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Summary
Background Diabetes is a major public health concern. We aimed to evaluate the long-term risk of incident type 2
diabetes in a non-diabetic population using a deep learning model (DLM) detecting prevalent type 2 diabetes
using electrocardiogram (ECG).

Methods In this retrospective study, participants who underwent health checkups at two tertiary hospitals in Seoul,
South Korea, between Jan 1, 2001 and Dec 31, 2022 were included. Type 2 diabetes was defined as glucose ≥126 mg/
dL or glycated haemoglobin (HbA1c) ≥ 6.5%. For survival analysis on incident type 2 diabetes, we introduced an
additional variable, diabetic ECG, which is determined by the DLM trained on ECG and corresponding prevalent
diabetes. It was assumed that non-diabetic individuals with diabetic ECG had a higher risk of incident type 2 diabetes
than those with non-diabetic ECG. The one-dimensional ResNet-based model was adopted for the DLM, and the
Guided Grad-CAM was used to localise important regions of ECG. We divided the non-diabetic group into the
diabetic ECG group (false positive) and the non-diabetic ECG (true negative) group according to the DLM
decision, and performed a Cox proportional hazard model, considering the occurrence of type 2 diabetes more
than six months after the visit.

Findings 190,581 individuals were included in the study with a median follow-up period of 11.84 years. The areas
under the receiver operating characteristic curve for prevalent type 2 diabetes detection were 0.816 (0.807–0.825)
and 0.762 (0.754–0.770) for the internal and external validations, respectively. The model primarily focused on the
QRS duration and, occasionally, P or T waves. The diabetic ECG group exhibited an increased risk of incident
type 2 diabetes compared with the non-diabetic ECG group, with hazard ratios of 2.15 (1.82–2.53) and 1.92
(1.74–2.11) for internal and external validation, respectively.

Interpretation In the non-diabetic group, those whose ECG was classified as diabetes by the DLM were at a higher risk
of incident type 2 diabetes than those whose ECG was not. Additional clinical research on the relationship between
the phenotype of ECG and diabetes to support the results and further investigation with tracked data and various ECG
recording systems are suggested for future works.
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Research in context

Evidence before this study
We searched PubMed, MEDLINE, medRxiv, and arXiv with the
terms ‘diabetes’, ‘electrocardiogram’, ‘machine learning’,
‘deep learning’, and ‘survival analysis’ for relevant peer-
reviewed publications up to 12 August 2023. We included and
reviewed reports written in English with the full text available
and found several studies that detected type 2 diabetes using
electrocardiogram (ECG) with machine learning methods.
None of the studies restricted the study population to the
general public, and the exclusion criteria for cohort definition
did not include information from the health questionnaire. In
addition, previous studies were not externally validated with a
multicentre population and did not verify the decision of their
model by survival analysis of incident type 2 diabetes.

Added value of this study
To the best of our knowledge, this is the first study to
determine the long-term risk of incident type 2 diabetes in a
non-diabetic population using ECG from two locally separated
tertiary hospitals. 190,581 participants who underwent health
checkups at two separate hospitals in the Republic of Korea
were included in this study. As we strictly excluded
participants with previous diagnoses or prescriptions for
diabetes using electronic medical records and a health

questionnaire, the population of this study represents the
general public without any concerns about diabetes. We used
residual convolutional neural networks for model
development and a Cox proportional hazard model for long-
term risk evaluation of incident type 2 diabetes. Individuals
without diabetes whose ECG was diagnosed with type 2
diabetes by the model exhibited an increased risk of type 2
diabetes compared with those with a normal ECG.

Implications of all the available evidence
This study demonstrated that a deep learning model trained
using ECG data is able to detect type 2 diabetes in the general
population and that the risk of incident type 2 diabetes differs
according to the decision of the model. Based on this, in
theory, individuals without previous diabetes concerns can
perceive their potential type 2 diabetes risk through an ECG-
based diagnosis and can be offered additional tests or regular
checkups. This approach could be used to contribute to the
early prevention of type 2 diabetes and the reduction in the
associated medical costs. More work is needed. Clinical
research on the relationship between the phenotype of ECG
and diabetes to explain the model and further investigation
with tracked data and various ECG recording systems are
suggested as future works.
Introduction
Diabetes is one of the most critical worldwide public
health issues, reducing life expectancy and causing
various complications—such as coronary heart disease,
stroke, peripheral arterial disease, kidney disease, and
retinopathy.1,2

It is estimated that 578 million people will have
diabetes in 2030, and among all types of diabetes, type 2
diabetes accounts for an overwhelming majority of adult
diabetics.3,4 Type 2 diabetes encompasses a range of
metabolic conditions associated with hyperglycaemia
and is caused by insulin resistance.5 Because type 2
diabetes usually develops in adulthood and is affected by
lifestyle, the potential benefits of its early detection and
treatment have been discussed. The U.S. Preventive
Service Task Force indicated that changing lifestyle can
help people with prediabetes prevent progression to type
2 diabetes.6 In addition, the incidence of 10-year car-
diovascular disease and all-cause mortality increased as
the diagnosis and treatment of type 2 diabetes were
delayed.7

