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Because every disease has its unique survival pattern, it is necessary to find a suitable model to simulate followups. DNAmicroarray
is a useful technique to detect thousands of gene expressions at one time and is usually employed to classify different types of cancer.
We propose combination methods of penalized regression models and nonnegative matrix factorization (NMF) for predicting
survival. We tried L

1
- (lasso), L

2
- (ridge), and L

1
-L
2
combined (elastic net) penalized regression for diffuse large B-cell lymphoma

(DLBCL) patients’ microarray data and found that L
1
-L
2
combined method predicts survival best with the smallest logrank P

value. Furthermore, 80% of selected genes have been reported to correlate with carcinogenesis or lymphoma. Through NMF we
found that DLBCL patients can be divided into 4 groups clearly, and it implies that DLBCL may have 4 subtypes which have a
little different survival patterns. Next we excluded some patients who were indicated hard to classify in NMF and executed three
penalized regression models again. We found that the performance of survival prediction has been improved with lower logrank P
values.Therefore, we conclude that after preselection of patients by NMF, penalized regressionmodels can predict DLBCL patients’
survival successfully.

1. Introduction

Survival analysis is a branch of statistics that is of interest
to researchers in when patients’ death will occur after some
therapies [1]. So far there are many methods to analyze
survival data, for example, Kaplan-Meier curve, logrank test,
Cox proportional hazards model, and so on. We often have
information about patients’ survival status and survival time.
However, censored data cannot offer complete information;
that is to say, the survival time of live patient is only partially
known. Because of such censored data, survival analysis
becomes more complicated than other studies.

The Kaplan-Meier curve is the most popular illustration
of survival pattern, and it only considers the survival time
data of dead patients (excluding the censored data). By
Kaplan-Meier curve, we can estimate the survival rate at
different survival time. The logrank test is a useful method
to compare the survival distributions, where we can consider
the logrank test as a modified chi-squared test. The Cox
proportional hazards model is the most famous regression

model in survival analysis. Its main concept is to analyze the
relationships between multiple covariates and survival time.
The covariates may be internal factors such as patients’ age,
sex, or gene expression, whereas external factors may include
environmental influences like smoke, food, or life style. Since
survival time is most likely not normally distributed, we
cannot directly use original multiple regression to simulate
regression models. The survival patterns usually display as
exponential orWeibull distributions. In addition, the survival
data have the “censored” problem; therefore, we need a special
regression method, like Cox regression model, to perform
survival analysis. We will discuss it in detail in Section 2.

So far there is some research in linking gene expression
profiles to survival data, such as predictions of therapy
outcome in kidney [2], lung [3], and breast cancer [4]. The
traditional procedures are utilizing Cox regression model
to select significant genes [5] or separating patients into
different risk levels by hierarchical clustering [2]. Because
of high dimension of microarray data, some researchers
introduce partial least squares [6] or least angle regression
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[7] to reduce the dimension. An optimized set of guidelines
has been published to utilize penalized regression dealing
with gene expression data [8]. Sparse kernel methods also
have been employed as survival SVM and IVM and could
get better results than Cox regression [9]. Some researchers
apply Bayesian approach to add flexibility accounting for
nonlinear relationships between survival time and gene
expression level [10]. Unlike focusing on the problem of high
dimension within microarray data, selecting patients whose
survival patterns are extremely different also can improve
survival prediction performance [11]. Here we are trying to
use microarray data to predict survival by combining two
kinds of methods: (1) penalized regression models and (2)

nonnegative matrix factorization.
Furthermore, we choose the disease, diffuse large B-cell

lymphoma (DLBCL) to analyze, because this disease has
diagnostic discrepancies if only based on clinicalmorphology
[12]. DLBCL is the most common subtype of non-Hodgkin’s
lymphoma and accounts for approximately 40% in adults.
The DLBCL patients can be cured by chemotherapy with
only 35 to 40 percent. The dataset [13] can be downloaded
from http://llmpp.nih.gov/DLBCL. It contains a total of 240
patients with untreated DLBCL, and all of the patients have
no previous history of lymphoma. The median followup is
2.8 years for total patients and 7.3 years for survived patients.
During this study 138 patients (57%) unfortunately died.
The tumor samples of DLBCL patients are collected and
tested by DNA microarray experiment. The cDNA clones
on the Lymphochip microarray are composed of genes that
are considered to express in lymphoid cells and some genes
that are thought or confirmed to play a role in cancer or
immune function. Each microarray datum of each patient
comprises 7395 different genes, but some genes of some
patients have too weak fluorescent signals (compared with
dot’s surrounding) and are denoted as missing values. There
are only 434 genes without missing values among total 240
patients. The Cy5/Cy3 ratios are log transformed by base 2
and stored in a table to construct gene expression profiles.

