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Abstract
We evaluated the relationships among functional imaging modality such as PET-CT and DW-MRI and lung adenocarcinoma
pathologic heterogeneity, extent of invasion depth, and tumor cellularity as a marker of tumor microenvironment.
In total, 74 lung adenocarcinomas were prospectively included. All patients underwent 18F-fluorodeoxyglucose (FDG) PET-CT

and MRI before curative surgery. Pathology revealed 68 stage I tumors, 3 stage II tumors, and 3 stage IIIA tumors. Comprehensive
histologic subtyping was performed for all surgically resected tumors. Maximum standardized uptake value (SUVmax) and ADC
values were correlated with pathologic grade, extent of invasion, solid tumor size, and tumor cellularity.
Mean solid tumor size (low: 1.7±3.0mm, indeterminate: 13.9±14.2mm, and high grade: 30.3±13.5mm) and SUVmax (low: 1.5±

0.2, indeterminate: 3.5±2.5, and high grade: 15.3±0) had a significant relationship with pathologic grade based on 95% confidence
intervals (P= .01 andP< .01, respectively). SUVmax showeda strongcorrelationwith tumor cellularity (R=0.713,P< .001), butwasnot
correlated with extent of invasion (R=0.387, P= .148). A significant and strong positive correlation was observed among SUVmax
values and higher cellularity and pathologic grade. ADC did not exhibit a significant relationship with tumor cellularity.
Intratumor heterogeneity quantification using a multimodal-multiparametric approach might be effective when tumor volume

consists of a real tumor component as well as a non-tumorous stromal component.

Abbreviations: ADC= apparent diffusion coefficient, AIS= adenocarcinoma in situ, BAC= bronchioloalveolar carcinoma, FDG =
fluorodeoxyglucose, MIA = minimally invasive adenocarcinoma, SUVmax = maximum standardized uptake value.

Keywords: diffusion magnetic resonance imaging, intratumor heterogeneity, lung adenocarcinoma, multimodal analysis, positron
emission tomography
1. Introduction

Although lung cancer is the leading cause of cancer-related death
worldwide,[1] the recent discovery of driver oncogene alterations
such as epidermal growth factor receptor mutations or anaplastic
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lymphoma kinase rearrangements and the identification of their
targeted inhibitorshave dramatically improvedoutcomes in a subset
of highly selected lung cancer patients.[2–4] Consequently, the
emergence of personalized therapies for non-small cell lung cancer
underscores the need for cytologic or tissue verification of lung
cancer. However, pre-operative biopsy can only obtain a limited
tumor volume, and these small samplesmay lead to underestimation
or misdiagnosis of complex intratumor heterogeneity.[5–7]

Imaging data could provide useful complementary information
regarding the whole tumor.[8,9] Computed tomography (CT) is
fundamentally an anatomic imaging modality with rudimentary
functional information available by comparing pre-contrast andpost-
contrast imaging.[10] In addition, advances in other imagingmethods,
specificallypositron-emissiontomography-CT(PET-CT)forassessing
tissue metabolism,[10–12] and diffusion-weighted magnetic resonance
imaging (DWI) reflecting cellular density and microstructural
organization,[13–15] can improve the accuracy of baseline staging
compared with analysis by CT alone and can be used as surrogate
biomarkers for cellularity or pathologic grade.[16,17]

The purpose of this article is to evaluate the relationship of
functional imaging modality (PET-CT and DWI) with pathologic
intratumor heterogeneity and cellularity in lung adenocarcinoma.
2. Material and methods

2.1. Patients

This study was performed as part of an ongoing prospective
clinical trial seeking to determine the value of DWI and PET-CT
findings compared with tumor pathologic grade and aggres-
siveness (NCT01585545).[18] The study was approved by the
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institutional review board (SMC 2011-09-083), and written
informed consent was obtained.
FromNovember 2011 toDecember 2012, a total of 92 patients

with operable lung adenocarcinoma were eligible for our study.
The inclusion criteria of our study were as follows:
1.
 clinically and radiologically suspected lung adenocarcinoma,

2.
 clinically diagnosed stage I or II disease,

3.
 Eastern Cooperative Oncology Group performance status of 0

or 1 and eligible for surgery,

4.
 age 20 years or older, and

5.
 able to provide study-specific informed consent.

