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Automated retinal boundary 
segmentation of optical coherence 
tomography images using 
an improved Canny operator
Jian Liu1,2, Shixin Yan1, Nan Lu3, Dongni Yang3, Hongyu Lv4, Shuanglian Wang5, Xin Zhu6, 
Yuqian Zhao1, Yi Wang1,2, Zhenhe Ma1,2 & Yao Yu1,2*

Retinal segmentation is a prerequisite for quantifying retinal structural features and diagnosing 
related ophthalmic diseases. Canny operator is recognized as the best boundary detection operator so 
far, and is often used to obtain the initial boundary of the retina in retinal segmentation. However, the 
traditional Canny operator is susceptible to vascular shadows, vitreous artifacts, or noise interference 
in retinal segmentation, causing serious misdetection or missed detection. This paper proposed an 
improved Canny operator for automatic segmentation of retinal boundaries. The improved algorithm 
solves the problems of the traditional Canny operator by adding a multi-point boundary search step 
on the basis of the original method, and adjusts the convolution kernel. The algorithm was used to 
segment the retinal images of healthy subjects and age-related macular degeneration (AMD) patients; 
eleven retinal boundaries were identified and compared with the results of manual segmentation by 
the ophthalmologists. The average difference between the automatic and manual methods is: 2–6 
microns (1–2 pixels) for healthy subjects and 3–10 microns (1–3 pixels) for AMD patients. Qualitative 
method is also used to verify the accuracy and stability of the algorithm. The percentage of “perfect 
segmentation” and “good segmentation” is 98% in healthy subjects and 94% in AMD patients. This 
algorithm can be used alone or in combination with other methods as an initial boundary detection 
algorithm. It is easy to understand and improve, and may become a useful tool for analyzing and 
diagnosing eye diseases.

The structural features of retina have been shown to be closely related to many ophthalmological diseases. For 
example, the thickness of the retina, especially the nerve fiber layer (NFL), has been used to indicate the pro-
gression of glaucoma1. It has been reported that the junction of the Inner segment (IS) and the Outer segment 
junction (OSJ) can facilitate the diagnosis of retinitis pigmentosa2,3. Quantitative assessment of retinal pigment 
epithelium (RPE) is also useful in diagnosing some age-related macular degeneration (AMD)4. Thus, quantita-
tive research on the retinal features has clinical value. Optical coherence tomography (OCT), as a noninvasive, 
label-free and high-resolution imaging modality, has been proven useful to diagnose various retinal diseases5. 
The accurate and reliable segmentation of retinal layers in OCT images is a key step in the quantitative study of 
retinal features.

Commercial OCT devices are generally equipped with some kind of image analysis software which is able to 
perform retinal segmentation with varying success rates6. However, the details of their design are undisclosed7. 
In addition, most methods are designed for specific equipment8. This makes them difficult to replicate in inde-
pendent studies or to be improved by other scholars. Machine learning approaches, including support vector 
machines9, random forest10, and Bayesian artificial neural networks11, are proven to obtain satisfactory solu-
tions in a noisy environment12. However, the huge amount of labeled data used in machine learning is difficult 
to obtain. Relying solely on manual segmentation will make this task extremely difficult. Furthermore, manual 
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segmentation is greatly affected by changes in observers13. Therefore, the automatic retina segmentation algorithm 
based on non-machine learning still has certain practical value. It can be used alone, or it can provide a large 
amount of label data for machine learning under human supervision.

Anisotropic filtering seems very promising for improving contrast and boundary detection rate14, but it also 
enhances some vertical boundary caused by vascular shadows. In order to avoid this influence, neighborhood 
information is often used by some algorithms. The prerequisite is that the retinal layers tend to be horizontal. So, 
A-lines alignment on the OCT images is often required before layer segmentation. Qi Yang et al.15 used a large 
size gradient template to incorporate adjacent information and deal with vascular shadow and artifacts. Before 
that, the IS/OS boundary was first detected, and then the images were further aligned along the IS/OS boundary. 
Garvin et al. proposed a 3D graph search approach, which need to first align all the slices and straightened the 
RPE layer16. Zhang et al. proposed a segmentation algorithm based on two-step predenoising filtering, which 
can only be executed after A-lines alignment17. However, a number of severe eye diseases (AMD, choroidal 
neovascularisation (CNV), glaucoma, etc.) can change the structure of retina and choroid18. In this case, A-lines 
alignment cannot be performed. The active contour model is good at finding local optima, but its limitation is that 
the algorithm cannot converge to the optimal boundary unless the initial point is close enough19,20. Additionally, 
the active contour model as a semi-automatic segmentation algorithm requires too much human involvement. 
Apparently, if an algorithm relies on human involvement heavily, it will be difficult to deal with large amounts 
of data, and more importantly, its performance is difficult to evaluate objectively. Therefore, the development of 
a retinal segmentation algorithm with high accuracy and robustness without human intervention has important 
clinical significance.