2. Methods

2.1. Cox Proportional Hazards Model. The Cox proportional
hazards model is constructed by Cox [14] and widely used
in the analysis of survival data. The Cox regression model
demonstrates that the hazard function ℎ(𝑡), which means the
risk of death at time 𝑡 for an individual with gene expression
profiles, is given by

ℎ (𝑡 | X) = ℎ
0
(𝑡) exp(

𝑝

∑
𝑖=1

𝛽
𝑖
𝑥
𝑖
) = ℎ

0
(𝑡) exp (

⊤
𝛽X) , (1)

where ℎ
0
(𝑡) is the baseline hazard, 𝛽 =

⊤
(𝛽
1
, . . . , 𝛽

𝑝
) is the

column vector of regression parameters, and ⊤𝛽 means its
transpose. X =

⊤
(𝑥
1
, . . . , 𝑥

𝑝
) denotes the gene expression

levels of 𝑝 genes. The term ℎ
0
(𝑡) is the hazard when all gene

expression levels are equal to zero. Or we can think the Cox
proportional hazards model as another form:

log ℎ (𝑡 | X)

ℎ
0
(𝑡)

=
⊤
𝛽X. (2)

In Cox regression model, there is no assumption about
the probability distribution of the hazard. It just assumes that
the ratio of hazard functions of different observations does
not depend on time [1]. The other assumption is that there is
a log-linear relationship between covariates (gene expression
levels) and hazard function. Finally we can presume the
Cox proportional hazards model as a modified “simple”
linear regression model. Like other statistical methods using
likelihood function to estimate parameters from a dataset, in
Cox proportional hazards model, the Cox partial likelihood
is also derived by Cox [14] as follows:

𝐿 (𝛽) = ∏
𝑟∈𝐷

exp (⊤𝛽X(𝑟))
∑
𝑗∈𝑅
𝑟

exp (⊤𝛽X(𝑗))
, (3)

where 𝐷 is the set of indices of patient death and 𝑅
𝑟
denotes

the set of indices of the individuals at risk for death at time 𝑡
𝑟

[7]. For many applications of likelihood function, the term
that takes logarithm of likelihood is more convenient than
the original likelihood function. Thus, taking the logarithm
of the Cox partial likelihood, we have the following log partial
likelihood:

𝑙 (𝛽) = ∑
𝑟∈𝐷

(
⊤
𝛽X(𝑟) − log(∑

𝑗∈𝑅
𝑟

exp (
⊤
𝛽X(𝑗)))) . (4)

Next we follow the normal maximum likelihood estima-
tionmethod to calculate unknown parameters. Our goal is to
estimate the regression coefficients𝛽, so we canmaximize the
log partial likelihood function over 𝛽.

2.2. Lasso, Ridge, and Other Penalized Regression. In usual
cases that the patient size 𝑛 is bigger than covariate number𝑝,
we can compute 𝛽 by maximizing the log partial likelihood.
However, some research has indicated that the Cox propor-
tional hazards model cannot be applied directly to predict
survival time when 𝑝 ≫ 𝑛 (e.g., in microarray case) [7, 15].
It is because of the high-dimensional space of the predictors
and high collinearity of some genes.Whenwe usemicroarray
data to do survival analysis, the dataset always composes
thousands of gene expression data. The huge gene numbers
make the prediction model a very high dimensional and
cause the difficulty of computing.The secondproblemusually
happens in biological research, because the expression levels
of some genes are highly correlated. These genes may belong
to the same biological pathway or play similar roles in
different reactions. To solve these problems, we apply several
kinds of penalized regression methods.