The exclusion criteria were:
1.
 non-adenocarcinoma lung disease (including benign disease,
metastasis, non-adenocarcinoma lung cancer, and mucinous
adenocarcinoma) and
2.
 not a candidate magnetic resonance (MR) imaging scan (poor
renal function, metallic artifact, etc.).

Multiple studies indicate that mucinous adenocarcinoma is a
variant of adenocarcinoma that has major clinical, radiologic,
pathologic, and genetic differences from tumors formerly
classified as nonmucinous bronchioloalveolar carcinoma
(BAC).[19] Based on these studies, we concluded that elimination
of mucinous adenocarcinoma from the inclusion criteria is better
for consistent analysis.
2.2. Imaging and analysis

CT images were obtained with the following parameters: detector
collimation, 1.25 or 0.625mm; 120 kVp; 150 to 200mA; and
reconstruction interval of 1 to 2.5mm. All images were displayed
at standard lung window settings (window width, 1500 HU;
window level, �700 HU). All CT scans were obtained with 80cc
of contrast material at 2cc/sec followed by normal saline 20cc at
2cc/sec. Two radiologists independently evaluated CT images on
the viewing monitor of a picture archiving and communication
system (GE Centricity v 2.1; GE). We regarded the consolidation
component of the tumor as a solid portion and the ground-glass
opacity (GGO) as a non-solid portion. The consolidation
component was defined as an area of homogeneous increase in
lung parenchymal attenuation that obscures the margins of
vessels and airway walls. Lung lesions, composed of microscopic
changes under CT resolution capability, manifest as GGOs (hazy
increased opacity with preservation of bronchial and vascular
margins on high-resolution computed tomography).
Before the curative operation, patients underwent CT and 18F-

fluorodeoxyglucose (FDG) PET-CT examination. Before PET-
CT examination, all patients fasted for at least six hours; after a
normal blood glucose level in peripheral blood was ensured,
patients received an intravenous injection of 379 MBq (10 mCi)
of fluorine-18-FDG and rested for approximately 45 minutes
before being scanned.[20] Scans were acquired with a PET-CT
device (Discovery LS; GE Medical Systems, Milwaukee, WI).
In addition, MRI was performed on a 1.5-T helium-cooled

superconducting MRI scanner (Magnetom Avanto 1.5T, Siemens,
Germany) with surface array coils and 32 receiving channels.[21]

Respiratory gated spectral attenuated inversion recovery fat
suppressed single-shot echo planar DWI was obtained with b
values of 0, 50, 100, 150, 250, 500, and 900s/mm2. The parameters
for DWIwere TR, 11700ms; TE, 73ms; slice thickness, 5mm; slice
gap, 0.9mm; matrix, 192�142; and field-of-view, 192�142mm.
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Apparent diffusion coefficient (ADC) maps were automatically
generated from DWIs obtained at b values of 0, 50, 100, 150, 250,
500, and 900s/mm2 using standard post-processing software.
Semiautomatic drawing was used to delineate the correspond-

ing lesion on T2-weighted axial imaging of the best spatial
resolution as the reference point, which was copied to the
corresponding ADC map. To ensure that the region of interest
was placed within a tumor, a T2-weighted axial image and a CT
axial image from PET-CT were aligned with each other. Then,
semi-automatic drawing was performed for quantitative analysis
of FDG uptake and ADC value. For semi-quantitative analysis of
FDG uptake, a nuclear medicine physician, unaware of clinical
information, placed regions of interest over the most intense area
of FDG accumulation, which was interpreted as the maximum
standardized uptake value (SUVmax). PET-CT imaging, MRI,
and surgical resection were performed within 7 days of one
another (mean interval, 3 days).
2.3. Pathologic evaluation and analysis