Cardiovascular disease is one of the most common
complications of type 2 diabetes, as over one-third of
patients with diabetes also go on to establish
cardiovascular disease.8 Electrocardiogram (ECG) is an
essential test performed non-invasively during a medical
check and contains considerable information about
cardiac electrical activities and potential cardiovascular
diseases. According to the close relation between type 2
diabetes and cardiovascular disease, ECG and machine
learning methods have been utilised to detect prevalent
type 2 diabetes in several studies. Lin et al. proposed
ECG-based glycated haemoglobin (HbA1c) using a
one-dimensional residual module, detecting prevalent
diabetes with an area under the receiver operating
characteristic curve (AUROC) of 0.826.9 There were
other single-centre studies sharing the same task with
AUROCs over 0.9, but the number of participants was
fewer than 1200.10,11

Although detecting prevalent type 2 diabetes using
ECG and machine learning algorithms is effective, a
multicentre general population study has never been
conducted. Furthermore, because most studies per-
formed to date have included all types of patients (such
as inpatients, outpatients, emergency patients, and
people undergoing medical checkups), it was difficult to
guarantee that the results from these previous studies
will apply to the general public. Most of all, no studies
www.thelancet.com Vol 68 February, 2024
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have addressed the risk of incident type 2 diabetes, only
prevalent type 2 diabetes.

In this study, we aimed to assess the long-term risk
of incident type 2 diabetes in a non-diabetic general
population using ECG independently of glucose and
HbA1c from two locally separated tertiary hospitals over
a median 11-year follow-up. Individuals who visited
hospitals for medical checkups were included in our
study population. For survival analysis on incident type
2 diabetes in a non-diabetic population, we introduced
an additional variable, diabetic ECG, which is deter-
mined by a deep learning model (DLM) trained on ECG
and corresponding prevalent diabetes. In addition, we
adjusted the survival model by patient information,
comorbidities, and laboratory values, including fasting
serum glucose and HbA1c, for the further demonstra-
tion of the diabetic ECG. To the best of our knowledge,
this is the first study to evaluate incident type 2 diabetes
using ECG and DLM and to externally validate the
model in a multicentre general population with more
than 190,000 participants.
Methods
Study design, participants, and main outcomes
This study used data from the Seoul National Univer-
sity Hospital Healthcare System Gangnam Center
(SNUH-HSGC) and Seoul National University Hospi-
tal Health Promotion Center (SNUH-HPC). Accord-
ingly, individuals who visited hospitals for general
health checkups were included. In the Republic of
Korea, the national health screening program, which is
organised by the National Health Insurance Service, is
offered free of charge and biennially for citizens. Thus,
visiting hospitals for health checkups is commonplace
in the Republic of Korea, and the participants might
have visited hospitals routinely. Although ECG and
HbA1c are not on the list of mandatory tests, many
people include several additional tests, such as ECG.
We identified individuals with at least one 10-s, 500-
Hz, and 12-lead ECG and blood tests, including
glucose and HbA1c, during the first health checkup at
SNUH-HSGC between 1 January 2004 and 31
December 2022 and at SNUH-HPC between 1 January
2001 and 31 December 2022. All participants had ECG,
glucose, and HbA1c tests on the same day; for each
person, we used only the first record for both training
and validation.

We excluded individuals under 18 years of age and
those with a previous diagnosis of diabetes or antidia-
betic drug prescriptions using a health questionnaire.
Any history of diabetes can cause individual regulation
in eating or exercise habits and can intervene the model
training as a potential confounding factor. Question-
naire data were computerised for each question and
answer. Questions regarding diabetes were identified to
examine previous diagnoses or prescriptions.
www.thelancet.com Vol 68 February, 2024
We collected data, including ECG, age, sex, glucose
and HbA1c levels, and comorbidity records. ECGs were
collected using the GE MUSE ECG system (GE
Healthcare, Chicago, IL, USA), and the remaining items
were obtained from the clinical data warehouse (CDW).
Comorbidity records were obtained using the Charlson
Comorbidity Index and the International Classification
of Disease codes (ICD-10).12

Data from SNUH-HSGC were used for model
development and internal validation, and data from
SNUH-HPC were used for external validation. Note that
even though SNUH-HSGC and SNUH-HPC are in the
same hospital group, they are approximately seven miles
apart. In addition, most visitors of SNUH-HSGC are
working people near Gangnam-gu, Seoul, whereas those
of SNUH-HPC are everyone in the Republic of Korea.
Accordingly, SNUH-HSGC has a relatively high pro-
portion of males, a low age group, and a low rate of
comorbidities compared with SNUH-HPC.