All of the penalized regression models are based on
the Cox proportional hazards model. The idea is to add a
regularization term in the Cox partial likelihood function
and control the over-fitting. There are two popular kinds of
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penalized regression methods. The first one is 𝐿
1
-penalized

regression; it is also called the least absolute shrinkage
and selection operator (lasso) estimation, which was first
proposed by Tibshirani [16]. Because of some constraints
in lasso’s principles, it tends to convert some coefficients to
zero finally. According to this special characteristic, the lasso
estimation is often applied in parameter shrinkage to build
simpler models. The second penalized regression method
is 𝐿
2
-penalized regression, which is usually called ridge

regression [17]. Unlike lasso estimation, ridge regression
conserves all parameters to construct prediction models.

To add regularization term into theCox regressionmodel,
the log partial likelihood function will be rewritten as the
following. 𝐿

1
-penalized (lasso) log partial likelihood is given

by

𝑙 (𝛽) −

𝑝

∑
𝑗=1

𝜆
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
, (5)

and 𝐿
2
-penalized (ridge) log partial likelihood is written as

𝑙 (𝛽) −

𝑝

∑
𝑗=1

𝜆𝛽
2

𝑗
, (6)

where 𝜆 is a tuning parameter and 𝑝 is the number of
genes. There is another simple penalized likelihood method
combined with 𝐿

1
- and 𝐿

2
-penalized regression. It is named

the elastic net, and its log partial likelihood is

𝑙 (𝛽) −

𝑝

∑
𝑗=1

(𝜆
1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
+ 𝜆
2
𝛽
2

𝑗
) , (7)

where 𝜆
1
and 𝜆

2
are corresponding tuning parameters of 𝐿

1

and 𝐿
2
penalties, respectively. We can find that the elastic net

method just adds 𝐿
1
and 𝐿

2
penalties together to create a new

regularization term.The elastic net performs feature selection
andparameter estimation as the lasso regression.However, by
adding the 𝐿

2
penalty it distributes weight to more variables;

hence, the elastic net may select more parameters than the
lasso regression [18].

In order to select variables, we first randomly divided 240
patients into training group (160 patients) and testing group
(80 patients). Although thewholemicroarray datum contains
7395 genes for each patient, we primarily used the 434
complete genes (without missing values among all patients)
to build penalized regression models. All experiments were
executed on R platform by using libraries of “survival” and
“penalized”. We initially established 𝐿

1
-, 𝐿
2
-, and 𝐿

1
-𝐿
2

combined penalized regression models by training data. No
doubt it is necessary to set the tuning parameter 𝜆 first,
and we can use the cross-validation method encompassed
in the “penalized” package to find optimal values. If we set
tuning parameters too small, the algorithm may run very
slowly and fail to converge especially for high-dimensional
data. In this study, we set 𝜆 = 10 in lasso regression model
and 𝜆 = 20 in ridge regression model. In 𝐿

1
-𝐿
2
combined

penalized regressionmodel, we set𝜆
1
= 10 and𝜆

2
= 20. After

computing on R platform, we got out 21 nonzero coefficients
in lasso regression model and 27 ones in elastic net model. In
other words, we selected out 21 and 27 important genes.

2.3. Nonnegative Matrix Factorization. The nonnegative
matrix factorization (NMF) method has been introduced
first to decompose images, and its goal is to factorize a
matrix into two nonnegative matrices [19]. In NMF, it makes
the constraint about nonnegativity of matrices. It is because
not only most data in the real world are nonnegative but
also we can only explain their meanings in nonnegative
way [20]. The other characteristic of NMF is the additive
property; that is to say, the NMF model does not allow
subtraction. This special signature makes NMF illustrate
quantitatively each component. Or we can say NMF is a part-
based representationmethod.While zero value represents the
absence of some components or events, the positive value
may denote the presence of the same ones.

Lee and Seung first usedNMF to do image decomposition
[21].They analyzed a face figure with NMF and compared the
result with principal component analysis (PCA) and vector
quantization (VQ).They showed thatNMF can do part-based
representation, whereas PCA and VQ represented the face
image holistically. In other words, NMF decomposed the face
image successfully into several facial parts, like nose, lips,
and eyes. Suppose we have the image data matrix 𝑉 of size
𝑛 × 𝑚 that contains 𝑚 facial images, where each image has 𝑛
nonnegative pixels. Our goal is to factorize the matrix 𝑉 into
two nonnegative matrices,𝑊 and𝐻:

𝑉 ≈ 𝑊𝐻. (8)

The sizes of the matrices 𝑊 and 𝐻 are 𝑛 × 𝑘 and 𝑘 × 𝑚,
respectively.The rank 𝑘 is usually chosen to be smaller than 𝑛

and 𝑚, so that 𝑊 and 𝐻 are smaller than the original matrix
𝑉.The rank 𝑘 is similar to the basis image that identifies parts
of the face image.

