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Abstract: LJF and LF are commonly used in Chinese patent drugs. In the Chinese Pharmacopoeia, LJF
and LF once belonged to the same source. However, since 2005, the two species have been listed
separately. Therefore, they are often misused, and medicinal materials are indiscriminately put in
their related prescriptions in China. In this work, firstly, we established a model for discriminating LJF
and LF using ATR-FTIR combined with multivariate statistical analysis. The spectra data were further
preprocessed and combined with spectral filter transformations and normalization methods. These
pretreated data were used to establish pattern recognition models with PLS-DA, RF, and SVM. Results
demonstrated that the RF model was the optimal model, and the overall classification accuracy for
LJF and LF samples reached 98.86%. Then, the established model was applied in the discrimination
of their related prescriptions. Interestingly, the results show good accuracy and applicability. The
RF model for discriminating the related prescriptions containing LJF or LF had an accuracy of 100%.
Our results suggest that this method is a rapid and effective tool for the successful discrimination of
LJF and LF and their related prescriptions.

Keywords: Lonicerae japonicae Flos; Lonicerae Flos; ATR-FTIR; multivariate statistical analysis

1. Introduction

LJF, widely used in common Chinese medicine, is the flower bud of Lonicera japonica
Thunb. mainly produced in Shandong, Henan, and Hebei Provinces in China [1]. It is
commonly applied in the treatments of sores, furuncles, carbuncles, swelling, and infections
caused by exopathogenic wind-heat or epidemic febrile diseases [1]. At the same time, there
is another Chinese medicine named LF, which is defined by the Chinese Pharmacopeia as the
dried flower bud of Lonicera macranthoides Hand.-Mazz., Lonicera fulvotomentosa Hsu et S. C. Cheng,
Lonicera hypoglauca Miq., and Lonicera confusa DC. These four LF species are mainly grown
in the south of the Yangtze River, including the Hunan, Guizhou, Guangxi, and Guang-
dong Provinces in China [1]. LF possesses a significant antipyretic effect, improves liver
functions, and exhibits an antibacterial effect [2]. Although LJF and LF are widely used
herbs with similar phenotypes derived from the plants of the same genus, LJF and LF
are listed as independent items in the Chinese Pharmacopeia (2020 Edition) for medical
safety, especially regarding drug injection. Chinese Pharmacopeia (2005 Edition) lists LJF
and LF as independent items because LF and LJF are significantly different in medicinal
history, plant morphology, medicinal properties, and chemical constituent, and the only
plant source of LJF is again limited to Lonicera japonica Thunb. In contrast, LF has three
plant sources, including Lonicera macranthoides Hand.-Mazz., Lonicera hypoglauca Miq., and
Lonicera confusa DC. Moreover, Chinese Pharmacopeia (2010 Edition) adds another plant
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source named Lonicera fulvotomentosa Hsu et S. C. Cheng to LF following the 2005 Edition,
obtaining a total of four plants of the same genus under the legal species of LF.

According to traditional records, LJF and LF can clear heat and detoxify. Thus, they
are often applied for the treatment of sores, furuncles, carbuncles, and issues caused by
exopathogenic wind-heat or epidemic febrile diseases. Based on modern pharmacological
studies on LJF and LF, there are some different medicinal effects between LJF and LF.
Compared with other commonly seen antibacterial drugs, LJF manifests more powerfully in
antibacterial activity and inhibition of drug-resistant bacteria [2]. LJF has glucose-lowering,
anti-ultraviolet radiation, anti-endotoxin, anti-ulcer, anti-early pregnancy, anti-platelet
aggregation, anti-fertility, and neuroprotective activities that are not reported in LF, while
LF has effects on balancing intestinal flora and anti-atherosclerotic effects that are not
reported in LJF [3]. In recent years, the commercial value of LJF in herbal medicine trading
markets has increased by over 400%, and more than 30% of current traditional Chinese
medicine prescriptions contain LJF [4]. As a result, LF is often misused as LJF by some
pharmaceutical factories to obtain higher interest. Furthermore, due to the difference
in pharmacological activity between LJF and LF, the related prescriptions of both have
different pharmacological effects. The incorrect addition of LJF and LF to their related
prescriptions could cause great damage to human health and industrial development.
Therefore, it is essential to develop a rapid identification method to discriminate between
LJF, LF, and their related prescriptions to ensure the safety of patients and the healthy
development of Lonicera-based trade markets.

