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Abstract: Breast cancers and cancers of the genitourinary tract are the most common malignancies
among men and women and are still characterized by high mortality rates. In order to improve the
outcomes, early diagnosis is crucial, ideally by applying non-invasive and specific biomarkers. A
key role in this field is played by extracellular vesicles (EVs), lipid bilayer-delimited structures shed
from the surface of almost all cell types, including cancer cells. Subcellular structures contained in
EVs such as nucleic acids, proteins, and lipids can be isolated and exploited as biomarkers, since
they directly stem from parental cells. Furthermore, it is becoming even more evident that different
body fluids can also serve as sources of EVs for diagnostic purposes. In this review, EV isolation
and characterization methods are described. Moreover, the potential contribution of EV cargo for
diagnostic discovery purposes is described for each tumor.

Keywords: oncology; extracellular vesicles; liquid biopsy

1. Introduction

Cancer is a major public health problem representing the second cause of death world-
wide after cardiovascular diseases. In total, 19.3 million new cancer cases (18.1 million
excluding non-melanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million
excluding non-melanoma skin cancer) were estimated worldwide in 2020 [1]. Breast cancer
is described as the most commonly diagnosed cancer in women and the leading cause
of cancer-related death in the female population [1,2]. In addition, gynecological malig-
nancies, including ovarian cancer, endometrial cancer, and genitourinary neoplasms, such
as prostate, bladder, and kidney neoplasms, greatly contribute to the cancer burden glob-
ally [3–7]. In addition, the COVID-19 pandemic in 2020 has further indirectly influenced
the existing cancer-associated medical and social issues [8,9]. The consequences of the
delays in diagnosis and lack of patient care associated with the pandemic may change the
population wellness in the upcoming years. This challenging period further highlights the
need for worth cancer diagnostics able to promptly and easily detect the disease in a large
population, particularly in the highly prevalent breast and prostate cancers.

Using liquid biopsy, which consists of the analysis of tumor cells and tumor derivatives
in biological fluids, it may be challenging to hastily process a large number of clinical
samples and to speed up early cancer diagnosis [10]; therefore, the discovery of novel
diagnostic tools based on liquid biopsy derivatives may revolutionize the clinical practice.
Indeed, extracellular vesicles (EVs) are the most promising candidates.

EVs are bilayer lipid-membrane-limited structures, which are derived from the cell
membrane or from the cytoplasmic materials and released in the microenvironment by
almost all cell types. EVs convey a huge variety of cellular-derived molecules, such as
lipids, proteins, DNA, messenger RNAs (mRNAs), microRNAs (miRNA), small non-coding
RNAs (sncRNAs), and long non-coding RNAs (lncRNAs) [11].
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Based on the Minimal Information for Studies of Extracellular Vesicles (MISEV) guide-
lines of the International Society of Extracellular Vesicles (ISEV), EVs can be classified on
the basis of their size (for example small EVs or medium-large EVs), biochemical features,
density, or cell of origin [12]. EVs participate in both physiological and pathological human
diseases, including cancers. Specifically, in cancer, EVs play an essential role in different
oncogenic processes in the tumor microenvironment (TME) and at distant sites [13,14].

Unbiased and quantifiable features of specific biological processes are required for
biomarker discovery. Moreover, biomarkers should provide insight into the mechanism
of the disease, should be easy to measure, inexpensive, differentially expressed in phys-
iological and pathological settings, and detected by non-invasive procedures [15]. Since
EVs can be recovered in different biological fluids, including serum, plasma urine, ascites,
pleural, and pericardial effusions, their contents reflect the microenvironment of the cell
of origin and express specific markers of their cell of origin. EVs hold great potential as
cancer biomarkers and for use in diagnostics. In this review, current evidence and future
EV-related perspectives for the diagnosis of gynecological and genitourinary cancers are
discussed.