TheNMFmethod starts by randomly initializing nonneg-
ative matrices𝑊 and𝐻. Similar the values of𝑉 and𝑊𝐻 are,
the distance between𝑉 and𝑊𝐻 approaches approximately to
zero. A useful distancemeasurement is to calculate the square
of the Euclidean distance between them.The equation can be
written as

‖𝑉 − 𝑊𝐻‖
2
= ∑
𝑖𝑗

(𝑉
𝑖𝑗
− (𝑊𝐻)

𝑖𝑗
)
2

. (9)

Another similarity measurement is to test the “divergence” of
𝑉 from𝑊𝐻, which is denoted as a divergence function:

𝐷 (𝑉 ‖𝑊𝐻) = ∑
𝑖𝑗

(𝑉
𝑖𝑗
log

𝑉
𝑖𝑗

(𝑊𝐻)
𝑖𝑗

− 𝑉
𝑖𝑗
+ (𝑊𝐻)

𝑖𝑗
) . (10)

Unlike the Euclidean distance, it assumes that 𝑉 and 𝑊𝐻

are not symmetric. To minimize the Euclidean distance or
the divergence function, Lee and Seung created the following
“multiplicative update rules” to ease implementation and
accelerate computing speed [21].The Euclidean distance ||𝑉−

𝑊𝐻|| is nonincreasing under the update rules:

𝐻
𝑎𝑢

←󳨀 𝐻
𝑎𝑢

(
⊤
𝑊𝑉)
𝑎𝑢

(
⊤
𝑊𝑊𝐻)

𝑎𝑢

,

𝑊
𝑖𝑎

←󳨀 𝑊
𝑖𝑎

(𝑉⊤𝐻)
𝑖𝑎

(𝑊𝐻⊤𝐻)
𝑖𝑎

.

(11)
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Furthermore, the divergence 𝐷(𝑉‖𝑊𝐻) is nonincreasing
under the update rules:

𝐻
𝑎𝑢

←󳨀 𝐻
𝑎𝑢

∑
𝑖
𝑊
𝑖𝑎
𝑉
𝑖𝑢
/(𝑊𝐻)

𝑖𝑢

∑
𝑘
𝑊
𝑘𝑎

,

𝑊
𝑖𝑎

←󳨀 𝑊
𝑖𝑎

∑
𝑢
𝐻
𝑎𝑢
𝑉
𝑖𝑢
/(𝑊𝐻)

𝑖𝑢

∑V 𝐻𝑎V
.

(12)

Therefore, we can iteratively update 𝑊 and 𝐻 to minimize
the Euclidean distance or the divergence function by upper
coupled update rules.

It has been indicated that NMF is very useful when ana-
lyzing data that have multiple attributes, and these attributes
are often ambiguous and hard to predict. Because of this
property, NMF has been applied much in text data mining.
The same word may have other different meanings just
depending on the different locations in the sentence or
document. It resembles the biological data so that the same
gene may play different roles in different biological pathways.
To deal with the gene complexity of multiple functions, NMF
method has been exploited to process the biomedical data
such as microarray data [22].

In microarray case, we first consider the gene expression
matrix 𝐴, which is composed by 𝑁 genes in 𝑀 patients. In
other words, the size of matrix 𝐴 is 𝑁 × 𝑀. Then, we want
to factorize matrix 𝐴 into two matrices with nonnegative
entries, 𝐴 ≈ 𝑊𝐻. It means to find a small number of genes
(which are called metagenes) to represent the whole gene
expression pattern of patients [23]. That is to say, we can
approximate the gene expression pattern as positive linear
combinations of these metagenes. Like to find the essential
face components (eyes, nose, and lips) from the entire face
image, we try to figure out the representative metagenes that
may provide biological insight into sparse microarray data.
Each column of𝑊 of size𝑁×𝑘 defines a metagene and each
column of 𝐻 of size 𝑘 × 𝑀 defines the metagene expression
pattern of the corresponding patient, where the 𝑖𝑗th elements
𝑤
𝑖𝑗
andℎ
𝑖𝑗
represent the coefficient of gene 𝑖 inmetagene 𝑗 and