Previous studies on the identification of LJF and LF have mainly focused on mor-
phology and anatomical characters [5], chemical analysis [4], and DNA molecular marker
techniques [6]. According to research, liquid chromatography and mass spectrometry
were used to identify Lonicera species flower buds [7,8]. Although these methods have
some advantages in the identification of Lonicera origins, they are not suitable for online
quality control and are time-consuming. The sample pretreatment and detection processes
of LC-MS and NMR are complicated, and the absorption bands of FT-NIRs are relatively
broad, and the absorption bands are seriously overlapped, which means they cannot be
directly performed in qualitative analysis. Recently, the potential of the hyperspectral
imaging method is applied for the rapid identification of true and false honeysuckle tea
leaves [9]. They are mainly concerned with the study of LJF and LF as tea leaves. Tea
belongs to the field of food. However, the LJF- and LF-related pharmaceutical industry
is a big business in China. The adulteration problem in the pharmaceutical field is far
more important than that in the food field, and the harm is great. Therefore, it is urgent to
supplement and modify some research gaps in this field.

ATR-FTIR technology has been developed based on FTIR technology, which can
be equipped with ATR accessories for crystal materials [10], and is a fast, convenient,
non-destructive, and high-throughput analytical tool that is widely used in the rapid iden-
tification and quality control of herbal medicines [11]. However, the obtained FT-IR spectra
can be affected by the characteristics of samples in thickness and particle size [12,13], so
the acquired raw data should be normalized. Compared with other kinds of infrared
spectroscopy, ATR-FTIR is more convenient, simple, and effective. The use of this high-
performance ATR accessory does not need time-consuming sample preparation and special-
ized sample holders such as the KBr pellet method [7,14]. In addition, the detected samples
stay in their natural state, whose spectrum could reflect the original chemical information
of various metabolites. ATR-FTIR also has excellent sample-to-sample reproducibility and
minimal operator-induced variations [8]. In recent years, ATR-FTIR spectra combined
with multivariate statistical analysis have been widely applied for quality assessment
and authentication of herbal medicines [15–17]. However, the original ATR-FTIR spectra
contained some overlapped absorbance and extra absorbance caused by different particle
sizes and thickness of sample powders, so it was necessary for them to be preprocessed by
spectral filter transformations and normalization methods.
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In this work, a comprehensive study of the differences between LJF, LF, and their
related prescriptions was proposed based on ATR-FTIR. The spectral process methods
(spectral filter transformations and normalization methods), different pattern recognition
methods, model parameters, and variable selection methods were optimized to form the
optimal distinguishing prediction model. Spectral filter transformations include MSC, SNV,
Savitzky–Golay, Row Center, and EWMA. Three normalization methods are applied to
ATR-FTIR spectral data: area normalization, min-max normalization, and vector normal-
ization. To construct a more precise discrimination model, we selected an optimal pattern
recognition method from RF, SVM, and PLS-DA.

2. Materials and Methods
2.1. Materials and Sample Preparation

LJF and LF dried bud samples recorded in the Chinese Pharmacopeia (2020 Edition) were
collected from the main Lonicera-producing areas in Hunan (Lonicera macranthoides Hand.-Mazz.)
and Shandong in China, with all samples identified by Prof. Li-Min Gong from the Hunan
University of Chinese medicine. Chinese patent medicines containing LJF or LF were
purchased from the authentication-passed pharmacies. The ATR-FTIR, LJF, and LF dried
buds samples were dried at 60 ◦C [18] to constant weight (the weight variation was less than
0.1%) in an electric thermostatic drying oven to ensure that moisture was not an interfering
factor. Samples were then ground into powders; each sample was finely powdered by agate
mortar and screened with a 200-mesh stainless steel sieve. The Chinese patent medicines
samples were also ground into powders and then screened with a 200-mesh stainless steel
sieve. All samples were stored in a relatively dry environment.

2.2. Spectral Acquisition and Data Preprocessing

Each powder was subjected to an FTIR spectrometer (Nicolet iS5, Thermo Scientific,
Waltham, MA, USA) equipped with an ATR accessory for recording the FTIR spectrum.
The OMNIC program (version 8.2.0.387, Thermo Scientific, Waltham, MA, USA) was used
to obtain all ATR-FTIR spectra. In total, 64 scans were recorded to obtain average analytical
results and improve the signal-to-noise ratio. The transmittance of each spectrum was
collected between 4000 and 600 cm–1 with a spectral resolution of 4 cm–1.