Among the fully automatic edge detection algorithms, Canny operator is recognized as the best operator so far 
and is often used to obtain the initial boundary of the retina in retinal segmentation. Unfortunately, if the Canny 
operator is applied to retinal edge detection without any modification, it will face some limitations. First, it is 
susceptible to the shadow of blood vessels and detects many borders perpendicular to the retinal layer. Second, 
the detected boundary may be discontinuous, especially when there are many blood vessels or the image quality 
is not ideal. Additionally, it is sensitive to noise interference and is prone to misdetection or missed detection. 
Qi Yang et al. combined Canny edge maps and the axial intensity gradient maps to segment the retinal layer15. 
The axial intensity gradient maps provide complementary search guidance where Canny edge information is 
missing or weak. The layer boundary is then extracted by a shortest path search applied to the graph using a 
dynamic programming algorithm. Although this method can alleviate part of the problem of edge discontinuity, 
the vertical boundary caused by blood vessel shadow can only be weakened, but cannot be completely eliminated, 
which increases the uncertainty of boundary selection.

In this paper, we proposed an automated retinal layer segmentation algorithm based on improved Canny 
operator. This method adds a multi-point boundary search step on the basis of the traditional Canny operator 
and adjusts the convolution kernel function. The improved Canny operator has a dramatic improvement in the 
extraction of the retinal boundary. To make it easier to understand, we divide the algorithm into three parts: First, 
Image enhancement, this section includes image denoising, gradient calculation and non-maximum suppression, 
which are similar to but slightly different from the first three steps of Canny operator. Second, boundary search, 
multiple gradient peak points are selected as seed points to search the retinal boundaries and superimpose the 
obtained boundaries together. The third, Boundary selection, the number of superposed boundaries is converted 
into probabilities, and the double threshold method in Canny operator is used to select and connect the edges. 
This method can accurately distinguish eleven retinal boundaries without additional intervention such as A-lines 
alignment, manual initialization, parameter adjustment or search space restriction. Quantitative and qualitative 
methods were used to verify the accuracy and stability of the algorithm. We also compared the proposed method 
with a state-of-the-art method using public healthy and AMD eye data sets.

Related work
Various automatic retinal segmentation algorithms have been proposed by previous reports. These algorithms 
can be divided into two main categories: data-driven approaches21–24 and algorithm-driven approaches25–28. The 
former mainly refers to methods based on traditional machine learning and deep learning. These methods train 
classifiers using large amounts of data set to assign specific categories to each pixel in the retinal images. For 
example, support vector machine9,29,30, random forest10 and convolutional neural network21,22,31–34. Algorithm-
driven approaches, such as level set, graph theory and dynamic programming, mainly construct mathematical 
model of retinal boundary segmentation by capturing the anatomical information and optical characteristics 
of the retinal layer.

Novosel et al., developed a loosely coupled level set method to segment retinal layers coupling based on the 
order of layers and thickness priors but only eight interfaces were detected in the OCT images from normal 
retinas35. Subsequently, they use the same method to segment the diseased retinal layers, but only seven surfaces 
were detected36.Wang et al.,37 utilized a fuzzy level set-based method to segment diabetic macular edema images.

Compared with other mathematical models, the graph theory based methods have obvious advantages both 
in algorithm performance and algorithm complexity38. Chiu et al.13 proposed a Graph theory and Dynamic Pro-
gramming (GTDP) approach for automatic segmentation of seven retinal layers. Two years later, they extended 
the GTDP algorithm to the segmentation of retina layer with AMD, taking into account the clinical characteris-
tics of the disease on the basis of the original algorithm, and successfully segmented three boundaries39. Garvin 
et al.40 optimized the cost function and proposed a method that can be directly used for retinal layer boundary 
segmentation in 3D OCT images. Xiang et al.41 proposed a multi-resolution graph search method to perform 
simultaneous layer segmentation and fluid segmentation. Recently, Hussain et al.42 proposed a novel approach to 
construct graph models. They first extract candidate boundary pixel groups using Canny edge detection operator, 
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and then regarded their endpoints as the nodes of the graph. In 2017, LD Sisternes et al.43 proposed a novel 
segmentation method based on iterative adaptation of a weighted median process, in which a three-dimensional 
weighting function is defined considering image intensity and gradient properties.

Dynamic programming algorithms, due to their significant advantages in solving optimization strategy 
problems, have been widely used in retina segmentation. Koozekanani et al. used a Markov boundary model to 
connect the rough edge44. But it is sensitive to noise, so the detected layer boundaries can easily deviate from 
the true boundary. Mishra et al.20 presented a promising two-step algorithm based on a kernel optimization 
scheme. First, approximate positions of the boundaries were found, and then by using dynamic programming 
the boundaries were refined to obtain the ideal segmentation results; however, no quantitative evaluation on a 
large data set was given. Stephanie J. et al. proposed an automatic initialization method that bypasses the need for 
manual endpoint selection of the dynamic programming algorithm13. Tian et al.45 proposed a shortest path based 
graph search method to detect retinal boundaries by searching the shortest path between nodes at both ends. 
The time complexity was reduced by the limitation of the search region and down-sampling. In order to prevent 
the algorithm from accidentally segmenting other structures in place of the target feature, it is often necessary 
to limit the graph to a valid search space that excludes any irrelevant content when using dynamic programming 
methods. However, the selection of search space will be adjusted artificially according to actual needs.

Materials and methods
Characteristics and nomenclature of retinal layer.  Figure 1 shows a cross sectional OCT image of a 
normal retina centered at the macula. The positions, full names and abbreviations of the eleven retinal layers are 
marked, and the light and dark characteristics of each retinal layer are also indicated.