For tumor sampling, tumor tissues were taken from the resected
tumor specimen at intervals of approximately 10mm and placed
on slides. All slideswere scanned to produce high-resolution digital
images (0.25mm/pixel at 40�magnification) using the Aperio
Slide Scanning System (ScanScope T3; Aperio Technologies Inc.,
Vista, CA). Two experienced lung pathologists with 13 and 18
years of experience in lung pathology retrospectively interpreted
the virtual slides using ImageScope viewing software (Aperio
Technologies, Inc.) with a high-resolution monitor and measured
the extent of invasive components and tumor cellularity (%).[18,22]

Histologic subtypes and grades of lung adenocarcinomas were
classified according to the International Association for the Study
of Lung Cancer/American Thoracic Society/European Respira-
tory Society (IASLC/ATS/ERS) multidisciplinary classification of
lung adenocarcinomas.[19] For each case, histologic subtyping
was performed for the primary tumor in a semi-quantitative
manner, with each histologic component (adenocarcinoma in situ
[AIS], minimally invasive adenocarcinoma [MIA], lepidic
predominant invasive adenocarcinoma, acinar-predominant
invasive adenocarcinoma, papillary predominant invasive ade-
nocarcinoma, micropapillary predominant invasive adenocarci-
noma, solid predominant invasive adenocarcinoma, or variant
type) accounted for in 5% increments, for a total of 100% for
each tumor. Next, the most predominant pattern in mixed-type
adenocarcinoma was defined as the histopathologic subtype that
constituted the greatest percentage of the tumor. Predominant
histologic subtypes were stratified into 3 pattern groups: AIS/
MIA/lepidic, acinar/papillary, and micropapillary/solid groups.
These pattern groups represent low, intermediate, and high
grades of clinical behavior, respectively, based on an architectural
grading system of histologic subtypes.[23,24]
2.4. Statistical analysis

Pearson correlation coefficient analysis and analysis of variance
(ANOVA) were used to assess the relationships among pathologic
parameters and imaging parameters. Imaging parameters were
compared among the histologic grades (low, intermediate, and
high) using one-way ANOVA with Bonferroni post hoc test.
Statistical significance was evaluated with software (SPSS,

version 19.0, 2010; SPSS, Chicago, IL). A P value less than .05
was considered statistically significant.



Table 1

Demographic characteristics of lung adenocarcinoma cases.

Variable Total

Gender (%)
∗

Male 34 (45.9)
Female 40 (54.1)
Age, median (range)† 59 (38–81)

Smoking history (%)
∗

Ever 27 (36.5)
Never 47 (63.5)

CT findings
Median tumor size, mm† 20 (7–60)
Median tumor solid portion, mm† 6 (0–47)

Tumor characteristics (%)
∗

Non-solid 30 (40.5)
Part-solid 23 (31.1)
Solid 21 (28.4)

Tumor category
∗

pT1a 41 (55.4)
pT1b 15 (20.3)
pT2a 17 (23.0)
pT2b 1 (1.4)

Nodal category
∗

pN0 69 (93.2)
pN1 2 (2.7)
pN2 3 (4.1)

Staging
∗

I 68 (91.9)
II 3 (4.1)
IIIA 3 (4.1)

∗
Numbers in parentheses are percentages.

† Numbers in parentheses are the range.

Figure 1. Flow diagram of the patient cohort.

Table 2

Pathologic characteristics of lung adenocarcinoma tumors.

Tumor grade
∗

Low grade 15 (20.3)
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3. Results

3.1. Clinical characteristics of patients and tumors

In total, 74 early-stage lung adenocarcinomas with preoperative
chest MRI and PET-CT were included in our study (Fig. 1). The
detailed clinicopathologic characteristics of the 74 lung adeno-
carcinomas are summarized in Tables 1 and 2.
Final pathologic staging revealed 68 stage I tumors (91.9%),

3 stage II tumors (4.1%), and 3 stage IIIA tumors (4.1%)
(Table 1). The most frequent tumor histologic grade
was intermediate grade (76%), followed by low grade (20%)
and high grade (4%). The most predominant histologic subtype
was the acinar subtype, followed by the papillary subtype
(Table 2).