ATR-FTIR spectral filter transformations, including MSC, SNV, Savitzky–Golay, Row
Center, and EWMA normalization, were applied to minimize the baseline noise and maxi-
mize the differences found in spectra. The normalization methods were area normalization,
minimum-maximum normalization, and vector normalization, which could reduce the
effect of the physical characteristics of samples (particle size and thickness). In vector nor-
malization, all spectra were converted from transmittance to absorbance, and the ATR-FTIR
absorbance spectra were converted into the first and second derivatives with Savitzky–
Golay derivative and nine smoothing points in OMNIC software. For vector normalization,
the Euclidean norm was performed to calculate the absorbance values to acquire the nor-
malization values of the spectra. In area and min-max normalizations, all spectra were
converted from transmittance to absorbance, and then ATR correction was conducted by
using OMNIC. For area normalization, each absorbance value at a specific wave number
was divided by the total (integrated) absorbance area of the spectrum. For min-max nor-
malization, each absorbance value was divided by the difference between the highest and
lowest absorbance values. In addition, for the baseline correction, the airPLS algorithm
was used to remove the baseline for all the spectra. The airPLS was proved to be a mature
and effective algorithm [19].

2.3. Chemometrics Methods
2.3.1. Random Forest (RF)

RF was developed by Breiman in 2001 and has been widely used to resolve classifi-
cation problems or regression issues as a non-parametric algorithm based on a learning
strategy (called ensemble learning) [20]. The RF model consists of hundreds of trees, and
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each tree was grown through a bootstrap sample of the original data. In addition, each
node was selected by each tree and corresponded to a random variable subset. Each tree
could provide a classification result to decide the final accurate category. The operational
process of the RF model could be separated into the following steps.

Firstly, a spectra dataset was divided into the calibration set (bootstrap samples)
and the validation set (OOB samples) with the help of the KS algorithm by MATLAB
2017a (MathWorks, Natick, MA, USA). Then, 4/5 of all LJF and LF samples were included
in the calibration set, which was applied to obtain the optimal classification trees. The
validation set was used to evaluate the ability of the RF model at last. Secondly, the values
of ntree and the square root of the number of all variables mtry based on the calibration
set were both selected to acquire the optimal ntree and mtry. The OOB error was the
rate of misclassification over all out-of-bag samples. The best ntree was acquired based
on the lowest OOB error, which was beneficial for further prediction. Thirdly, a new
importance variable matrix was formed after exerting the optimal ntree and mtry. Fourthly,
the new matrix was inserted in the producer, the original spectra variables were rearranged
according to variable importance, and the most important variables were selected by a lower
5-fold cross-validation error rate. Finally, the validation set was inserted in the random
forest model established based on the calibration set for the final model prediction. The
establishment of the final RF discrimination model was performed by using the optimized
ntree and mtry parameters. The first two steps were rerun to calculate the final classification
accuracy. Steps two to five were running in MATLAB.

2.3.2. Support Vector Machine (SVM)

SVM is an effective classification method proposed by Vapnik, which is based on SLT
and the principle of SRM [21]. SVM, as one of the kernel-based pattern recognition methods,
has been successfully applied in the classification of drug and nondrug problems [22].

SVM can obtain nonlinear and global solutions even with the high-dimensional input
vector [23]. An optimal classifier generalization is acquired when it minimizes training error
along with higher testing accuracy for unknown testing datasets. The training algorithm of
SVM maximizes the margin between class boundary and the training data by removing
some meaningless data from the training dataset. So, the resulting decision function
only depends on the training data called support vectors. Therefore, SVM maximizes the
boundary by minimizing the maximum loss and gives good accuracy [24]. Experiments
are performed in MATLAB using LIBSVM.

A kernel is a key that determines the performance of the SVM. The radial basis function
(RBF) kernel was selected as the kernel function because of the excellent classification
performance shown in previous studies [25,26]. The training data consist of the input
matrix xi (i = 1, 2, . . . , n) and an output vector yi (i = 1, 2, . . . , n), where +1 and −1 are
used to stand for the two classes. The SVM constructed an optimized linear regression by
mapping the input vector x to a high-dimensional feature space by a nonlinear mapping
using a kernel function K(xi, yj). The RBF kernel is expressed as K(xi, yj) = exp(−γ‖xi, yj‖2),
where γ is the width parameter of the RBF kernel function [27]. There are several methods
to the SVM to deal with classification problems, including “One-Versus-Rest (OVR)” [28],
“One-Versus-One (OVO)” [29], and DAGSVM [30]. In this paper, we chose the OVO
strategy, which can scale well to a large number of classes.