Each retinal layer is a biological tissue with a specific thickness; however, this paper aims to identify each 
retinal boundary. For convenience, we adopted Luis’s43 naming method. The bottom boundary of each retinal 
layer was named with the prefix "o-" plus the abbreviation of the retinal layer. For example, the boundary between 
NFL and GCL, we call it o-NFL; the boundary between OPL and ONL, we call it o-OPL, and so on. ILM is a thin 
layer, so it is treated as a boundary directly. Among the eleven boundaries in the retinal image, the ones from 
dark to bright include: ILM, o-GCL, o-INL, o-ONL, o-IS and o-OS, as shown in Fig. 1, indicated by red arrows; 
the borders from bright to dark includes: o-NFL, o-IPL, o-OPL, o-OSJ and o-RPE, indicated by blue arrows.

Improved Canny algorithm.  The algorithm in this paper is divided into three parts: (1) Image enhance-
ment, (2) Boundary search, (3) Boundary selection. The schematic of the segmentation steps is shown in Fig. 2.

(1) Image enhancement
This section covers image denoising, gradient calculation, and non-maximum suppression, which are similar 

to the first three steps of the Canny operator. First, a 3*3 Gaussian filter template is used for image denoising, and 
the filtered image is shown in Fig. 3a. Figure 3b is the boundary detection result obtained by using traditional 
canny operator. It can be seen that the detected boundaries are discontinuous and contain a large number of axial 
boundaries. In order to mainly highlight the horizontal edge, an axial gradient template is used on the gradient 
calculation part. The retinal image contains two types of boundaries, from dark to bright and from bright to 
dark. The two types of boundaries are enhanced using the ascending gradient template (4 × 1 template, as show 
in Eq. 1) and the descending gradient template respectively (4 × 1 template, as show in Eq. 2).

(1)[−1, − 1, 1, 1]
T

(2)[1, 1, − 1, − 1]
T

Figure 1.   Illustration of the position of eleven retinal layers. The figure also indicates the full names, 
abbreviations and the optical characteristics of each layer.
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The 4 × 1 gradient template is more robust than the 2 × 1 gradient template. The gradient image (Fig. 3c) is 
obtained by convolving the filtered image with the gradient template (Eq. 1). On the other hand, we perform 
large-scale smoothing on Fig. 3a to obtain smooth image (Fig. 3d), the size of the smoothing template is9,10. The 
boundary enhancement image (Fig. 3e) is obtained by multiplying the gradient image (Fig. 3c) and the smooth 
image (Fig. 3d) point-to-point. The purpose of this step is to weaken the interference outside the retinal image, 
such as posterior vitreous face or image noise. Then, the "non-maximum suppression" method is performed 
along the A-scan direction to obtain the peak point images (Fig. 3f). These peak points constitute the initial 
boundary of the image, but some of these boundaries are discontinuous. Thus, on this basis, we added a multi-
point boundary search method to improve the image boundary. The length of the scale bar in all the pictures 
in this article is 200 μm.

(2) Boundary search
Most of the points in Fig. 3f are located at or close to the boundary of the retina. So, these points are used 

as seed points to search for retinal boundaries in the gradient image (Fig. 3e). The search criterion is to select 
the neighboring point closest to the seed point’s intensity as the potential boundary pixels, and then use this 
point as a new seed point to repeat the previous process until it extends to the first or last column of the image. 
The search direction can be 3-neighborhoods or 5-neighborhoods, as shown in Fig. 4a,b. 3-neighborhoods are 
suitable for Healthy eyes, and 5-neighborhoods are suitable for disease eyes with sharp changes in slope. If two 
or more candidate pixels have the same signal intensity, then the algorithm will refer to the extension direction 
of the previous step to make a selection. Figure 4c shows a schematic diagram of the extension of a single seed 
point. In the end, each seed point will form a path across the B-scan image.

(3) Boundary selection
The boundary path searched by a single seed point may have a certain deviation from the real boundary, but 

as the number of paths increases, there will be more and more paths superimposed on the real boundary. We 
use Eq. (3) to convert the number of superposed paths into probabilities. Now, the probability value at the real 
boundary is much higher than that at other locations.

Finally, the double threshold method in Canny operator was used to filter and connect the paths. Paths with a 
probability less than the low threshold are eliminated, and paths with a probability greater than the high threshold 
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Figure 2.   Schematic of the segmentation steps.
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Figure 3.   Image edge enhancement. (a) Image after denoising. (b) Boundary detection result obtained by using 
traditional canny operator. (c) Gradient image. (d) Large-scale smooth image. (e) Boundary enhanced image. (f) 
Peak point image. Scale bar length is 200 μm.

Figure 4.   Three neighborhoods (a) and five neighborhoods (b) boundary search criterion. (c) Boundary search 
diagram. The red and blue solid circles represent seed points on different boundaries, and the arrow indicates 
the search direction.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1412  | https://doi.org/10.1038/s41598-022-05550-y

www.nature.com/scientificreports/

are retained. Then search for points greater than the low threshold at the breakpoints in the high-threshold image, 
until the edges of the entire image are closed. Finally, the retinal boundary image was obtained, as show in Fig. 5b.