3.2. Correlations between pathologic grade and imaging
biomarkers

The relationships among pathologic grade, tumor size, and
imaging biomarkers are described in Table 3. Solid tumor size
and SUVmax had a positive relationship according to pathologic
grade, the differences among which were significant (P= .01 and
P< .01, respectively). The ADC from DWI showed an inverse
relationship with pathologic grade (low: 1.30±0.17, intermedi-
ate: 1.13±0.22, and high: 1.05±0.14).
Intermediate grade 56 (75.7)
High grade 3 (4.1)
Most predominant subtype

∗

AIS 1 (1.4)
MIA 5 (6.8)
Invasive adenocarcinoma 68 (91.9)
Lepidic 2 (2.9)
Acinar 50 (73.5)
Papillary 12 (17.6)
Micropapillary 1 (1.5)
Solid 3 (4.4)
Median extent of invasion, mm† 16 (0–49)
Median tumor cellularity, %† 50 (10–80)

AIS= adenocarcinoma in situ, MIA=minimally invasive adenocarcinoma.
∗
Numbers in parentheses are percentages.

† Numbers in parentheses are the range.
3.3. Comparison between pathologic tumor invasion and
imaging biomarkers

The relationships among extent of pathologic invasion, tumor
cellularity, and imaging biomarkers are described in Table 4
(Figs. 2–5). The mean diameter of pathologic invasion ranged
from 0 to 49mm (median: 16mm). The mean percentage of
tumor cellularity in all adenocarcinomas ranged from 10 to 80%
(median: 50%). SUVmax showed a strong correlation with
tumor cellularity (R=0.713, P< .001), but was not correlated
with extent of invasion (R=0.387, P= .148). In addition, the 3
other parameters (total tumor size, solid tumor size, and ADC)
were nonsignificant with P values of .715, .789, and .065,
respectively.
3

4. Discussion

In our analysis, trends were observed toward higher SUVmax and
lower ADC values in higher tumor cellularity or pathologic grade
tumors compared with lower tumor cellularity or pathologic
grade tumors. The relationship between SUVmax and tumor

http://www.md-journal.com


Table 3

Comparison of pathologic grade and imaging factors.

Pathologic grading

Low
∗

Intermediate
∗

High
∗

P value

Tumor size (mm) 17.5±6.5 24.9±11.5 30.3±13.5 .038
Solid tumor size (mm) 1.7±3.0 13.9±14.2 30.3±13.5 .001
SUVmax 1.5±0.2 3.5±2.5 15.3 <.001
ADC (10–3 mm2/s) 1.30±0.17 1.13±0.22 1.05±0.14 .496

ADC=apparent diffusion coefficient, SUVmax=maximum standardized uptake value.
∗
Data are the mean ± standard deviation.

Table 4

Comparison of extent of invasion and tumor cellularity with
imaging factors.

Variables Extent of invasion (mm) Tumor cellularity (%)

R P value R P value

Total tumor size 0.850 <.001 0.043 .715
Solid tumor size 0.772 <.001 0.032 .789
SUVmax 0.387 .148 0.713 .001
ADC �0.651 .002 �0.251 .065

R indicates the Pearson correlation coefficient ADC=apparent diffusion coefficient, SUVmax=
maximum standardized uptake value.
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cellularity was statistically significant, while the ADC value did
not exhibit a significant relationship with tumor cellularity.
Several studies have shown that SUVmax on FDG-PET