2.3.3. Partial Least Squares Discrimination Analysis (PLS-DA)

PLS-DA, a binary classification algorithm from 0 to 1, is an adaptation of the PLS
regression algorithm to the problem of supervised clustering. It has been extensively used in
the analysis of multivariate datasets between independent and dependent variables, which
are expressed by X and Y, respectively [31]. For PLS-DA, outliers were first eliminated by
PCA combined with Mahalanobis distance. PCA A PLS-DA model was created on the
training dataset using the preprocessed data. Experiments are performed in MATLAB.
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2.4. Data Analysis

RF, SVM, and PLS-DA models can obtain the vote matrices. The three models in
MATLAB could calculate the values of TN, TP, FN, and FP, respectively. Sensitivity,
SENS (Equation (1)), Specificity, SPEC (Equation (2)), Accuracy, ACC (Equation (3)), and
Matthew’s correlation coefficient, MCC (Equation (4)) were the four parameters for each
class, indicating the identification effects for different samples of the three models. These
four parameters with higher values indicate better identification ability for each class. The
MCC is a correlation coefficient applied to evaluate the performance of binary classifi-
cations. It ranges from ±1 to 0; +1 indicates a perfect identification while 0 shows the
performance of a random classification. Only binary PLS-DA classification models were
calculated by the MCC [32].

SENS =
TP

(TP + FN)
(1)

SPEC =
TN

(TN + FP)
(2)

ACC =
(TN + TP)

(TP + TN + FP + FN)
(3)

MCC =
(TP× TN− FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

3. Results and Discussion
3.1. Band Assignment Comparison between LJF and LF

Spectral data were obtained in the range of 4000–600 cm–1. The representative samples
of LJF and LF spectra are shown in Figure 1. The spectra were analyzed, and several
noticeable peaks were observed. Assignments of the main absorption peaks are also
summarized in Table 1.

Figure 1. ATR-FTIR spectra of representive LJF and LF.
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Table 1. Peak assignments of the ATR-FTIR spectra of LJF and LF.

LJF
(cm−1)

LF
(cm−1) Vibration Suggested Biomolecular Assignment

4000–3500 4000–3500 O-H, v water
3350 3357 O-H, v saccharides
2920 2920 CH2, CH3νas lipids (cutin and waxes), proteins, carbohydrates
2851 2850 CH2, νs lipids (cutin and waxes), proteins, carbohydrates

2442–2208 2442–2208 C-O-C, v CO2
1730 1735 C=O, v lipids (cutin and waxes)
1633 1629 C-O, v C-N, v amide I band
1545 Amide II bands proteins

1528 Amide II bands phenolic acids, flavonoids

14,401,374 14,401,376 O-H, v
O-H, v

organic acid, flavonoids
organic acid, flavonoids

1400 C-H, δ saccharides
1321
1259

1314
1260

C-O, v
C-O, v

lipids, flavonoid
lipids, flavonoid

1147 1152 C-O, v CO-O-C, νas cholesterol ester, oligosaccharides, triacylglycerols
1047 1049 C-O, v starch
930 C-O-C, skeletal saccharides
817 813 C-H, δoop

781 COO−, skeletal saponins

v—stretching, νs—symmetrical stretching, νas—asymmetrical stretching, δ—bending, δoop—bending out of
the plane.

The tiny band between 4000 and 3500 cm–1 corresponded to water-vapor O-H stretch-
ing, and the band was attributed to the O-C-O stretching of carbon dioxide at 2442–2208 cm–1 [33].
The stretching band of O-H near 3350 cm−1 and the stretching bands of C-O in the region of
1200–950 cm−1 indicated the existence of saccharides in LJF and LF [34]. LJF and LF spectra
showed different patterns in this region, which meant the saccharides were different in
LJF and LF. The peaks at 2920 cm−1 and 2851 cm−1 are attributed to the asymmetrical
and symmetrical stretching bands of CH2- [35], in conjunction with the stretching band
of C=O near 1729 cm−1 [36], indicating the existence of lipids. LJF and LF are covered
by cuticles [1,37], which are continuous lipid membranes including cutin, waxes, cutan,
and polysaccharides [38,39]. The absorption peaks near 2920, 2851, and 1729 cm−1 were
from cutin and waxes [40], which consisted of acids, alcohols, esters, alkanes, etc. The
peaks near 1630 cm−1 were due to C-O and C-N protein stretching [41]. This is known
as the amide I band and is the main amide band. The peaks at 1440 and 1374 cm−1 were
attributed to organic acid OH vibrational modes [42]. The peaks at 1321 and 1259 cm−1