Type 2 diabetes was defined as cases with fasting
serum glucose values of 126 mg/dL or above or HbA1c
values of 6.5% or above.13 We introduced an additional
variable, diabetic ECG, which is determined by a DLM
trained on ECG and corresponding prevalent type 2
diabetes, for survival analysis on incident type 2 diabetes
in a non-diabetic population. A DLM was trained to
classify prevalent type 2 diabetes using ECG signals,
age, and sex as inputs. Using the trained model, we
divided the non-diabetic group into the diabetic ECG
group (false positive) and the non-diabetic ECG group
(true negative) according to the DLM decision.

The Institutional Review Board (IRB) of Seoul Na-
tional University Hospital (IRB approval No. 2204-001-
1310) approved the study with a waiver of informed
consent, considering that our study used retrospective
and observational electronic medical records and ECG
data. The approval aligns with the principles outlined in
the Declaration of Helsinki, the Korean Bioethics and
Safety Act (Law No. 16372), and the Human Research
Protection Program–Standard Operating Procedure of
Seoul National University Hospital.

Data preprocessing
For all leads of ECG, we applied a fifth-order Butter-
worth filter with a frequency range between 0.05 and
150 Hz according to the American Heart Association
standards and scaled the filtered signal to range be-
tween −1 and 1. The dimensions of the ECG were
12 × 5000, and the leads were arranged in the following
order: I, II, V1–V6, III, aVR, aVL, and aVF. Considering
a scenario using smartwatch, we conducted experiments
with 1- and 2-lead ECGs in addition to 12-lead ECG. For
2-lead ECG, we used leads I and II because they can be
measured by smartwatch users themselves; lead I can be
measured by wearing a smartwatch on the left hand and
placing the right finger on it, and lead II can be
measured by wearing a smartwatch on the left ankle and
3
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the right finger on it. For 1-lead ECG, we used lead II
which is commonly used for basic cardiac moni-
toring.14,15 For glucose and HbA1c values, we removed
outliers outside the range [Q1—5 IQR, Q3 + 5 IQR],
where Q1 and Q3 are the first and third quartiles,
respectively, and the IQR is Q3—Q1. Data from SNUH-
HSGC were randomly split into development (60% for
training and 20% for validation) and internal validation
(20%) datasets. After removing outliers, the means and
standard deviations of glucose and HbA1c were calcu-
lated from development datasets, and those values were
used for standard normalisation of both development
and internal validation datasets. For external validation
datasets, the outlier removal and the normalisation were
performed in the same way independently.

Long-term risk evaluation
This study aimed to evaluate the long-term risk of
incident type 2 diabetes in a non-diabetic population.
For survival analysis on incident type 2 diabetes, we
introduced an additional variable, diabetic ECG, deter-
mined by a DLM trained on ECG and corresponding
prevalent diabetes. The washout period of six months
was applied to prevent potential data contamination
caused by a mixture of prevalent and incident cases. The
excluded cases were assumed to be offered limited
benefits because they were considered to have already
had diabetes risk from the visit. In addition, those
prevalent cases may cause contamination to risk evalu-
ation of incident cases. Individuals without diabetes
were divided into two groups and compared: the dia-
betic ECG group and the non-diabetic ECG group. We
fitted a Cox proportional hazard (CPH) model, regress-
ing the occurrence of type 2 diabetes on the DLM de-
cision. Three CPH models were created, the first of
which was adjusted for age and sex. Subsequently,
comorbidities and laboratory values for glucose and
HbA1c were cumulatively added for additional adjust-
ments in the second and last models. Comorbidities
included malignant tumours, peptic ulcer disease, ce-
rebrovascular disease, connective tissue disease,
myocardial infarction, pulmonary disease, and liver
disease. The rest are excluded because of low incidence
ratios. To fit the CPH model using more normal in-
dividuals, we redefined the normal ranges of glucose
and HbA1c levels (glucose < 110 mg/dL and
HbA1c < 5.6%) to exclude borderline cases.

Deep learning training
Our DLM consists of three layers: an ECG waveform
processing layer based on a one-dimensional ResNet, a
patient information processing layer that uses a multi-
layer perceptron (MLP), and a type 2 diabetes detection
layer that uses another MLP to return the probability of
type 2 diabetes based on the concatenated outputs of the
previous two layers. The type 2 diabetes detection layer
ends with double nodes that reflect the two exclusive
classes (normal and type 2 diabetes). The model archi-
tecture is shown in Supplementary Fig. S1, and its
detailed configuration is described in Supplementary
Table S1. We set the batch size to 2048 and used the
cross-entropy loss and Adam optimizer16 with a learning
rate of 0.0003. The model was trained for a maximum of
100 epochs, and early stopping was set with a patience
of 20 on the performance measured using the AUROC.
Experiments were conducted on 1-, 2-, and 12-lead
ECGs with and without patient information and on pa-
tient information only. In the last case, only the MLP
was used. We used Guided Grad-CAM17 to determine
where the model focused on when detecting type 2
diabetes. PyTorch (version 1.12.0) in Python was used
for deep learning training.