the expression level of metagene 𝑖 in patient 𝑗, respectively.
Figure S1 (see Supplementary Material available online at

http://dx.doi.org/10.1155/2013/632030) shows a simple exam-
ple when rank 𝑘 = 2. We can see the original gene expression
matrix𝐴 is decomposed into two smaller matrices𝑊 and𝐻.
There are two ways to analyze the gene expression pattern—
the matrix 𝑊-based aspect and the matrix 𝐻-based aspect.
In𝑊-based view, the total𝑁 genes can be grouped into some
clusters according to the value of entries𝑤

𝑖𝑗
. If we reorder the

𝑁 genes by the coefficients of every gene in corresponding
metagene, the inherent special expression pattern of some
genesmay be uncovered. In𝐻-based view, the𝑀 patients can
be clustered into 𝑘 groups by the expression levels of meta-
gene for all patients. As Figure S1 shows, metagene expression
profiles are illustrated in two significant distributions (red
line and blue line). By this unique distribution, we can cluster
patients into cluster 1 and cluster 2 separately. Because of
this distinctive character, nonnegative matrix factorization
can be employed as a clustering method in microarray data.
Moreover by reason of the dual-way aspect of 𝑊 and 𝐻

matrices, some research has proved it is practicable to analyze
the microarray data in the biclustering way [24].

Since we can set any rank 𝑘 to group patients into 𝑘

clusters, the key point is to find 𝑘 that can partition patients
into meaningful clusters. To solve this problem, we apply
the method of consensus clustering [23]. The different initial
matrices of 𝑊 and 𝐻 on each run may cause different
clustering forms of patients. However, if rank 𝑘 is strong
enough, we may expect that patient assignment to clusters
would vary a little from run to run. For each run, the patient
assignment can be defined by a connectivity matrix 𝐶. The
size of matrix 𝐶 is 𝑀 × 𝑀, and entry 𝑐

𝑖𝑗
= 1 if patient 𝑖 and

patient 𝑗 belong to the same cluster. Whereas entry 𝑐
𝑖𝑗

= 0

if patient 𝑖 and patient 𝑗 belong to different clusters. Then,
we compute the average connectivity matrix 𝐶 over 100 runs
and denote it as the consensus matrix 𝐶. Since 𝑐

12
takes 1 or 0

over 100 runs as shown in Figure S2, the average of 𝑐
12
will be

within the region between 1 and 0.Therefore, all the entries of
𝐶may range from0 to 1 and reflect the probability that patient
𝑖 and patient 𝑗 are assigned to the same cluster. Next, we
can reorder all patients by their assignment probability and
then construct a new consensus clusteringmatrix by heatmap
presentation coloring from 0 (deep blue, patients in different
groups) to 1 (dark red, patients in the same group). Through
heat map result, we can evaluate the validity of any setting
rank 𝑘. All experiments were executed onR platform by using
the library of “NMF”.

The gene expression levels in microarray are displayed
as Cy5/Cy3 log-2 ratios, and these values are distributed
dispersedly as positives or negatives. Additionally, there are
only 434 genes without missing values among total 240
patients. Since the missing values are caused by the too weak
fluorescent signals to detect, we may think these values are
approximately equal to zero. So, we refilled all the missing
values in the gene expression profiles as zero [25]. Next
procedure is to transform all of the ratios into nonnegative
values; therefore, we used each ratio as an exponent by base 2
[22].