were due to C–O stretching vibrations. The peak near 1150 cm−1 was assigned to CO-O-C
asymmetric stretching of cholesterol ester and C-O stretching of oligosaccharides and
triacylglycerols [43,44]. One was at 1051 cm–1 due to C-O stretching of starch [45].

Moreover, LJF showed the amide II bands at 1545 cm−1 while LF showed the aromatic
skeletal bands near 1528 cm−1. This indicated that LJF contains more proteins, but LF
contains more aromatic compounds (phenolic acids, flavonoids, etc.) [46,47]. In addition,
LJF showed a peak at 1400 cm−1 and a weak peak at 930 cm−1, which were both absent
in LF. The peak at 1400 cm−1 could be assigned to the bending mode of O-C-H, while the
peak at 930 cm−1 could correspond to the skeletal mode of saccharides [48]. These two
peaks indicated the different saccharides in LJF and LF. Another discriminating peak was
near 780 cm−1, which was present in LF but not in LJF. This difference may be caused by
the high content of saponins in LF. In summary, LJF and LF can be distinguished by the
four peaks near 1545, 1400, 930, and 780 cm−1.

3.2. Classification of LJF and LF

In this study, RF, SVM, and PLS-DA models were applied in the classification and
prediction of LJF and LF samples in a MATLAB programming environment. Spectra
datasets were divided into the calibration set and the validation set with the help of the KS
algorithm. The calibration set was 4/5 of all LJF and LF samples. In the training process of
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these three models, 5-fold cross-validation was used to demonstrate the performance of
our methods.

As for establishing the RF model, the first step was to select the number of trees
for the optimal classification trees model by the training process. Before this step, the
initial raw dataset and normalization datasets were calculated with 300 trees to choose
which dataset was better to establish the RF model. SVM and PLS-DA models were also
established based on the raw dataset and normalization datasets. As shown in Table 2,
RF models showed the performance by applying suitable vector normalization after the
first differentiation in the calibration set. The sensitivity, specificity, accuracy, and MCC
by the RF method reached 0.9706, 1, 0.9844, and 0.9692, respectively, which outperformed
the other pretreatment methods. In terms of accuracies, the RF model also outperformed
PLS-DA and SVM models in terms of overall accuracies. When compared with classifiers,
the highest accuracy of RF was 0.0071 higher than that of PLS-DA and 0.0071 higher than
that of SVM, respectively. Moreover, the validation sets for the assessment of the three
models’ performance are shown in Table 3, so it can be seen that the RF model with the
first derivative vector normalization was the optimal prediction model for discriminating
LJF and LF, having accuracy of 0.9744.

Table 2. Comparing the performance of RF, PLS-DA, and SVM models according to various normal-
ization and spectral filter transformations between LJF and LF samples.

RF Model

Pretreatment Methods SENS SPEC ACC MCC AUC

No methods 0.9167 0.8250 0.8750 0.7481 0.9190
Vector (first) 0.9706 1 0.9844 0.9692 0.9710

Vector (second) 0.9583 1 0.9773 0.9554 0.9630
Min-max 0.9375 0.9750 0.9545 0.9097 0.9368

Area 0.9500 0.9375 0.9432 0.8859 0.9491
EWMA 0.9167 0.9000 0.9091 0.8167 0.9090

MSC 0.9500 0.9583 0.9545 0.9083 0.9310
RC 0.9500 0.9583 0.9545 0.9083 0.9430
S-G 0.9250 0.9167 0.9205 0.8401 0.9168
SNV 0.9500 0.9375 0.9432 0.8859 0.9291

airPLS 0.9750 0.9792 0.9773 0.9542 0.9690

PLS-DA Model

Pretreatment methods SENS SPEC ACC MCC AUC
No methods 0.9412 1 0.9687 0.9393 0.9229
Vector (first) 0.9750 0.9792 0.9773 0.9542 0.9710

Vector (second) 0.9500 0.9583 0.9545 0.9083 0.9630
Min-max 0.9333 0.9667 0.9687 0.9389 0.9218