If all the points in Fig. 3f are used as seed points for boundary search, it will be very time-consuming. In fact, 
according to the structural characteristics of the human eye’s macula, it is only necessary to select the seed points 
on both sides of the image for calculation, that is, to search the boundary from both sides to the center, and an 
ideal result can be obtained. In this paper, 30-pixel-wide local regions on both sides of the image (Fig. 5a color 
regions) are selected, and the resulting retinal boundary image is shown in Fig. 5b. Figure 5c shows the gradient 
signal and boundary signal at the location shown by the solid blue line in Fig. 5b.

Algorithm entire process and boundary identification.  Figure 6 shows the segmentation results of a 
normal human retina. Figure 6a is the filtered image. Figure 6b,c are dark-to-bright and bright-to-dark bound-
ary enhancement images, respectively. Figure  6d,e are peak point images after “non-maximum suppression” 
processing. Seed points were selected from the peak point images for path search, and the retinal boundary 
images were obtained, as shown in Fig. 6f,g. Finally, eleven boundary layers were identified from the two retinal 
boundary images in a specific order, as shown in Fig. 6h.

After the boundary image is obtained, eleven retinal boundaries are identified in a certain order. First, the 
dark to bright boundaries in Fig. 6f is detected. ILM is defined as the first highlighted reflection layer on each 
A-scan in the retinal image, which is most often well demarcated. Next, three outer layer boundaries from dark 
to light (o-ONL, o-IS, o-OS) are identified in sequence. Where, the o-IS layer generally has the highest bright-
ness other than the ILM layer in Fig. 6d, so it can be identified in conjunction with Fig. 6d. In Fig. 6f, o-ONL and 
o-OS are located above and below the o-IS layer, respectively. ONL is a relatively obvious wide dark band. Above 
the o-ONL, the o-INL layer can be detected. Among the dark-to-bright retinal borders, only o-GCL has not yet 
been identified. In general, o-GCL is the most unclear layer in the image, so we put it at the end for recognition.

The next step is to determine the bright-to-dark boundaries. o-RPE has the highest brightness in Fig. 6e and 
can be identified in conjunction with Fig. 6e. o-OSJ is located between o-IS and o-OS, and the coordinates of 
o-OSJ can be restricted between o-IS and o-OS for identification. o-OPL and o-IPL are clearly visible and easy to 
identify. o-NFL is the first dark-to-bright interface under ILM. Finally, o-GCL is identified between o-NFL and 
o-IPL. All detected boundaries are smoothed using Gaussian filtering, and finally superimposed on the retinal 
structure map. The result is shown in Fig. 6h.

Result
Segmentation experiment results.  We recruited 20 subjects (30 eyes), consisting of 10 healthy controls 
without ocular or systemic diseases, 10 patients with Mild AMD. Each healthy subject collected images of the left 
and right eyes, and AMD patients collected images of the diseased eye on one side. All subjects were recruited 
from the First Hospital of Qinhuangdao City. The study was conducted in accordance with the principles of the 
Declaration of Helsinki. This study also complies with the ethical guidelines for human medical research and the 
quality management norms for drug clinical trials. The research protocol was approved by the ethics committee 
of Qinhuangdao First Hospital. Informed consents were obtained from all participants.

Figure 5.   (a) The selection of the seed point area, (b) the obtained retinal boundary image, (c) the gradient 
signal and the boundary signal at the position of the blue solid line in (b).
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The retinal OCT images used in this study were obtained from a Commercial Spectralis OCT System (based 
on Spectralis OCT; Heidelberg Engineering, Heidelberg, Germany). This device operates at 85 kHz A-scan rate, 
with a central wavelength of 870 nm and a bandwidth of 50 nm, and provides ~ 3.9-μm axial and 6-μm lateral 
resolution. The ocular light power exposure was within the American National Standards Institute safety limit. 
Each B-scan datum was composed of 512 A-scans.

Figure 7 shows the segmentation results of a healthy retina and the thickness map of different layers obtained 
by the algorithm proposed in this paper. Figure 7a–c are the infrared fundus photography images of healthy eyes. 
The green frame is the imaging range of the OCT, and the solid red line points to the current B-scan position. 
Figure 7d–f are the retinal images and the layered results at the position shown by the solid red line. Figure 7g 
shows the thickness map of the superficial vascular complex (from ILM to o-IPL). Figure 7h is the thickness 
map of the deep vascular complex (from o-IPL to o-OPL). Figure 7i is the thickness map of macular inner retinal 
layers, which is the sum of Fig. 7g,h. Figure 7j is the thickness map of macular outer retinal layers. The unit of 
thickness is μm.

This algorithm is also applicable to the stratification of mild AMD eyes. Figure 8a shows the left eye of a 
60-year-old female patient who was diagnosed with wet age-related macular degeneration (wAMD). The best 
corrected visual acuity (BCVA) of the left eye was recorded as 20/40. As can be seen from Fig. 8a, the patient is 
accompanied by macular edema, subretinal fluid, neuroepithelial and drusenoid pigment epithelial detachments. 
Figure 8b is the boundary detection result obtained by using traditional canny operator. Figure 8c,d are dark-to-
bright and bright-to-dark boundaries enhancement image, respectively. Figure 8e,f are retinal boundary images. 
Figure 8g is the segmentation results. Figure 8h–j are the thickness maps of superficial vascular complex, deep 
vascular complex and macular inner retinal layers, respectively. Figure 8k ~ (m) are the position maps of ILM, 
o-IPL and o-OPL. In normal eyes, the center of the macular area is lower than the surrounding area. However, 
for AMD eyes with macular edema, the macular fovea area is significantly higher than other surrounding areas. 
Therefore, we can see that the middle area in Fig. 8k–m is much higher than the surrounding area.