correlates with the IASLC/ATS/ERS classification of lung cancer.
In a previous work by Nakamura et al,[25] SUVmax was a useful
indicator of the malignant grade of each lung adenocarcinoma
subtype. In this study, lung adenocarcinoma subtypes were
classified into 3 subgroups (group A, AIS + MIA + lepidic
predominant invasive adenocarcinoma [low risk]; group B,
Figure 2. A 61-year-old man with lung adenocarcinoma (tumor cellularity: 80%). C
enhancing nodule in the right lower lobe. (C) PET-CT shows increased FDG upta
demonstrate restricted diffusion within this lesion (ADC value = 752�10–6mm2/s
20�) show the area at the corresponding site. Arrows (D–F) indicate lung cance
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acinar predominant invasive adenocarcinoma + papillary
predominant invasive adenocarcinoma + invasive mucinous
adenocarcinoma [intermediate risk]; and group C, solid
predominant invasive adenocarcinoma + micropapillary pre-
dominant invasive adenocarcinoma [high risk]), which are
similar to our 3 pathologic grades. SUVmax was lower in group
A, intermediate in group B, and higher in group C. Significant
differences in SUVmax among the subgroups were detected
(P< .0001). Kadota et al[26] also found a positive association
hest CTs on the (A) lung setting and (B) mediastinal setting show a well-defined
ke (SUVmax=15.4). (D) Low DWI (b=0), (E) high DWI (b=900), and (F) ADC
). (G) H&E staining (magnification = 2� ) and (H) H&E staining (magnification =
r. H&E = hematoxylin and eosin.



Figure 3. A 65-year-old woman with lung adenocarcinoma (tumor cellularity: 20%). Chest CTs on the (A) lung setting and (B) mediastinal setting show a well-
defined heterogeneously enhancing mass in the right upper lobe. (C) PET-CT shows increased FDG uptake (SUVmax = 4.4). (D) Low DWI (b=0), (E) high DWI (b=
900), and (F) ADC demonstrate restricted diffusion within this lesion (ADC value = 1560�10–6mm2/s). (G) H&E staining (magnification = 2�) and (H) H&E staining
(magnification = 20�) show the area at the corresponding site. Arrows (D–F) indicate lung cancer. H&E = hematoxylin and eosin.
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between SUVmax and histologic grade. Tumors with high-grade
histology had a higher SUVmax (6.2±2.8) than those with
intermediate-grade (3.7±2.5) or low-grade (2.5±1.6) histology
(P< .001).
According to a meta-analysis by Chen et al,[27] ADC had a

moderate inverse correlation with cellularity among various
tumor types. In this study, ADC correlated strongly with cell
count in lung cancer (P=�.63, 95% CI= [�0.78, �0.48]),
although only a small number of patients were included (69
patients, 4.51%). Based on the reported data, it has been
postulated that DWI, namely ADC, can be an imaging tool for
estimating tumor cellularity.[28] However, there were also reports
in which no significant correlations between ADC and cell count
were found.[29,30]

These statistically discrepant correlations in SUVmax and
ADC with tumor cellularity might be explained in part by the
concept of tumor microenvironment, where the tumor volume
consists of a real tumor component as well as a non-tumorous
stromal component. The stromal area consists of extracellular
matrix components and several cell types, including cancer-
associated fibroblasts, immune cells, vascular cells, and bone
marrow-derived cells,[31–34] which generally have a greater
5

extracellular volume compared with tumors with dense cellu-
larity.[34,35] A very strong interdependence between areas of
nuclei and stroma was seen, which indicates that cellularity and
stromal area were indistinguishable and interchangeable. Tumor
cellularity in our study was based on visual assessment by two
pathologists, who evaluated only tumor cells and excluded
stromal non-tumorous cells. Although DWI is well-known to
reflect cellularity, measurement from DWI consists of tumor cells
and even stromal non-tumorous cells. Consequently, ADC values
may not match tumor cellularity assessments by pathologists.
Meanwhile, SUVmax reflects tumor cells more than whole tumor
microenvironments including stromal cells. Therefore, we
comprehensively evaluated the tumor microenvironment of
tumor cells as well as non-tumorous stromal cells by considering
both DWI and PET information.
Traditionally, histologic subtyping and subsequent tumor