Area 0.9118 0.9706 0.9531 0.9104 0.9091
EWMA 0.9412 1 0.9687 0.9393 0.9290

MSC 0.9706 0.9667 0.9687 0.9373 0.9610
RC 0.9750 0.9792 0.9773 0.9542 0.9430
S-G 0.9412 1 0.9687 0.9393 0.9268
SNV 0.9667 0.9706 0.9687 0.9373 0.9491

airPLS 0.9750 0.9792 0.9773 0.9542 0.9690

SVM Model

Pretreatment methods SENS SPEC ACC MCC AUC
No methods 0.9500 0.9792 0.9659 0.9314 0.9390
Vector (first) 0.9792 0.9981 0.9716 0.9724 0.9710

Vector (second) 0.9750 0.9792 0.9773 0.9542 0.9630
Min-max 0.9750 0.9792 0.9773 0.9542 0.9668

Area 0.7250 0.5208 0.6136 0.2490 0.1291
EWMA 0.9500 0.9792 0.9659 0.9314 0.9290

MSC 0.9250 0.9792 0.9545 0.9089 0.9010
RC 0.9500 0.9583 0.9545 0.9083 0.9230
S-G 0.9500 0.9792 0.9659 0.9314 0.9168
SNV 0.9750 0.9792 0.9773 0.9542 0.9491

airPLS 0.9500 0.9792 0.9659 0.9314 0.9390

RF: random forest; PLS-DA: partial least squares-linear discriminant analysis; SVM: support vector machine
regression; EWMA: exponentially weighted moving average; MSC: multiplicative scatter correction; RC: row
center; S-G: Savitzky–Golay; SNV: standard normal variate; airPLS: adaptive iteratively reweighted penalized
least squares.
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Table 3. The classification results and evaluation parameters between LJF and LF combined with RF,
PLS-DA, and SVM models by vector normalization applied after the first differentiation.

Calibration Set SENS SPEC ACC MCC AUC

RF 0.9706 1 0.9844 0.9692 0.9775
PLS-DA 0.9750 0.9792 0.9773 0.9542 0.9546

SVM 0.9792 0.9981 0.9716 0.9724 0.9668

Validation set SENS SPEC ACC MCC AUC

RF 0.9706 0.9981 0.9744 0.9592 0.9425
PLS-DA 0.9250 0.9792 0.9545 0.9089 0.9006

SVM 0.9500 0.9792 0.9659 0.9314 0.9218

Furthermore, the number of trees, the wave-number regions, and the variable impor-
tance cutoff value were employed to acquire the best prediction RF model. The optimal
number of trees was obtained according to the lowest OOB classification error value. As
shown in Table 4, these trees with the lowest error were in the numbers 100, 200, 300,
500, 800, and 1000. The number of grown trees with the highest accuracy was 300. Then,
300 trees were chosen for branch nodes selection (the mtry value). Using these 300 trees, the
result of nodes calculation was acquired in Table 4. In total, 86 branch nodes were selected
after inputting the optimal number of trees with the lowest OOB error and the highest
accuracy of 0.9886 in the calibration set. The results indicated that 300 trees and 86 branch
nodes were used for further training and prediction of the model.

Table 4. The parameter screening in the RF model for variables is ranked by permutation
accuracy importance.

ntree SENS SPEC ACC MCC AUC

100 0.9750 0.9792 0.9773 0.9554 0.9390
200 0.9286 1 0.9583 0.9188 0.9010
300 0.9706 1 0.9844 0.9692 0.9775
500 0.9583 0.9750 0.9659 0.9316 0.9168
800 0.9583 0.9750 0.9659 0.9316 0.9168

1000 0.9286 1 0.9583 0.9188 0.9018

mtry SENS SPEC ACC MCC AUC

82 0.9583 1 0.9773 0.9554 0.9390
84 0.9583 0.9750 0.9659 0.9316 0.9168
86 0.9792 1 0.9886 0.9774 0.9875
88 0.9706 1 0.9844 0.9692 0.9775
90 0.9583 0.9750 0.9659 0.9316 0.9168
92 0.9583 1 0.9773 0.9554 0.9390
94 0.9792 0.9750 0.9773 0.9542 0.9390
96 0.9583 0.9750 0.9659 0.9316 0.9168