Statistical analysis
The characteristics such as age, sex, ECG features, and
comorbidities, between diabetic and non-diabetic
groups and between hospitals were compared by
calculating P-values using the Student’s t-test for
continuous variables and the χ2 and Fisher’s exact tests
for categorical variables. To measure and compare the
performance of the models, we used the AUROC and
area under the precision–recall curve (AUPRC). The
confidence intervals (CIs) of the AUROC and AUPRC
were calculated using DeLong’s method,18 and those of
sensitivity, specificity, precision, and F1-score were
calculated using Wilson’s method.19 For survival anal-
ysis, all CPH models were fitted by Breslow’s method
with a penaliser of 0.01, considering the potential
collinearity of the datasets.20,21 The proportional hazard
(PH) assumption was verified using scaled Schoenfeld
residuals and a log (−log (survival)) plot. The Nelson–
Aalen cumulative hazard curve was used to assess the
risk of incident type 2 diabetes. Hazard ratios (HRs)
with a 95% CI were reported for all variables. As a
sensitivity analysis, we screened more normal in-
dividuals with lower glucose and HbA1c levels and
implemented the same procedures. Statistical signifi-
cance was set at α = 0.05. All statistical analyses were
performed using Python (version 3.8.10), and Lifelines
(version 0.27.7) in Python was used for survival analysis.

Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report.
Results
This study included 187,524 individuals who visited
SNUH-HSGC between 1 January 2004 and 31
December 2022 and 84,449 who visited SNUH-HPC
between 1 January 2001 and 31 December 2022.
43,292 individuals from SNUH-HSGC and 38,100 in-
dividuals from SNUH-HPC were excluded based on our
www.thelancet.com Vol 68 February, 2024
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cohort criteria, and 144,232 individuals from SNUH-
HSGC and 46,349 individuals from SNUH-HPC were
finally included in our study population, as shown in
Fig. 1. The baseline characteristics of the hospitals are
presented in Table 1. The overall age and rate of
comorbidities were higher for SNUH-HPC, and the
proportion of males was higher for SNUH-HSGC. For
both hospitals, the diabetic group was older, and the
male group had a high prevalence of type 2 diabetes.
The proportion of patients with type 2 diabetes was
approximately 5.35% (7717/144232) for SNUH-HSGC
and 5.66% (2622/46349) for SNUH-HPC. Out of
144,232 participants in SNUH-HSGC, 1540 were diag-
nosed using only glucose, 3085 using only HbA1c, and
3092 using both glucose and HbA1c. Among the 46,349
participants in SNUH-HPC, 477 were diagnosed using
only glucose, 1332 using only HbA1c, and 813 using
both glucose and HbA1c. The distributions of the ECG
features in both hospitals were generally similar. For
both hospitals, the PP interval, QT interval, RR interval,
ST-T segment, and TP interval were shorter in the dia-
betic group, and the remaining ECG features were
similar between the diabetic and non-diabetic groups.
All the ECG features were derived from lead II.

The performance of the DLM in detecting type 2
diabetes is shown in Table 2. The model trained by 12-
lead ECG and patient information (age and sex)
exhibited the best detection performance, with an
AUROC of 0.816 (0.807–0.825) for internal validation
and 0.762 (0.754–0.770) for external validation. This
model also exhibited the best AUPRC with 0.179
(0.170–0.188) in the internal validation and 0.145
(0.136–0.153) in the external validation. The model
trained using 2-lead ECG and patient information
exhibited a fair performance, with an AUROC of 0.800
(0.791–0.810) in internal validation and 0.744
(0.736–0.753) in external validation. The use of 1-lead
ECG was ineffective. The detection performance
Fig. 1: Populatio
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significantly improved for all cases except when using a
1-lead ECG when the ECG was added to the patient
information. The receiver operating characteristic
(ROC) and precision–recall curves of all the experiments
are shown in Fig. 2, and the results of Guided Grad-
CAM are shown in Fig. 3. For both hospitals, we
randomly selected 10 true-positive ECG samples from
the DLM trained by 12-lead ECG and patient informa-
tion, and provided the results of lead II. For most
samples, the model focused on the QRS complex to
detect type 2 diabetes; however, some exceptions
focused on P or T waves.

The median follow-up from the first visit for a health
checkup to incident type 2 diabetes or the end of the
study was 11.84 years (average 11.08 years; standard
deviation 5.14 years; range 0–18.65 years). Note that we
used the decision of DLM trained by 12-lead ECG and
patient information for all survival analyses. The median
diabetes assessment intervals of SNUH-HSGC and
SNUH-HPC were 301 days and 119 days, respectively.
The Nelson–Aalen cumulative hazard curves for inci-
dent type 2 diabetes are shown in Fig. 4, and the HRs of
all variables are listed in Table 3. The gap between the
curves of the diabetic ECG group and the non-diabetic
ECG group was clearly proportional to time in both
the internal and external validation datasets. The risk of
incident type 2 diabetes was significantly higher in the
diabetic ECG group than the non-diabetic ECG group.
For all CPH models, the diabetic ECG group exhibited
an increased risk of incident type 2 diabetes compared
with the well-classified group with an HR of 2.15
(1.83–2.53) for internal validation and 1.92 (1.75–2.12)
for external validation in CPH model 1. For CPH model
2, the HR was almost the same. In CPH model 3,
glucose and HbA1c values were added for adjustment,
and the HR was still significant at 1.67 (1.41–1.96) for
internal validation and 1.44 (1.31–1.59) for external
validation. The average glucose and HbA1c levels of the
n flowchart.