In the previous section, we show the segmentation results of some undisturbed retinal images. However, in 
practical applications, OCT retinal images are often subjected to some interference, such as posterior vitreous 
face, vascular artifacts and strong noise interference. Figure 9a is a retinal image with both posterior vitreous 

Figure 6.   Segmentation results of the normal human retina. (a) Image after denoising. (b,c) Gradient images. 
(d,e) Peak point images. (f,g) Retinal boundary images. (h) Eleven retinal boundaries.
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face (yellow arrow) and arterial artifacts (red arrow). Figure 9b is the boundary detection result obtained by 
using traditional canny operator. The axial boundary caused by the shadow of the blood vessel is very obvious; 
the boundary of the posterior vitreous face is also clearly displayed. Figure 9c–f is the corresponding boundary 
detection process using the proposed algorithm. Figure 9g is the final result. Compared with the traditional 
canny operator, the algorithm in this paper has a significant improvement in the detection ability of the retinal 
boundary.

The quality of OCT images often deteriorates due to the subject’s eye jitter, opacity of the refractive inter-
stitium, or improper operation. It may also be due to the strong speckle noise superimposed on structural images, 
which reduces the image contrast near the layer boundaries. Figure 10 shows the segmentation results of a set 
of noisy images. It can be seen that the traditional canny operator is very sensitive to noise interference, and the 
algorithm in this paper is hardly affected.

Quantitative evaluation.  The quantitative evaluation is achieved by comparing the boundary position-
ing difference between the proposed automated method and the manual segmentation method. Among them, 
manual segmentation method is implemented by four experienced ophthalmologist using Photoshop software 
(Adobe Systems Inc.). They draw 11 retinal boundaries on the B-scan retinal images. The difference in the axial 
location of the boundary obtained by the two methods was quantified using the mean unsigned positioning 
error (MUE)43. For a particular boundary, the MUE was defined by

where L1 and L2 are the results of automatic and manual segmentation of a certain retinal layer, respectively. N 
is the number of A-scans included in the B-scan. The eyes of 20 healthy subjects and 10 eyes of AMD patients 
were compared and analyzed. The quantitative comparison results are shown in Tables 1 and 2.

We once again averaged the 4 columns of data (mean values) in Tables 1 and 2 to obtain the histogram as 
shown in Fig. 11, which can provide a reference for evaluating the accuracy of the proposed algorithm for retinal 
segmentation in healthy subjects and AMD patients. The red box in the Fig. 11 represents the average difference 
of healthy subjects (the mean of the 4 columns of data in Table 1), and the blue box represents the average differ-
ence of AMD patients (the mean of the 4 columns of data in Table 2), the error bars represent standard deviation.

It can be seen from Fig. 11 that the difference between the automatic and manual segmentation results of the 
o-GCL layer of healthy subjects is larger than that of other layers, with an average difference of about 6 microns 
(less than 2 pixels). The difference in other layers is about 2–4 microns. The average difference between o-OPL and 
o-RPE in AMD patients was significantly larger than that in healthy subjects. The maximum difference is about 
10 microns. The increase in the average difference can only explain the difficulty of identifying the boundary and 
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Figure 7.   3D segmentation result of a healthy retina and the thickness maps of different layers. (a–c) The 
infrared fundus photography images of a healthy eye. The green box is the range of OCT imaging, and the red 
solid line points to the current B-scan position. (d–f) The retinal images and the layered results at the position 
shown by the solid red line. (g) The thickness map of superficial vascular complex (from ILM to o-IPL). (h) The 
thickness map of deep vascular complex (from o-IPL to o-OPL). (i) The thickness maps of macular inner retinal 
layers, which are the sum of (g,h). (j) The thickness map of macular outer retinal layers. The unit is μm.
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the uncertainty of the segmentation result, but it cannot explain which method is absolutely accurate, because 
manual segmentation is not a gold standard either. Therefore, we need to perform further qualitative assessment.

Qualitative evaluation.  The qualitative evaluation is achieved by inviting professional readers to score the 
automatic segmentation results, with a score ranging from 1 to 4 points. A score of 1 indicates a Perfect or close 
to perfect boundary location; a score of 2 indicates a Good boundary location, which may require minor correc-
tions. A score of 3 indicate major problems with boundary location determination and a score of 4 for failing to 
produce any result. Each retinal layer is scored separately and the average and standard deviation are calculated 
to highlight the algorithm’s ability to recognize different retinal layers. All readers who received the invitation, 
whether for quantitative or qualitative evaluation, were senior ophthalmologists from the First Hospital of Qin-
huangdao City. The qualitative evaluation results are shown in Tables 3 and 4.

The 3 columns of data (average values) in Tables 3 and 4 are averaged again to obtain a histogram as shown 
in Fig. 12. The red columns represent the average score of healthy subjects (the average of the 3 columns of data 
in Table 3), and the blue columns represent the average score of AMD patients (the average of the 3 columns of 
data in Table 4), the error bars indicate standard deviation.

