-1 macrophages were treated

s described in the section “Supplemental Material/and or additional information”. After 24 h real-

ime measurement, we noticed that incubation with VLDL (in a concentration equivalent to 50 μg/ml

rotein) enhanced the measured FI values, indicating increased LPL activity, in a time dependent

anner. Fluorescence intensity values of the untreated control and the VLDL-treated sample (positive

ontrol) evolved in a significantly different range ( p < 0.01) ( Fig. 1 (A)). Maximum FI values have

een determined after 24 h as an increase to 268.75 ± 24 relative fluorescence units (RFU) in the

LDL-incubated sample compared to 187 ± 14.5 RFU in the untreated control. As expected, orlistat

negative control) significantly blocked LPL activity compared to VLDL-treatment and the untreated

ontrol. Fluorescence intensity values of the VLDL-incubated sample and the combination of VLDL

nd orlistat evolved over time in a significantly different range ( p < 0.001). After 24 h, FI value for

he cells incubated with a combination of VLDL and orlistat was determined at 150 ± 1.3 RFU and

s significantly lower ( p < 0.01) compared to the VLDL-incubated cells (268.75 ± 24 RFU) ( Fig. 1 (A)).

hese results indicate that our methodical approach and the used assay controls are suitable for the

n vitro measurement of LPL activity. 

As a further validation of the established assay procedure, we decided to use GW0742 as a

eference test compound. GW0742 is a well-studied PPAR- δ agonist [20 , 21] , that enhances the

xpression of ANGPTL4 mRNA [22] , a potent physiological and endogenously produced inhibitor

f LPL. Consequently, stimulation of THP-1 macrophages with the PPAR- δ agonist GW0742 should

nhance ANGPTL4 expression, in turn causing a reduction of cellular LPL activity [5] . To confirm

he reported effects of GW0742 under our conditions, human THP-1 macrophages were treated with

00 nM GW0742 and harvested at different time points for RT-qPCR analysis. As expected, GW0742

nhanced ANGPTL4 mRNA expression already after 1 h by approximately 20-fold ( p < 0.001) and

fter 24 h by approximately 200-fold ( p < 0.001) ( Fig. 1 (B)). To examine the effects of GW0742 on

ellular LPL activity, we expanded our initial working procedure by an additional 24 h pre-incubation

ith 100 nM GW0742. In line with our initial experiment, we were able to generate similar FI values

or untreated control cells, VLDL-incubated cells as well as cells cultured with orlistat alone or in

ombination with VLDL. GW0742 treatment slightly, but not significantly increased basal LPL activity

206 ± 20 RFU vs . 230 ± 16 RFU) compared to the untreated control. However, combination of

W0742 and VLDL did significantly reduce the induction of LPL activity by VLDL ( p < 0.05). The

trongest reduction was achieved after 24 h, where GW0742 reduced FI values of VLDL incubated

ells from 291.3 ± 29 RFU to the control level of 196.6 ± 20 RFU ( Fig. 1 (C)). In summary, the observed

ffect of GW0742 on cellular LPL activity is consistent to the literature. 

For the combination of the LPL assay procedure outlined here with additional cell or molecular

iological methods, we studied cell viability at the end of the LPL activity measurement. For

his, methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was performed after completing the

4 h real-time measurement. None of the applied compounds did significantly reduce cell viability

ompared to the untreated control. Treatment with orlistat led to a slightly but not significantly

educed cell viability of 85% of the control, representing the lowest viability in our experimental

etup ( Fig. 1 (D)). According to ISO 10993-5:2009, a reduction of cell viability by 15% is not regarded

s a cytotoxic effect [23] . For final validation of the assay procedure, we combined our LPL assay
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Fig. 1. Establishment and validation of an in vitro real-time fluorescence assay for the measurement of LPL activity. (A) Initial 

establishment of the LPL assay procedure. Human THP-1 macrophages were pre-incubated with 50 μM orlistat (negative 

control). After 24 h, VLDL (positive control, protein concentration of 50 μg/ml) and the fluorescently labelled LPL subtrate 

were added to the corresponding wells. Fluorescence intensity (FI) of each well was determined hourly over 24 h at 

Ex/Em = 485/520 nm ( n = 4; ∗∗∗ p < 0.001 vs . VLDL incubation). All further experiments were performed for assay validation, 

using GW0742 as reference test compound. (B) RT-qPCR of human THP-1 macrophages to investigate ANGPTL4 (LPL inhibitor) 

mRNA expression after GW0742 treatment ( n = 4, ∗∗∗ p < 0.001, vs . untreated control). ANGPTL4 mRNA expression levels were 

normalized to RPL37A mRNA expression, which remained unchanged under all conditions (data not shown). (C) LPL activity 

assay with GW0742 as test compound ( n = 3, ∗ p < 0.05 vs . VLDL incubation). (D) MTT assay for the assessment of cell 

viability after measurement of LPL activity ( n = 3). (E) Measurement of the accumulation of neutral lipids accumulation by 