5
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SNUH-HSGC: SNUH-HPC: Between hospitals

Development and internal validation set External validation set

Diabetic Non-diabetic P-value Diabetic Non-diabetic P-value P-value

(n = 7717) (n = 136,515) (n = 2622) (n = 43,727)

Age 56.36 ± 10.20 45.69 ± 11.92 <0.0001 59.63 ± 10.51 50.96 ± 12.94 <0.0001 <0.0001

Male sex 5276 (68.37) 67,918 (49.75) <0.0001 1485 (56.64) 20,782 (47.53) <0.0001 <0.0001

ECG features (sec)

P wave duration 0.07 ± 0.02 0.07 ± 0.02 0.0836 0.07 ± 0.02 0.07 ± 0.02 <0.0001 <0.0001

PR interval 0.15 ± 0.03 0.15 ± 0.03 <0.0001 0.15 ± 0.03 0.15 ± 0.03 <0.0001 <0.0001

PP interval 0.88 ± 0.14 0.92 ± 0.14 <0.0001 0.89 ± 0.15 0.93 ± 0.14 <0.0001 <0.0001

PR segment 0.08 ± 0.03 0.08 ± 0.04 <0.0001 0.09 ± 0.03 0.09 ± 0.04 0.3328 <0.0001

QRS duration 0.11 ± 0.05 0.11 ± 0.05 <0.0001 0.11 ± 0.05 0.11 ± 0.05 0.0007 <0.0001

QT interval 0.37 ± 0.05 0.38 ± 0.05 <0.0001 0.37 ± 0.06 0.39 ± 0.05 <0.0001 <0.0001

RR interval 0.88 ± 0.14 0.92 ± 0.14 <0.0001 0.89 ± 0.15 0.93 ± 0.14 <0.0001 <0.0001

ST segment 0.13 ± 0.06 0.13 ± 0.06 0.0014 0.14 ± 0.06 0.14 ± 0.06 0.0484 <0.0001

ST-T segment 0.26 ± 0.05 0.27 ± 0.05 <0.0001 0.27 ± 0.06 0.28 ± 0.06 <0.0001 <0.0001

TP interval 0.36 ± 0.11 0.39 ± 0.10 <0.0001 0.37 ± 0.11 0.39 ± 0.10 <0.0001 <0.0001

Comorbidities

Liver disease 14 (0.18) 248 (0.18) 1.0000 17 (0.65) 338 (0.77) 0.5514 <0.0001

Myocardial infarction 10 (0.13) 56 (0.04) 0.0011 15 (0.57) 134 (0.31) 0.0311 <0.0001

Cerebrovascular disease 21 (0.27) 186 (0.14) 0.0036 36 (1.37) 358 (0.82) 0.0038 <0.0001

Peripheral vascular disease 4 (0.05) 36 (0.03) 0.1643 3 (0.11) 93 (0.21) 0.3774 <0.0001

Peptic ulcer disease 25 (0.32) 193 (0.14) 0.0001 3 (0.11) 78 (0.18) 0.6297 0.2937

Malignant tumour 30 (0.39) 351 (0.26) 0.0377 30 (1.14) 538 (1.23) 0.7655 <0.0001

Metastatic carcinoma 0 (0.00) 13 (0.01) 1.0000 3 (0.11) 14 (0.03) 0.0679 0.0001

Pulmonary disease 10 (0.13) 179 (0.13) 1.0000 10 (0.38) 210 (0.48) 0.5693 <0.0001

Renal disease 2 (0.03) 11 (0.01) 0.1512 9 (0.34) 40 (0.09) 0.0004 <0.0001

Paraplegia and hemiplegia 0 (0.00) 3 (0.00) 1.0000 1 (0.04) 6 (0.01) 0.3348 0.0027

Connective tissue disease 1 (0.01) 53 (0.04) 0.3694 0 (0.00) 73 (0.17) 0.0359 <0.0001

Heart failure 1 (0.01) 4 (0.00) 0.2404 1 (0.04) 9 (0.02) 0.4414 0.0004

Dementia 1 (0.01) 6 (0.00) 0.3195 2 (0.08) 15 (0.03) 0.2496 <0.0001

aAll data are shown as mean ± SD and n (%).