Figure 8.   Segmentation result of an AMD eye. (a) A left retina of an AMD patient. (b) Boundary detection 
result obtained by using traditional canny operator. (c,d) dark-to-bright and bright-to-dark boundaries 
enhanced image. (e,f) retinal boundary images. (g) The segmentation results. (h–j) thickness maps of superficial 
vascular complex, deep vascular complex and macular inner retinal layers, respectively. (k–m) position maps of 
ILM, o-IPL and o-OPL.
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Figure 9.   Segmentation results of disturbed image. (a) A retinal image that is disturbed by the posterior 
vitreous face. The red ellipse shows a shadow of blood vessel, and the yellow arrow shows the posterior vitreous 
face. (b) Boundary detection result obtained by using traditional canny operator. The axial boundary caused by 
blood vessel shadows can be seen. (c,d) Dark-to-bright and bright-to-dark boundaries enhanced images. (e,f) 
Retinal boundary images. (g) The segmentation results.

Figure 10.   Segmentation results of noisy images. (a) A retinal image of noise interference. (b) Boundary 
detection result obtained by using traditional canny operator. The blue arrow indicates a false boundary caused 
by noise. (c,d) Dark-to-light and light-to-dark boundaries enhanced image. (e,f) Retinal border images. (g) The 
segmentation results.
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Table 1.   Quantitative comparison of boundary positioning between automated and manual segmentation in 
healthy subjects’ eyes. MUE mean unsigned positioning error, the unit is μm.

Retinal layer

Healthy subjects MUE (mean ± SD)

Reader 1 Reader 2 Reader 3 Reader 4

ILM 1.42 ± 1.08 1.66 ± 0.74 1.51 ± 0.57 1.83 ± 0.42

o-NFL 3.06 ± 1.75 3.30 ± 1.25 3.60 ± 1.87 4.32 ± 1.59

o-GCL 4.73 ± 2.71 4.52 ± 2.94 4.96 ± 2.76 7.68 ± 2.34

o-IPL 3.18 ± 1.42 3.45 ± 0.89 3.24 ± 0.95 3.55 ± 1.87

o-INL 2.87 ± 1.73 4.04 ± 1.96 2.59 ± 0.77 3.22 ± 1.71

o-OPL 3.18 ± 1.92 4.28 ± 1.09 3.01 ± 1.27 3.36 ± 2.37

o-ONL 3.02 ± 1.75 2.95 ± 0.84 3.08 ± 0.96 1.91 ± 1.04

o-IS 3.49 ± 1.86 2.63 ± 0.73 3.39 ± 0.97 2.16 ± 1.75

o-OSJ 3.73 ± 1.61 2.95 ± 0.69 3.67 ± 0.57 3.35 ± 2.21

o-OS 4.39 ± 1.87 3.71 ± 1.15 4.69 ± 1.90 3.75 ± 3.37

o-RPE 4.90 ± 2.27 3.17 ± 1.29 5.19 ± 0.94 3.73 ± 1.19

Table 2.   Quantitative comparison of boundary positioning between automated and manual segmentation in 
AMD patients’ eyes. MUE mean unsigned positioning error, the unit is μm.

Retinal layer

AMD patients MUE (mean ± SD)

Reader 1 Reader 2 Reader 3 Reader 4

ILM 2.14 ± 0.88 2.75 ± 1.23 2.71 ± 1.45 2.77 ± 2.10

o-NFL 3.61 ± 1.10 4.17 ± 2.67 5.76 ± 2.07 4.84 ± 7.14

o-GCL 5.82 ± 1.54 7.60 ± 2.17 7.10 ± 1.80 6.08 ± 6.53

o-IPL 3.49 ± 0.74 4.57 ± 1.16 5.23 ± 1.66 2.73 ± 3.55

o-INL 3.14 ± 0.82 4.19 ± 1.84 4.65 ± 1.52 3.57 ± 1.91

o-OPL 5.09 ± 2.17 6.04 ± 2.86 8.36 ± 3.99 10.1 ± 4.02

o-ONL 4.74 ± 1.53 5.32 ± 1.91 8.18 ± 2.54 5.11 ± 3.56

o-IS 3.96 ± 1.04 4.08 ± 1.74 6.15 ± 2.18 3.77 ± 1.69

o-OSJ 7.17 ± 3.02 4.56 ± 1.25 8.01 ± 5.9 4.69 ± 3.63

o-OS 9.67 ± 3.37 6.13 ± 2.79 10.8 ± 5.9 7.53 ± 6.71

o-RPE 8.11 ± 6.23 6.35 ± 4.59 7.81 ± 6.59 7.86 ± 7.19

Figure 11.   Average difference between automated and manual segmentation of healthy subjects and AMD 
patients.
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In Fig. 12, the average scores of AMD patients and healthy subjects are very close. It shows that the accuracy 
of the segmentation results obtained by the proposed algorithm is very high, and some differences are within 
the acceptable or adjustable range.

Comparison with a state‑of‑the‑art method.  The proposed method was compared with a state-of-
the-art retinal segmentation method43. We used the same public data set as the literature43, which collected 

Table 3.   Qualitative evaluation in Healthy subjects.