flow cytometry using Nile red staining after completion of the real-time LPL activity assay ( n = 3, ∗∗∗ p < 0.001, vs . VLDL 

treatment). 
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ith a subsequent measurement of neutral lipid accumulation by flow cytometry using Nile red

taining. This experimental setting was chosen from reports on VLDL-induced cellular accumulation of

eutral lipids via LPL [24 , 25] . Further, ANGPTL4 has been shown to reduce the uptake of triglyceride-

erived fatty acids from VLDL by human THP-1 macrophages [26] . Consequently, VLDL treatment

hould enhance neutral lipid accumulation, while GW0742 treatment should prevent this. As expected,

ncubation of THP-1 macrophages with VLDL induced accumulation of neutral lipids by almost

hreefold compared to the untreated control. Co-incubation with GW0742 significantly reduced VLDL-

nduced accumulation of neutral lipids to 54% ( p < 0.001). Co-incubation with orlistat resulted also

n a significant reduction of VLDL-induced accumulation of neutral lipids to 36% ( p < 0.001). As

xpected, the relative amount of neutral lipids in cells treated with GW0742 or orlistat but without

LDL did not differ from the control ( Fig. 1 (E)). The obtained results confirm that our LPL assay can

e easily combined with other cell and molecular biological methods to produce more comprehensive

nformation on the interaction of a compound of interest with the cellular LPL system. 

onclusion 

We here provide a simple and rapid fluorescence-based in vitro assay for the assessment of the

nteractions of test compounds with the LPL system. The assay procedure provides several advantages

ver currently available in vitro LPL assays: (i) 12-well cell culture plate design for the simultaneous

nvestigation of up to three different test compounds (including all assay controls); (ii) 24 h real-

ime acquisition of LPL activity data for the identification of the optimal time point for further

easurements; and (iii) LPL activity measurement can be complemented by additional cell and

olecular biological analyses using the same cell samples. Nevertheless, we are aware that the current

ssay design has limitations and needs further improvements: 

(i) In our experiments, VLDL was isolated from only a single normolipidemic male donor with

plasma triglyceride concentrations of 0.90 mmol/l. However, the approach could be improved

by using a mixture of VLDL obtained from multiple donors as described in [12] . Here, samples

from ten normolipidemic donors (plasma triglycerides < 1.75 mmol/l) were pooled to create

a more representative mean VLDL substrate for their assay procedure. Further, the use of a

VLDL pool from different donors may also reduce the variation of the lipid and apolipoprotein

composition between individuals. 

(ii) For further optimization of VLDL composition, the triglyceride content of the VLDL should be

determined before. Di Filippo and coworkers used seven VLDL pools with varying triglyceride

concentrations ranging from 0.45 to 3.45 mmol/l for the determination of LPL activity in post-

heparin plasma [12] . The authors report that LPL activity reached a steady level in the range

between 1.5 and 2.2 mmol/l, while lower concentrations ( < 0.90 mmol/l) decreased LPL activity

and high concentrations ( > 2.7 mmol/l) slightly increased LPL activity in post-heparin plasma.

To avoid distortion of the measured LPL activity by suboptimal triglyceride concentrations of the

applied VLDL, the authors determined 1.8 mmol/l as the optimal triglyceride concentration for

their assay. Hence, optimization of the triglyceride concentrations in the VLDL could improve

our assay. 

(iii) The assessment of LPL activity in the current assay design is based on the comparison

of FI values for the different compounds and controls at various times. This might be

sufficient for a first impression of the effect of compounds on LPL activity and is therefore

suitable for the intention of our assay procedure. Nevertheless, exact quantification of LPL

activity based on the calculation of the released amount of substrate over time, as it has

already been described for plasma measurements [1 , 12 , 13] , should be an aim for future

improvements. Unfortunately, no detailed information about their fluorescently labeled LPL

substrate (concentration, composition, exact chemical name/structure etc.) is available from the

supplier (Abcam, Cambridge UK). It was therefore not possible to adapt the procedure for the

use of standard calibration curves as described in the assay manual to our conditions [1] . 

(iv) For the here presented LPL activity assay, a mean coefficient of variation (CV) for inter-assay

variability was 10.6% for low (untreated control) and 12% for high values (VLDL treatment).
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Although both CVs are below 15%, which is in general acceptable for biological assays [27] ,

inter-assay variability is an issue, in particular for high FI values. In general, the higher the

measured FI values the higher the variation between each measurement. We were able to 

partially reduce this problem using a pool of different batches of the LPL substrate. Given the

fact that the current assay procedure is only designed for initial compound screening and not

as a diagnostic tool, the variation between each measurement seems acceptable. Nevertheless, 

reproducibility and the accuracy of the assay procedure should further be improved. 

(v) All experiments and optimizations for the current assay procedure were performed with human 

THP-1 macrophages. However, to fully understand the global impact of a given drug on lipolysis

the use of further LPL-expressing cells, like adipocytes, may be necessary. 

Despite of its limitations, our assay design can serve as a reliable tool for in vitro measurements of

the effects of test compounds modulating the activity of the LPL system. 
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