Table 1: Baseline characteristics of the included participants.a
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diabetic ECG group were higher than the non-diabetic
ECG group as shown in Supplementary Table S2. The
scaled Schoenfeld residuals and a log–log plot for the
verification of the PH assumption are shown in
Supplementary Figs. S2 and S3. To fit the CPH model
using the more normal group, we screened the in-
dividuals with glucose < 110 mg/dL and HbA1c < 5.6%,
and the HR of model classification adjusted by all vari-
ables was 1.81 (1.32–2.48) and 1.48 (1.20–1.82) for in-
ternal and external validation datasets, respectively. The
Nelson–Aalen cumulative hazard curves and HRs of all
CPH models for the more normal group are shown in
Supplementary Fig. S4 and Table S3.
Discussion
This study included 190,581 individuals without any
history of diabetes who visited two separate hospitals for
health checkups. We divided non-diabetic individuals
into the diabetic ECG group and the non-diabetic ECG
group, and compared the risk of incident type 2 diabetes
by the CPH model with appropriate adjustments. The
diabetic ECG group was observed to be more susceptible
to incident type 2 diabetes than the non-diabetic ECG
group, with a significant HR of 2.15 for internal vali-
dation and 1.92 for external validation. It can be an
opportunity for those with normal glucose and HbA1c
but diabetic ECG to learn what lifestyle they should
make and which interventions are needed to prevent the
development of diabetes.22–27

The correlation between ECG and type 2 diabetes
was ascertained by training the model using ECG
exclusively. The model trained by the 12-lead ECG
exhibited fair performance, achieving an AUROC of
0.787. While the performance declined with a reduced
number of leads, it still provided sufficient evidence for
the association between ECG and prevalent type 2 dia-
betes. We then compared the performance of the
models trained with both ECG and patient information
(age and sex) with that of the models trained with
www.thelancet.com Vol 68 February, 2024
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AUROC P-
valueb

AUPRC Sensitivity Specificity Precision F1-score

Internal validation

Patient information (Age & Sex) 0.770 (0.760–0.780) .. 0.135 (0.125–0.145) 0.787 (0.783–0.792) 0.631 (0.626–0.637) 0.109 (0.105–0.112) 0.191 (0.186–0.195)

12-lead ECG only 0.787 (0.777–0.797) 0.1179 0.165 (0.154–0.175) 0.826 (0.822–0.831) 0.611 (0.605–0.616) 0.108 (0.104–0.112) 0.191 (0.187–0.196)

12-lead ECG + Patient information 0.816 (0.807–0.825) <0.0001 0.179 (0.170–0.188) 0.846 (0.842–0.850) 0.651 (0.646–0.657) 0.122 (0.118–0.125) 0.213 (0.208–0.217)

2-lead ECG only 0.734 (0.722–0.746) 0.0037 0.121 (0.109–0.133) 0.774 (0.769–0.779) 0.592 (0.586–0.598) 0.098 (0.094–0.101) 0.173 (0.169–0.178)

2-lead ECG + Patient information 0.800 (0.791–0.810) <0.0001 0.158 (0.149–0.167) 0.803 (0.799–0.808) 0.680 (0.674–0.685) 0.125 (0.121–0.129) 0.217 (0.212–0.221)

1-lead ECG only 0.640 (0.627–0.654) <0.0001 0.083 (0.069–0.096) 0.632 (0.627–0.638) 0.589 (0.583–0.595) 0.081 (0.078–0.084) 0.143 (0.139–0.147)

1-lead ECG + Patient information 0.771 (0.761–0.781) 0.4529 0.135 (0.125–0.145) 0.771 (0.766–0.776) 0.650 (0.644–0.655) 0.112 (0.108–0.115) 0.195 (0.190–0.200)

External validation

Patient information (Age & Sex) 0.705 (0.696–0.714) .. 0.109 (0.099–0.118) 0.812 (0.808–0.815) 0.491 (0.487–0.496) 0.087 (0.085–0.090) 0.158 (0.154–0.161)

12-lead ECG only 0.748 (0.740–0.757) <0.0001 0.139 (0.130–0.147) 0.788 (0.784–0.792) 0.586 (0.581–0.590) 0.102 (0.100–0.105) 0.181 (0.178–0.185)

12-lead ECG + Patient information 0.762 (0.754–0.770) <0.0001 0.145 (0.136–0.153) 0.801 (0.798–0.805) 0.598 (0.593–0.602) 0.107 (0.104–0.110) 0.188 (0.185–0.192)

2-lead ECG only 0.701 (0.691–0.710) 0.9326 0.109 (0.099–0.118) 0.694 (0.690–0.698) 0.607 (0.602–0.611) 0.096 (0.093–0.098) 0.168 (0.165–0.172)

2-lead ECG + Patient information 0.744 (0.736–0.753) <0.0001 0.131 (0.123–0.140) 0.791 (0.788–0.795) 0.584 (0.580–0.589) 0.102 (0.100–0.105) 0.181 (0.178–0.185)

1-lead ECG only 0.625 (0.614–0.636) <0.0001 0.082 (0.072–0.093) 0.603 (0.598–0.607) 0.591 (0.587–0.596) 0.081 (0.079–0.084) 0.143 (0.140–0.146)

1-lead ECG + Patient information 0.704 (0.695–0.713) 0.8140 0.108 (0.099–0.117) 0.796 (0.793–0.800) 0.508 (0.504–0.513) 0.089 (0.086–0.091) 0.159 (0.156–0.163)

aBold is the best and underlined is the second best. bP-values were calculated using the DeLong method.