2. Isolation and Characterization of EVs for the Diagnosis of Gynecological and
Genitourinary Malignancies

EVs that are regularly secreted by normal cells into the extracellular space can be
recovered in many if not all biological fluids [16,17]. More importantly, specific cancer-cell-
derived EVs are released into the extracellular space and can be found in plasma, serum,
and urine of tumor-bearing patients. The ability to properly isolate EVs without altering
their structural and biological features represents an important step to implement EV-based
cancer diagnostic strategies. After isolation, many molecular biology techniques can be
applied to characterize patient-derived EVs. The characterization process should ideally be
able to identify specific features of cancer-derived EV, such as miRNAs, proteins, or DNA,
to precisely distinguish cancer from healthy individuals. In this paragraph, we discuss
the sources and methods used to isolate and characterize EVs relevant for the diagnosis of
breast, gynecological, and genitourinary cancers.

Ultracentrifugation (UC), density gradient centrifugation (DC), precipitation, im-
munoaffinity capture, size exclusion chromatography (SEC), and microfluidic-based iso-
lation are the most relevant EV isolation procedures for patients with suspected can-
cer [17,18]. UC has historically been regarded as the gold standard for EV isolation in basic
and translational research. This consists of low-speed centrifugation (300× g for 10 min)
aiming to eliminate dead cells and apoptotic bodies followed by high speed centrifugation
(100,000× g for 2 h) [19]. Even if UC is a widely used method in EV research, several issues
limit its clinical application. Indeed, UC-based isolation does not guarantee sufficient EV
purity, particularly for EV-associated proteins. DC is similar to UC, although increasing
concentrations of sucrose or iodixonal are added on the top of the gradient before the
centrifugation process [20]. The EV purity using DC is higher than using UC, since it better
eliminates contaminating proteins [19]; however, both UC and DC are time-consuming and
time-demanding, making their clinical application difficult. Precipitation (e.g., including
commercially available kits such as ExoQuick) involves the use of polyethylene glycol
(PEG) to pellet EVs at lower centrifugation speeds [21]. It is less time-consuming than UC
and DC, although the risk of protein contamination is higher and further purification proce-
dures should be adopted to obtain a good standard of purity. The study by Zhang et al. [20]
compared UC and DG to isolate human cancer cell line (TCA8813) EVs. DG-derived EVs
were found to be uniform in size and more enriched in EV-specific proteins, indicating a
higher isolation efficiency than UC; however, routine clinical application of DG is limited
by its cost, the need for technical skills, and the time needed for the isolation process. Tauro
and colleagues [19] compared UC, DG, and the immunoaffinity capture method for the
isolation of human cancer cell line (LIM1863)-derived EVs. EVs obtained from culture
media using these different methods have been analysed using Western blot, transmis-
sion electron microscopy (TEM), and liquid chromatography tandem mass spectrometry
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(GeLC-MS/MS). All methods were able to isolate EVs ranging from 40 to 100 nm; how-
ever, the immunoaffinity capture technique was considered superior, since EV markers
and EV-associated proteins were enriched at least two-fold compared to UC and DG. An
additional advantage of the immunoaffinity-based isolation method is in its ability to
selectively capture EVs based on their source and specific surface markers (e.g., from cancer
cells). SEC is able to separate EVs based on their size and hydrodynamic diameter [16,22].
SEC uses a column for chromatographic separation and has been shown to isolate EVs
from a large variety of body fluids, such as plasma, serum, or urine (making it a potential
non-invasive approach for renal and prostate cancer screening and diagnosis). As proposed
by Böing et al. [23], SEC can be used for rapid and simple EV isolation and purification.
SEC isolation can avoid the enrichment of additional proteins, which is a relevant step for
their clinical application; however, the potential limitations of this technique include the
enrichment of non-EV nanoparticles (e.g., particles lacking tetraspanins) displaying similar
hydrodynamic diameters. In fact, the ability of SEC to distinguish EVs from lipoproteins
with satisfactory accuracy is still debated [24].