scoring or grading for lung adenocarcinomas are estimated using
a resected surgical specimen (whole tumor), not by using a core
biopsy or cytologic material. However, in cases of unresectable
lung cancer, histopathologic information is solely based on small
specimens obtained via tumor biopsy. Thus, this method is both
subjective and inevitably prone to errors related to intratumor

http://www.md-journal.com


Figure 4. A 62-year-old man with lung adenocarcinoma (tumor cellularity: 80%). Chest CTs on the (A) lung setting and (B) mediastinal setting show a well-defined
enhancing nodule in the right lower lobe. (C) PET-CT shows increased FDG uptake (SUVmax = 9.0). (D) Low DWI (b=0), (E) high DWI (b=900), and (F) ADC
demonstrate restricted diffusion within this lesion (ADC value = 1092�10–6mm2/s). (G) H&E staining (magnification = 2�) and (H) H&E staining (magnification =
20�) show the area at the corresponding site. Arrows (D–F) indicate lung cancer. H&E = hematoxylin and eosin.
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heterogeneity. In addition, approximately 80% of patients with
lung cancer have an unresectable tumor at the time of initial
presentation.[36] Therefore, it is desirable to predict patient
prognosis using surrogate imaging biomarkers that could reflect
histopathologic stratification.[37] Quantifying the disparity be-
tween PET assessing tissue metabolism, and DWI reflecting
whole cellular density, could be a better representation of purely
tumor cellular activity, but not including stromal areas.[38]

Our study had several limitations. First, there were a small
number of subjects included in our study, and they were enrolled
from a single institution. In particular, results from small
numbers of certain subtypes of adenocarcinoma may not be
generalizable to other subtypes. Second, there was the potential
for disagreement between the pathologists making pathologic
evaluations. However, an effort was made to minimize
disagreement, since pathologic assessment was the standard of
reference in our study. Two pathologists reviewed each case
independently, followed by reaching a consensus in a 2-step
order. In addition, a digital microscope system was used to
achieve objective visual assessment [18]. Third, there is a
possibility that an inflammatory or infectious process could
occur within the tumor, which is a limitation to accurately
6

measuring tumor cellularity from imaging. In cases where better
distinctions between malignant and non-malignant extent are
needed, other PET-CT parameters like total lesion glycolysis
(TLG) or PET tracers such as 18F-fluorothymidine (18F-FLT),
which reflects cellular proliferation rather than less specific
increased glucose metabolism, may be useful. However, these
methods are not commonly used in daily medical practice and
their availability for rapid clinical application is likely to be
limited. Also, our correlation results for tumor cellularity and
SUVmax were found to be meaningful and easily- applicable
through retrospective pathology comparisons.
5. Conclusion

Despite significant progress in cancer diagnostics and the
development of novel therapeutic regimens, the successful
treatment of advanced forms of cancer is still a challenge that
may require personalized therapeutic approaches. Metabolically
active tumor burden provides a more complete estimation of
biological aggressiveness and can serve as a complementary
quantitative prognostic measure. Also, incorporating metabolic
tumor burden in trials and staging could help subselect patient



Figure 5. A 64-year-old man with lung adenocarcinoma (tumor cellularity: 70%). Chest CTs on the (A) lung setting and (B) mediastinal setting show a well-defined
GGO lesion in the left upper lobe. (C) PET-CT shows faint FDG uptake (SUVmax = 9.4). (D) Low DWI (b=0), (E) high DWI (b=900), and (F) ADC demonstrate slightly
restricted diffusion within this lesion (ADC value = 559�10–6mm2/s). (G) H&E staining (magnification = 2�) and (H) H&E staining (magnification = 20�) show the
area at the corresponding site. Arrows (A and C) indicate lung cancer. GGO=ground glass opacity; H&E=hematoxylin and eosin.

Kim et al. Medicine (2019) 98:29 www.md-journal.com
groups that would most benefit from adjuvant or neoadjuvant
chemotherapeutic therapies. More accurate risk stratification
may help clinicians and patients select optimal treatment and
improve outcome prediction.
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