Table 2: Performance of the DLM for detecting type 2 diabetes.a

Fig. 2: Receiver operating characteristic and precision–recall curves of the deep learning models for detecting type 2 diabetes. AUROC; area under
the receiver operating characteristic curve, AUPRC; area under the precision precision–recall curve. ECG; electrocardiogram.
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Fig. 3: Samples of Guided Grad-CAM applied ECG. All cases were observed with lead II.
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patient information only. We observed that the inclu-
sion of ECG data alongside patient information signifi-
cantly enhanced the detection performance. Our model
is highly likely to be utilised in a wearable system; the
model trained by 2-lead ECG and patient information
showed fair performance (AUROC of 0.800), and the
size of the model was less than 8 MB, which is suffi-
ciently small to be embedded in a device. Because
smartwatches can easily measure leads I and II, users
can check the risk of incident type 2 diabetes in real-
time. In addition to the CNN-based model, we applied
a representative recurrent neural network (RNN) model,
long short-term memory (LSTM).28 However, the per-
formance of the LSTM trained with the 12-lead ECG and
patient information was almost the same as that of the
model trained with patient information, with an
AUROC of 0.771. The CNN filters can appear to extract
proper information by compressing the phenotype of
the ECG itself, whereas the RNN receives numerical
data individually without any consideration of the
phenotype.

Diabetes and cardiovascular disease are closely
associated.29,30 However, there is no standard report that
explains the characteristics of ECG in patients with
diabetes compared with those without diabetes.
Although some ECG features (PP interval, QT interval,
RR interval, ST-T segment, and TP interval) with sig-
nificant differences were observed between the diabetic
and non-diabetic groups (Table 1), we could not find any
literature supporting this finding. Considering the dif-
ferences in ECG features and assuming that those fea-
tures can classify prevalent type 2 diabetes, we trained a
www.thelancet.com Vol 68 February, 2024
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Fig. 4: Nelson–Aalen cumulative hazard curves on incident type 2 diabetes for individuals without diabetes. ECG; electrocardiogram.
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random forest and LightGBM31 using a total of 10 ECG
features. However, the performance was poor, with an
AUROC of less than 0.63. Accordingly, we confirmed
the suitability of our CNN-based model. However, con-
cerns remain regarding the black box of neural net-
works. To determine where our DLM focused on
detecting prevalent type 2 diabetes, we adapted Guided
Grad-CAM17 to localise the important regions. The QRS
complex was primarily focused on, and T and P waves
were also occasionally noted; however, no clinical
research supports these results. No additional patterns
were observed.

This study primarily focused on showing a higher
long-term risk of incident type 2 diabetes in non-diabetic
individuals with diabetic ECG than in those with non-
diabetic ECG. Initially, we adjusted the CPH model
using age and sex and then added comorbidity variables
to the CPH model. While the HR of diabetic ECG was
expected to decline after adjustment because comor-
bidity variables, such as liver disease and myocardial
infarction, are known to be related to type 2 diabetes,32,33

the HR changed slightly and was still statistically sig-
nificant. To further verify the effectiveness of the dia-
betic ECG, we adjusted the CPH model with values of
glucose and HbA1c, which were the variables most
related to type 2 diabetes in this study, and the HR was
still significant even after adjustment. As a sensitivity
analysis, we reduced the upper limits of glucose (from
126 to 110 mg/dL) and HbA1c (from 6.5 to 5.6%) to
exclude borderline cases and validate the diabetic ECG
www.thelancet.com Vol 68 February, 2024
on more normal people. We fit CPH models again, and
the diabetic ECG group still exhibited an increased risk
of incident type 2 diabetes compared with the non-
diabetic ECG group, with an HR of 1.84 (1.34–2.53)
for internal validation and 1.58 (1.28–1.94) for external
validation. This implies that the risk of incident type 2
diabetes can be assessed using ECG in individuals with
a relatively low risk of developing type 2 diabetes.
Consequently, non-diabetic individuals with diabetic
ECG can perceive a potential risk of type 2 diabetes and
can be exposed to proper lifestyle and interventions to
prevent the development of diabetes. Regarding diabetes
assessment interval, the main cause of the difference
between the two hospitals is as follows: SNUH-HSGC is
specialised in health checkups and is locally separated
from SNUH, while SNUH-HPC is locally a part of
SNUH, which is one of the biggest tertiary hospitals in
the Republic of Korea. Thus, people visiting SNUH-
HPC might have had other health concerns rather
than diabetes, and those people might have undergone
blood tests as an inpatient or outpatient.