2.4. Lasso Regression after NMF Selection. According to the
consensus clustering results by NMF, we found some patients
cannot be clustered into the same group over all 100 runs.
We may suggest that these patients will become noise in
the following computing.Therefore, we excluded the patients
whose value in 𝐶 is smaller than 0.9. We finally excluded
15 patients from the training group and 7 patients from the
testing group. Next, we built 𝐿

1
-, 𝐿
2
-, and 𝐿

1
-𝐿
2
combined

penalized regression models again.
To compare the prediction performance of the three

penalized regression models, we should define the criteria
of prediction assessment initially. However, there are no
determinate criteria that have been stipulated for survival
analysis [26]. Furthermore, many comparative studies of
survival prediction have indicated that different criteria
may influence the conclusion about evaluations of different
prediction models [15, 27]. We chose one simple evaluation
criteria that has been reported in many survival studies. A
common way to assess the effect of one prediction model is

http://dx.doi.org/10.1155/2013/632030
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Figure 1: Consensus clustering results of 7395 genes for rank 𝑘 = 2, . . . , 5.

to check whether or not the assignments of patients, such as
“high-risk” group or “low-risk” group, are correct. In clinic,
patients are always concerned about whether or not they are
at risk for death after some therapies.

Let 𝛽̂train denote the vector of estimated regression
coefficients obtained from training data. For each patient 𝑖 in

the testing group, this estimate is then used together with its
vector of gene expression values X(𝑖) to derive a prognostic
index 𝜂

𝑖
for the patient, given by 𝜂

𝑖
= ⊤𝛽̂trainX

(𝑖) [27]. Then,
we found the median of the prognostic indices of 80 patients.
If the prognostic index is bigger than the median, the patient
is assigned to the high-risk group, whereas smaller than the
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Figure 2: The Kaplan-Meier curve results of three kinds of patients’ divisions corresponding to rank 𝑘 = 2, . . . , 4.

median the patient is assigned to the low-risk group. We
can compare the results of 𝐿

1
- (lasso), 𝐿

2
- (ridge), and 𝐿

1
-

𝐿
2
combined (elastic net) penalized regression model by the

Kaplan-Meier curve.

3. Results

3.1. Important Genes Selected out by Lasso Regression. We
have described in Section 2 that there are 21 genes selected
out by lasso regression model and 27 genes selected out by
elastic net model. Moreover, the 21 genes are overall included
in the 27 genes. It implies that these 21 genes (see Table 1)
may play important roles in patients’ survival. To understand
these genes more comprehensively, we investigated their

biological functions and discriminated whether or not they
are involved in carcinogenesis. We found that there are 10
genes that have been reported to relate to some cancers,
and 5 genes of them are indicated to influence the DLBCL
patients’ survival [13]. Two genes are tumor suppressor genes
or oncogenes and hint them playing noticeable roles in
carcinogenesis. On the other hand, there are 9 genes that
have biological functions concerned to fundamental immune
functions, such as MHC class II or antigen processing. We
may infer that genes with these special biological functions
will cause DLBCL pathogenesis and even affect patients’
survival eventually. Unfortunately, the biological functions of
two genes within the 21 genes have not been known clearly
so far. However, total 17 genes among the 21 genes (about
80 percent) are correlated to carcinogenesis or important
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Table 1: 21 important genes selected by lasso regression model.

UNIQID in microarray Name Biological function Correlated cancer or carcinogenesis coef. in lasso coef. in elastic net
24432 Unknown 0.1987 0.0864
17316 RPS21 Ribosomal protein HCC 0.1367 0.0705
15841 MYC Transcription factor Many cancers (e.g. DLBCL) 0.0818 0.0713
29250 AARS tRNA synthase 0.1979 0.0874
30040 PHB2 Mitochondrial morphology Breast cancer 0.0074 0.0356
30347 SIT1 Lymphoid cell marker −0.0440 −0.0248

19373 HLA-DQA1 MHC class II alpha chain DLBCL −0.1279 −0.1115

28197 HLA-DPA1 MHC class II alpha chain DLBCL −0.0920 −0.0799

24396 HLA-DRB1 MHC class II beta chain DLBCL −0.1345 −0.0877

31957 CD22 B-cell receptor signalling DLBCL, cancer drug −0.0895 −0.0597

27091 ST6GAL1 Glycosyltransferase Colorectal cancer 0.1062 0.0741
31316 FCRL3 New CD molecule 0.0324 0.0207
27379 LRMP Germinal center marker −0.0562 −0.0499