Since ATR-FTIR spectra may be influenced by environmental factors including water
vapor and carbon dioxide, RF models established by utilizing different wave-number
ranges were compared to identify the best prediction model. As presented in Table 5, the
ATR-FTIR spectral region between 4000 and 600 cm−1 was the best prediction model for
discriminating LJF and LF since it had the highest accuracy (=0.9844). Furthermore, the
original spectra variable was rearranged according to cutoff values. As listed in Table 6,
the RF model had the higher four parameters data with a VIP cutoff value of 0.01, having
the highest prediction accuracy of 0.9886. Thus, we could conclude that the RF method
was selected as an appropriate classifier in this study with 300 trees, 86 branch nodes,
4000–600 cm−1 wavenumber area, and the VIP cutoff value of 0.01 under the first derivative
vector normalization.
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Table 5. List of permutation parameters of the random forest model obtained using variables selected
by vector normalization applied after the first differentiation.

Normalization Method SENS SPEC ACC MCC AUC

Vector (First)

4000–600 cm−1 except for water
vapor, carbon dioxide region

0.9750 0.9792 0.9773 0.9542 0.9425

2000–600 cm−1 0.9792 0.9750 0.9773 0.9542 0.9390
4000–2000 cm−1 0.9583 1 0.9773 0.9554 0.9390
4000–600 cm−1 0.9706 1 0.9844 0.9692 0.9775

Table 6. Various VIP cutoff values using 4000–600 cm−1 wavenumber areas for the comparison of
LJF and LF.

VIP Cutoff SENS SPEC ACC MCC AUC

0.05 0.9412 1 0.9688 0.9393 0.9168
0.01 0.9750 1 0.9886 0.9773 0.9775

0.015 0.9512 0.9867 0.9731 0.9465 0.9425
0.020 0.9000 0.9706 0.9375 0.8758 0.8625

3.3. Classification of LJF- and LF-Related Prescriptions

LJF- and LF-related prescriptions are mainly composed of LJF and LF, respectively.
Under the guidance of TCM theory, varied compound prescriptions, containing different
herbs, are formulated based on the principle of “Emperor, Minister, Adjuvant, Courier”,
a metaphor suggesting that different herbs have different effects and that the TCM prac-
titioner should prescribe them according to the specific status of a patient. Due to the
difference in ingredients, compound prescriptions differ in curative effects and side ef-
fects. Therefore, we can apply the methods of classification and prediction of LJF and LF
in identifying LJF- and LF-related prescriptions. As mentioned above, we believe that
the optimal prediction RF model of discriminating LJF and LF can show the appropriate
performance in the identification of LJF- and LF-related prescriptions. After calculating LJF
and LF traditional medicine ATR-FTIR spectra datasets by the RF model, four evaluation
parameters (SENS, SPEC, ACC, and MCC) were all 1, which suggested that the RF model
was an effective classifier for prescriptions. Thus, the present results indicate that the
established RF model is the optimal predictable one to discriminate LJF and LF and their
related prescriptions.

4. Conclusions

In this study, LJF and LF and their related prescriptions were analyzed by ATR-FTIR
spectra combined with multivariate classification methods. The chemical information
differences between LJF and LF were revealed in the light of band assignments based on
the ATR-FTIR spectra. This is the first study that established classification models for the
identification of LJF and LF using various factors, including spectral filter transformations,
normalization methods, VIP cutoff, and wave-number region. The feasible results indicated
that ATR-FTIR combined with RF is a rapid, efficient, reliable, and stable online classifica-
tion and prediction method for LJF and LF and their related prescriptions, which has wide
adaptability and can be applied in the application of Chinese medicine.
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Abbreviations

LJF Lonicerae japonicae Flos
LF Lonicerae Flos
ATR-FTIR attenuated total reflectance Fourier transform spectroscopy
PLS-DA partial least squares-linear discriminant analysis
RF random forest
SVM support vector machine
FT-IR Fourier-transform infrared
LC-MS liquid chromatography-mass spectrometer
NMR nuclear magnetic resonance spectroscopy
FT-NIRs Fourier-transform near infrared spectroscopy
EWMA exponentially weighted moving average
min-max minimum-maximum
ATR attenuated total reflection
airPLS adaptive iteratively reweighted penalized least squares
MSC multiplicative scatter correction
SNV standard normal variate
OOB out-of-bag
KS Kennard–Stone
SLT statistical learning theory
SRM structural risk minimization
PCA principal component analysis
TN true negative
TP true positive
FN false negative
FP false positive
TCM traditional Chinese medicine
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