The limitations of our study are as follows: First, the
CPH model would benefit from additional adjustments
using variables such as body mass index. However, we
could not access height and weight data owing to in-
ternal circumstances, despite their significance in
influencing type 2 diabetes.34 Second, although we
externally validated our model, it should be further
investigated if it is valid for ECG from another system
because this study used a single ECG recording system.
9
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CPH model 1 P-value CPH model 2 P-value CPH model 3 P-value

Hazard ratio Hazard ratio Hazard ratio

(CI 95%) (CI 95%) (CI 95%)

Internal validation

Baseline

Diabetic ECG 2.15 (1.83–2.53) <0.0001 2.15 (1.82–2.53) <0.0001 1.67 (1.41–1.96) <0.0001

Age 1.02 (1.01–1.03) <0.0001 1.02 (1.01–1.03) <0.0001 1.01 (1.01–1.02) 0.0003

Sex 1.27 (1.09–1.47) 0.0016 1.27 (1.10–1.47) 0.0015 1.17 (1.01–1.36) 0.0349

Comorbidities

Malignant tumour 2.40 (0.78–7.39) 0.1264 2.53 (0.81–7.84) 0.1090

Peptic ulcer disease 1.08 (0.20–5.70) 0.9304 1.02 (0.20–5.34) 0.9786

Cerebrovascular disease 0.51 (0.03–7.49) 0.6244 0.52 (0.04–7.71) 0.6345

Connective tissue disease 0.67 (0.01–67.54) 0.8670 0.76 (0.01–92.24) 0.9089

Myocardial infarction 3.10 (0.43–22.52) 0.2638 3.00 (0.42–21.65) 0.2757

Pulmonary disease 1.38 (0.25–7.61) 0.7103 1.41 (0.25–7.88) 0.6925

Liver disease 1.13 (0.22–5.70) 0.8814 1.22 (0.24–6.27) 0.8130

Laboratory values

Glucose 1.04 (1.03–1.05) <0.0001

HbA1c 4.31 (3.41–5.45) <0.0001

External validation

Baseline

Diabetic ECG 1.92 (1.75–2.12) <0.0001 1.92 (1.74–2.11) <0.0001 1.44 (1.31–1.59) <0.0001

Age 1.02 (1.01–1.02) <0.0001 1.02 (1.01–1.02) <0.0001 1.01 (1.00–1.01) 0.0012

Sex 1.20 (1.10–1.31) <0.0001 1.19 (1.10–1.30) <0.0001 1.19 (1.09–1.29) 0.0001

Comorbidities

Malignant tumour 1.45 (1.01–2.08) 0.0420 1.30 (0.91–1.85) 0.1471

Peptic ulcer disease 0.39 (0.11–1.36) 0.1412 0.48 (0.13–1.74) 0.2646

Cerebrovascular disease 1.29 (0.86–1.92) 0.2158 1.17 (0.79–1.74) 0.4409

Connective tissue disease 1.42 (0.50–4.09) 0.5109 1.85 (0.63–5.48) 0.2647

Myocardial infarction 3.52 (2.26–5.47) <0.0001 2.98 (1.92–4.62) <0.0001

Pulmonary disease 1.41 (0.83–2.38) 0.2054 1.30 (0.77–2.20) 0.3237

Liver disease 2.37 (1.64–3.43) <0.0001 2.34 (1.62–3.38) <0.0001

Laboratory values

Glucose 1.05 (1.04–1.05) <0.0001

HbA1c 4.97 (4.32–5.71) <0.0001

Table 3: Adjusted HRs for incident type 2 diabetes for individuals without diabetes.
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Detailed ECG phenotypes may differ depending on the
equipment used. Third, the specificities of the models
were relatively low and this may cause many false
alarms of wearable devices even though our model can
be built into wearable devices such as smartwatches.
Accordingly, improving specificity and precision
through developing better models and proposing
appropriate protocols for diabetic risk monitoring using
wearable devices is suggested for future works. Fourth,
the results of Guided Grad-CAM should be analysed
qualitatively using relevant clinical domain knowledge.
The Guided Grad-CAM exhibited that our model mainly
focused on the QRS complex and occasionally on P or T
waves to detect type 2 diabetes. Unfortunately, there was
no previous clinical research investigating the relation-
ship between the phenotype of ECG and diabetes to
support our result. If obvious regional patterns are
discovered and supported by proper clinical reasons, our
model would be more likely to be used in the medical
field with improved explainability. Finally, because this
study constructed a censored dataset using the database
of each hospital, the diagnoses of incident type 2 dia-
betes in other hospitals were not considered. The reli-
ability of the study will be improved if individual
diabetes records can be tracked using the diagnostic
records of all hospitals in the Republic of Korea through
institutions such as the National Health Insurance
Service.

In conclusion, this study demonstrated that the DLM
can effectively evaluate the long-term risk of incident
type 2 diabetes in a non-diabetic population using ECG.
Individuals without prior diabetes concerns can perceive
their potential risk of type 2 diabetes through an ECG-
based diagnosis. This study had limitations in data
www.thelancet.com Vol 68 February, 2024
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acquisition, a single ECG recording system, low speci-
ficity, finite explanations of the model without support-
ing clinical background, and participant tracking. For
future works, discovering better models with improved
specificity, clinical research on the relationship between
the phenotype of ECG and diabetes to support our
result, and further investigation with tracked data and
various ECG recording systems are suggested.
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