26361 Unknown −0.0070 −0.0037

17723 IGKC Immunoglobulin light chain 0.0341 0.0360
34407 PTPN6 Protein tyrosine phosphatase Anaplastic large-cell lymphoma 0.0611 0.0434
24400 MGLL Monoglyceride lipase 0.0131 0.0216
24395 IFI30 MHC class II Ag processing −0.0889 −0.0635

16972 TXNIP Interact with thioredoxin Tumor suppressor gene 0.0659 0.0372
34814 IL23A Cytokine Oncogene or tumor suppressor gene −0.0114 −0.0128

17475 HSPA1A Heat shock protein Many cancers −0.0211 −0.0166

immune functions. It makes us believe that the 𝐿
1
- and

𝐿
1
-𝐿
2
combined penalized regression models may select out

significant genes associated to the DLBCL patients’ survival.

3.2. Divide DLBCL into 4 Subgroups by NMF. We initially
used 434 gene expression profiles (without missing values) to
run matrix factorization 100 times for rank 𝑘 = 2, . . . , 5 and
got the consensusmatrix.The reordered consensus clustering
results are illustrated by heat maps in Figure S3. We found
that the clustering pattern is better when rank 𝑘 = 3 or
4 and is the worst when rank 𝑘 = 5. It suggests that 3 or
4 groupings of DLBCL patients may have some biological
meaning, so we next plotted the Kaplan-Meier curve of two-
divided, three-divided, and four-divided results as Figure S4
shows to compare their survival distributions. Using logrank
test, we also calculated the𝑃 value of each result and got 0.927,
0.13, and 0.00365 from rank 𝑘 = 2 to 4. We found that only
when rank 𝑘 = 4 the survival curves separate significantly
among four patient groups (the 𝑃 value is smaller than 0.05),
meaning that the fourth division of DLBCL patients has some
biological implications that may generate different survival
patterns of patients.

Since the survival curves did not separate significantly in
two-division and three-division results, we changed to use all
of the 7395 genes (missing values approximated to zero) to
analyze again. Similarly after running 100 nonnegativematrix
factorizations, the heat maps of the consensus matrix for
rank 𝑘 = 2, . . . , 5 are shown in Figure 1. We found that the
clustering pattern is good when rank 𝑘 = 2, 3, or 4 and is
the worst when rank 𝑘 = 5. However, comparing with the
results of 434 genes generally, all clustering results of 7395

genes are much better. Next, we plotted likewise the Kaplan-
Meier curve of two-divided, three-divided, and four-divided
results in Figure 2 and compared their survival distributions.
By using logrank test again, we measured each 𝑃 value of
survival curves, which yielded 0.766, 0.0484, and 0.00946
from rank 𝑘 = 2 to 4. We discovered that the 𝑃 values of not
only rank 𝑘 = 4 but also 𝑘 = 3 are smaller than 0.05. It implies
that the survival patterns can be distinguished significantly
when DLBCL patients are divided into 3 or 4 groups.

3.3. Survival Prediction of Lasso Model is Improved by Pres-
election of NMF. We compared the survival predictions of
𝐿
1
- (lasso), 𝐿

2
- (ridge), and 𝐿

1
-𝐿
2
combined (elastic net)

penalized regression models by the Kaplan-Meier curve as
showing in Figure 3. Using logrank test, we also calculated the
𝑃 value of each model and got 0.139, 0.352, and 0.0364 from
top to bottom. In all three models, the patients’ survival rates
of low-risk group are always higher than the survival rates
of high-risk group. We found that only in 𝐿

1
-𝐿
2
combined

penalized regression model, the survival curves separate
significantly between high-risk group and low-risk group (the
𝑃 value is smaller than 0.05), meaning that the elastic net
model successfully predicts followups with high risk or low
risk of death.

After exclusion of noise patients by NMF, we tested 𝐿
1
-,

𝐿
2
-, and 𝐿

1
-𝐿
2
combined penalized regression models again.

Similarly plotting the Kaplan-Meier curve in Figure 4, we
yielded the 𝑃 values as 0.0208, 0.209, and 0.043 by logrank
test.The 𝑃 values of 𝐿

1
- and 𝐿

2
- penalized regression models

became smaller, whereas bigger in 𝐿
1
-𝐿
2
combined model.