Retinal layer

Healthy subjects score 
(mean ± SD)

Reader 1 Reader 2 Reader 3

ILM 1.0 ± 0 1.1 ± 0.31 1.1 ± 0.31

o-NFL 1.2 ± 0.41 1.1 ± 0.31 1.2 ± 0.41

o-GCL 1.6 ± 0.88 1.8 ± 0.42 1.2 ± 0.41

o-IPL 1.1 ± 0.31 1.7 ± 0.48 1.1 ± 0.31

o-INL 1.2 ± 0.41 1.8 ± 0.42 1.3 ± 0.47

o-OPL 1.3 ± 0.47 1.9 ± 0.32 2.2 ± 0.42

o-ONL 1.1 ± 0.31 1.4 ± 0.52 1.0 ± 0

o-IS 1.1 ± 0.31 1.3 ± 0.47 1.0 ± 0

o-OSJ 1.1 ± 0.31 1.1 ± 0.31 1.5 ± 0.53

o-OS 1.2 ± 0.41 1.1 ± 0.31 2.3 ± 0.48

o-RPE 1.1 ± 0.31 1.2 ± 0.41 1.4 ± 0.52

Table 4.   qualitative evaluation in AMD patients.

Retinal layer

AMD patients score (mean ± SD)

Reader 1 Reader 2 Reader 3

ILM 1.1 ± 0.31 1.1 ± 0.31 1.1 ± 0.31

o-NFL 1.3 ± 0.47 2.2 ± 0.42 1.1 ± 0.31

o-GCL 1.7 ± 0.48 2.8 ± 0.42 1.5 ± 0.53

o-IPL 1.1 ± 0.31 2.2 ± 0.42 1.2 ± 0.41

o-INL 1.2 ± 0.41 2.4 ± 0.52 1.2 ± 0.41

o-OPL 1.4 ± 0.52 2.2 ± 0.42 2.0 ± 0.47

o-ONL 1.1 ± 0.31 1.8 ± 0.42 1.9 ± 0.32

o-IS 1.1 ± 0.31 1.5 ± 0.53 1.5 ± 0.53

o-OSJ 1.3 ± 0.47 1.2 ± 0.41 1.8 ± 0.42

o-OS 2.2 ± 0.42 1.1 ± 0.31 1.3 ± 0.47

o-RPE 1.2 ± 0.41 1.1 ± 0.31 1.2 ± 0.41

Figure 12.   Average scores of healthy subjects and AMD patients.
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by Farisu et al.46, can be downloaded online. The data set consists of a total of 384 SD-OCT macular scans. Of 
these, 115 scans were from healthy subjects, and the remaining 269 scans were from patients with non-exudative 
AMD of varying severity. Subjects’ ages and the corresponding manually corrected reference standards for three 
retinal layer boundaries are also included. These reference segmentation boundaries were obtained using their 
proposed segmentation algorithm39 and later corrected manually by experienced graders (certified by the Duke 
Advanced Research in Spectral Domain OCT Imaging laboratory): The SD-OCT scans were acquired using 
Bioptigen, Inc. (Research Triangle Park, NC) imaging systems at four different clinical sites. Each SD-OCT cube 
in the second data set consists of 1000 (horizontal) × 100 (vertical) × 512 (axial) voxels, covering dimensions of 
approximately 6.7 (horizontal) × 6.7 (vertical) × 1.6 (axial) mm. In the second data set, the voxel dimensions in 
the horizontal, vertical, and axial directions were approximately 6.7, 67, and 3.1-μm respectively.

Figure 13 shows the segmentation results of the public data set obtained by the algorithm in this paper. The 
first row shows B-scan images of a typical healthy subject, and the second and third rows show B-scan images 
of AMD patients. The first column is the original image, and the second column is the automatic segmentation 
result obtained by using the algorithm in this paper. The third column is manually corrected reference standards 
boundaries of the ILM, O-OS and O-RPE, which is used to test the accuracy of different methods.

Table 5 shows the comparison results of the algorithm in this paper and the algorithm in literature43. Regard-
ing the identification of the ILM layer, the accuracy of the proposed method is significantly higher than that of 
the method in the literature43, both in healthy subjects and AMD patients. For the o-OS layer, the recognition 
accuracy of the proposed method is similar to that of healthy people in the literature43, and the recognition accu-
racy of AMD patients is slightly lower. The reason may be that the algorithm in this paper is weak in recognizing 
violent fluctuating boundaries, and needs subsequent improvement.

Discussion
Retinal layering algorithms have been developed for many years. The existing methods have one or more of 
the following disadvantages: they distinguish only the most prominent layers, they do not exhibit robustness 
under noisy and changing conditions, the algorithm is very time-consuming or the algorithm design is very 
complicated. Most importantly, most algorithms require more or less human intervention, such as setting the 
initial position, setting the search interval, and setting different algorithm parameters or thresholds for different 

Figure 13.   The segmentation result of public data set obtained by the proposed algorithm. The first row is 
b-Scan images of healthy subjects, and the second and third rows are B-scan images of AMD patients.

Table 5.   Comparison between the proposed method and that in literature43. MUE mean unsigned positioning 
error, the unit is μm.

Retinal layer

Proposed method MUE IS-WM43 MUE

Healthy subjects AMD patients All scans Healthy subjects AMD patients All scans

ILM 2.36 ± 1.15 2.88 ± 1.92 2.77 ± 1.75 3.47 ± 4.15 6.43 ± 11.30 5.51 ± 9.76

o-OS 5.35 ± 3.55 8.39 ± 6.81 7.48 ± 6.15 5.41 ± 3.77 7.07 ± 5.66 6.56 ± 5.20

Average 3.86 ± 2.79 5.64 ± 5.72 5.13 ± 5.09 4.44 ± 4.07 6.75 ± 8.93 6.04 ± 7.83
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data sets. These excessive human interventions reduce the objectivity of the algorithm and hinder the use and 
development by medical staffs. Therefore, the development of an automatic retinal layering algorithm with high 
accuracy and strong anti-interference ability is of great significance for the diagnosis and research of ophthal-
mological diseases.