The transfer of EVs in clinical settings has been also proposed. It has been demon-
strated that EVs can be obtained from different biological fluids, such as serum, plasma,
or urine. Saenz-Cuesta [25] and colleagues compared ExoQuick isolation, UC, and DC,
and proposed the DC protocol for clinical practice. Likewise, Gaspar et al. [26] proposed a
fast and simple protocol for SEC-based EV isolation from plasma. In addition to serum-
and plasma-derived EVs, urine-derived EVs also hold diagnostic potential, especially for
genitourinary and breast cancers. As demonstrated by Cheng et al. [27], 20 mL of urine
is sufficient to extract and analyze EV miRNAs. More importantly, the miRNA content
in urine is higher in EVs than in the cell pellet or cell free urine. In renal, bladder, and
prostate cancers, urine has been proposed for diagnostic purposes [28–32]. Interestingly,
urine can likely be used as a diagnostic tool even in non-genitourinary cancers. As an
example, Hirschfeld et al. [33] investigated the role of urine EV miRNAs in the diagnosis of
breast cancer, obtaining high diagnostic accuracy. This evidence, together with the risk-free,
non-invasive, practitioner-friendly, and cost-efficient procedures associated with urine
collection, make urine a promising diagnostic source for EV-based diagnosis.

In addition to these classic EV isolation and quantification methods, emerging tech-
niques are attracting interest in EV research. Among these, immunoaffinity capture uses
specific antibodies to detect and isolate EVs based on their surface markers [34]. The
antibody–antigen recognition is of particular interest, as it can allow the direct isolation of
specific EVs (e.g., cancer-derived EVs), distinguishing them from those of non-cancer ori-
gin [35]. Variants of this isolation technique, particularly microfluidic-based immunoaffin-
ity capture, have been used to obtain EVs from patient plasma of sufficient purity for
diagnostic purposes in breast cancer [36]. A similar isolation technique based on antibody-
mediated specific EV antigen recognition, called proximity ligation assay, has been used
to isolate prostate-cancer-derived EVs [37]. In recent years, microfluidic devices have
been proposed as valid instruments for EV isolation. The microfluidic isolation technique
has attracted particular interest in this field since it is able to isolate EVs based on (a)
size, (b) density, and (c) surface antigens (microfluidic immunoaffinity capture) [38,39];
however, no definitive data on their potential clinical application are so far available. EV
characterization and analysis are also crucial for their diagnostic application, since the
aim is to detect specific EV-associated cancer biomarkers. An ideal biomarker should be
cancer-type-specific and its diagnostic value should be validated by large-scale diagnostic
studies; therefore, depending on the specific biomarker, different characterization methods
can be applied. An enzyme-linked immune assay (ELISA) can be used for the detection and
quantification of EV-related proteins, flow cytometry (FC) can be used for surface antigen
identification, while OMICS-based techniques can be used for nucleic acid detection in EV
cargo. Several examples in breast, genitourinary, and ovarian cancer are discussed in this
review, while a more detailed description of EV analysis methods is available in [40–42].
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3. Breast Cancer