However, the survival distributions in 𝐿
1
-𝐿
2
combined
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Figure 3: The Kaplan-Meier curve results of three penalized regression models, lasso, ridge, and elastic net, for low- and high- risk groups,
respectively.

penalized regressionmodel are still significant between high-
risk and low-risk groups. Consequently, we may conclude
that the prediction performance can be improved (especially
in lasso regression model) by previously excluding some
patients who are considered hard to classify in NMF.

4. Discussion

Through three penalized regression methods based on Cox
proportional hazards model, we analyzed the microarray

data of DLBCL patients and tried to predict the patients’
survival. We found that without preselection of NMF, 𝐿

1
-𝐿
2

combined (elastic net) penalized regressionmodel yields bet-
ter prediction performance than 𝐿

1
- (lasso) and 𝐿

2
- (ridge)

penalized regression models because of the smallest 𝑃 value.
It seems that the elastic net method combines the advantages
of both lasso and ridge regression methods. Furthermore,
the elastic net method reserves the merit of lasso regression
that can sort out the important genes that may influence the
patients’ survival. To improve the prediction performance of
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Figure 4: The Kaplan-Meier curve results of three penalized regression models, lasso, ridge, and elastic net, for low- and high- risk groups,
respectively, after preselection of NMF.

𝐿
1
-𝐿
2
combined penalized regression model, different kinds

of combination or modification should be developed.
21 genes were selected out by 𝐿

1
- and 𝐿

1
-𝐿
2
com-

bined penalized regression models. Among them, MYC,
HLA-DQA1, HLA-DPA1, HLA-DRB1, and CD22 have been
reported to be used in prediction of DLBCL patients’ survival
[13]. Moreover, MYC has been indicated as an oncogenic
transcription factor that regulates expressions of a great
number of genes. CD22 is a B-cell marker and regulates the
signaling pathways within B cell. Recent research shows that
CD22 is a potential drug target in many cancers.

In this study, we only utilized gene expression data as pre-
dictors. However, prediction performance may be improved
by adding other covariates such as age, sex, and stage [5].
Unfortunately, the DLBCL dataset does not contain detailed
information about clinical data. Nevertheless not only clinical
factors but also published gene signatures that are employed
in some cancer prediction chips are proved to increase the
predictive strength [28].

We employed the nonnegative matrix factorization to
naturally cluster DLBCL patients into some groups and
then compared the survival distributions within different
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groupings. Not only complete gene expression profiles but
also total gene expression profiles indicate that the patient
grouping of 4 has some biological meaning. It implies that the
diseaseDLBCLmay have 4 subtypes that have a little different
survival patterns. Moreover, if we observe the heat maps of
consensus clusteringmatrixmore carefully, we will find some
patients with values near to 1 but not equal to 1 (the orange or
yellow color). It means these patients do not always belong to
the same group and may suggest that they have unusual gene
expression profiles because of special constitutions or other
unknown diseases.

The R package of “NMF” provides other distance calcula-
tionmethods to execute, such as nsNMF, offset, pe-NMF and
snmf. Examining these different algorithms may get different
consensus clustering results. Another useful NMF algorithm
which is called Semi-NMF can handle clustering while input
data contain negative values. Its plug-in for a microarray data
analysis tool has even been introduced [25]. Of course, NMF
can deal with other kinds of data different from microarray
data. Array comparative genomic hybridization data are also
utilized to analyze patients’ survival [29].

The DLBCL dataset that we used in this study has been
analyzed by hierarchical clustering before [12, 13]. Although
they claim to cluster DLBCL patients into 2 or 3 groups, our
NMF results prefer 4 groups. It may be because of distinct
algorithms within two methods. Nevertheless, the consistent
results are also reported in lung cancer case [22].

An obvious problem in microarray data is the existence
of missing values. To make full use of gene expression
profiles, we should employ somemethods to estimatemissing
values. For example, a nearest neighbor technique has been
employed to approximate missing values in DLBCLmicroar-
ray dataset and then predict patients’ survival well [7, 30].

There is a growing tendency in research about survival
analysis for the last several decades. Many new ideas from
different fields have been introduced to predict survival
according to gene expression profiles. For instance, topology
has been employed to handle the high-dimensional data
and uncover the shape characteristic of data [31]. Through
survival analysis using advanced information technologies
for kinds of diseases, potential therapies will be developed
and patients may expect better outcome in future.
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