This paper proposed a retinal layer segmentation algorithm based on improved Canny operator. The con-
ventional canny operator consists of four steps: 1. Image denoising; 2. Gradient calculation; 3. Non-maximum 
suppression; 4. Using dual threshold method to select and connect edges. Compared with the traditional canny 
operator, the method in this paper has the following improvements:

(1)	 The traditional canny operator is susceptible to the shadow of the blood vessel, resulting in an edge perpen-
dicular to the retinal layer. This is because the canny operator uses the non-directional Sobel operator as the 
convolution kernel function to obtain the image gradient value and gradient direction. It can monitor not 
only the horizontal retinal boundary layer, but also the vertical vascular shadow boundary. This paper uses 
the axial gradient template to calculate the image gradient, and only horizontal boundary is highlighted. 
Additionally, the algorithm uses the method of multiplying gradient images and the large-scale smooth 
images to enhance the boundaries of each retina layer, greatly suppressing noise and interference outside 
the retina.

(2)	 Affected by blood vessel shadow or image quality, the boundary detected by the traditional Canny opera-
tor is often discontinuous. In this paper, a multi-point boundary search step is added on the basis of the 
traditional canny operator. Several peak points were selected from the non-maximum suppression image as 
seed points, and then were extended to both sides in the gradient enhanced image using a boundary search 
method to form a path. When encountering the shadow of the blood vessel, the algorithm will continue 
the search direction of the previous step and continue to extend forward. In this way, the interference of 
blood vessel shadows is well avoided.

(3)	 The traditional canny operator is sensitive to noise or interference, and is prone to misdetection or missed 
detection. In this paper, a certain number of seed points were used to search the boundary together and 
the boundaries formed by all the seed points were superimposed on one image. The number of times the 
boundary is overlapped is converted into the boundary probability. In general, the real boundaries are 
bound to have higher probabilities. Such boundary detection method that relies on the "group effect" can 
accurately detect the retinal boundary, even in the case of noise interference, the accurate boundary posi-
tion can be found with a high probability. The use of the dual-threshold method further guarantees the 
accuracy and completeness of the boundary. The main advantage of the algorithm is that it almost does not 
require any manual involvement (including A-lines alignment, manual initialization, parameter adjustment 
or search space restriction, etc.), and its accuracy and stability are also very satisfactory.

In this paper, various types of retinal images are used for testing, and ideal segmentation results were obtained. 
This shows that the algorithm has strong accuracy and robustness in dealing with the interference of posterior 
vitreous face, blood vessel shadow, noise and lesions. The quantitative and qualitative evaluation results also fully 
confirmed this point. From the quantitative evaluation results, the average difference between the automatic seg-
mentation algorithm and the manual segmentation algorithm is: 2–6 microns (1–2 pixels) for healthy subjects, 
3–10 microns (1–3 pixels) for patients with mild AMD. From the qualitative evaluation results, the proportion 
of scores of 1 or 2 is 98% of healthy subjects and 94% of AMD patients.

The method described in this paper was implemented using MATLAB (The MathWorks, Inc.) M-file code. 
The program runs on a personal computer (64 bit OS, Intel Core i7 CPU at 3.6 GHz, and 8 GB RAM) and took 
about 124 s to complete the whole 3-D image volume (480 × 512 × 300) pixels detection of eleven layer bounda-
ries. The average processing time for each B-Scan is 242 ms. If a more efficient language was used, for example 
C+   programming language, the program can perform with dramatically reduced processing time. If the seg-
mentation process is performed once every 4 B-scans, and then the interpolation method is used to fill the gaps, 
then only 128 retinal segmentations need to be performed for 512 B-scans. The time consumed will be reduced 
to 1/4 of the original. The processing speed of the proposed method is much higher than that of the method in 
reference43 and slightly lower than that of the method in reference47 (the fastest retinal segmentation method to 
date). However, the number of retinal layers identified by the proposed method (11 layers) is greater than that 
by the method in reference (8 layers)47.

The algorithm currently does not add excessive error correction processing based on prior information. 
Therefore, there is still a lot of room for improvement in algorithm performance. It is worth noting that the 
method in this paper has a very high accuracy rate for retinal segmentation for patients with mild AMD, but for 
severe AMD patients, the recognition accuracy will decrease due to the increase in subretinal fluid and severe 
retinal structural deformation. This algorithm can be used alone or in combination with other methods as an 
initial boundary detection algorithm to improve the ability to detect AMD retinal boundaries. The proposed 
technique can also be extended to segment other hierarchical structures.

In summary, the retinal segmentation algorithm based on the improved Canny operator proposed in this 
paper is a robust and automatic algorithm that can distinguish eleven retinal boundaries without human interven-
tion; the segmentation results have high accuracy and stability. The algorithm is easy to understand and improve, 
and has the potential to become a powerful tool for analyzing and diagnosing eye diseases.
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