Breast cancer (BC) is the most common type of tumor among women and the main
cause of cancer-related mortality around the world [2,43]. In recent years, EVs have
been progressively recognized as fundamental players in breast cancer development and
metastasis [44]; thus, there is a constant demand for the development of new diagnostic
tools, including EVs. ELISA and qRT-PCR are the most common methodologies used to
detect specific EV biomarkers based on their cargo. Proteins and RNAs, including miRNAs
and long-noncoding RNAs, have mostly been investigated. For the first time, Cui et al. [45]
identified the lactate dehydrogenase C (LDHC) in serum and EVs as a BC biomarker
by quantifying its mRNA expression in serum, serum-derived EVs, and the protein in
BC tissues. Hannafon et al. [46] demonstrated that miR-21 and miR-1246 are specifically
detected in human breast cancer EVs, in plasma from both breast cancer patient-derived
xenograft (PDX) mice and breast cancer patients. Li et al. [47] focused on the chromosome-
X-located miR-106a–363 cluster, looking into plasma and serum EV miRNAs (miR-106a-3p,
miR-106a-5p, miR-20b-5p, and miR-92a-2-5p in plasma and miR-106a-5p, miR-19b-3p,
miR-20b-5p, and miR-92a-3p in serum). They demonstrated that all miRNAs except for
plasma-derived miR-20b-5p were significantly upregulated in BC patients. Recently, a panel
of four variable urinary miRNAs (miR-424, miR-423, miR-660, and let7-i) was identified
as a diagnostic tool, displaying 98.6% sensitivity and 100% specificity in BC patients [33].
Ozawa et al. [48] have suggested a different miR panel including 3 miRNAs as potential
BC biomarkers. The panel, which includes miR-142-5p, miR-320a, and miR-4433b-5p,
showed an AUC corresponding to 0.8387, a sensitivity of 93.33%, and a specificity of
68.75%. Eichelser et al. [49] demonstrated that exosomal miR-101, miR-372, and miR-373
enriched in serum EVs of patients with BC are higher than in healthy controls. Moreover,
miR-373 was suggested as a triple-negative breast cancer diagnostic biomarker, since it was
higher in this subgroup of patients than in patients with luminal cancers or healthy controls.
In a different study, Moon et al. [50] first demonstrated the enrichment of Del-1 in plasma
EVs as a diagnostic marker for breast cancer in a test cohort and an independent validation
cohort using two different ELISA assays. Moon et al. [51] also identified fibronectin (FN)
as a valid biomarker carried by breast-cancer-derived EVs. More importantly, the authors
showed that the diagnostic accuracy of FN in EVs is higher than in plasma. Kibria et al. [52]
proved that a different CD47 expression in circulating EVs correlated with the BC status,
even though the molecular mechanism is not yet clear.

Fang et al. [36] used a microfluidic chip for immunocapture and quantification of
circulating EVs. This approach allowed the detection of significantly increased EV ep-
ithelial cell adhesion molecule (EpCAM) contents in plasma samples of BC patients. This
observation was in contrast with the data from Rupp and colleagues [53], who failed to
detect EpCAM in serum EVs isolated from BC patients. Since the serum proteolytic activity
may explain this discrepancy, the immunocapture methodology has been proposed as a
more sensitive technique. Furthermore, Fang et al. [36] demonstrated that the EV HER2
content correlates with the tumor tissue content by using a microfluidic chip. Nanou
et al. [54] recently reported a similar prognostic power for EpCAM+ cytokeratin (CK)
circulating tumor cells (CTCs) and tumor-derived EVs (tdEVs), as well as EpCAM+ CK+
CTCs and tdEVs in BC, by including anti-HER2 in the CellSearch assay. They showed
that tdEVs better reflect the HER2 phenotype of primary tumors than CTCs. Interestingly,
they also found that the presence of heterogeneous CTC and tdEVs (2 or 3 different im-
munophenotypes) was associated with poor survival compared to patients with uniform
CTCs and tdEVs (1 immunophenotype). Domenyuk et al. [55] developed the adaptive
dynamic artificial poly-ligand targeting (ADAPT) approach as a highly specific profiling
tool and demonstrated that the binding profile of diverse ssODN libraries, enriched by
“plasma-SELEX”, can be used to identify BC, as well as the tumor biological behavior.
More recently, Moura et al. [56] tested a magneto-actuated immunoassay to detect EVs in
undiluted human serum and were able to differentiate purified EVs from healthy donors
and BC patients by using specific epithelial biomarkers. This tool has been proposed as an
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alternative and more feasible clinical approach compared to the standard flow cytometry
technique. We are confident that all of these technologies have their own limitations; how-
ever, the combination of different methodologies along with clinical information derived
from already established biological tests and imaging would be a future challenge for more
accurate diagnosis, particularly in patients with tumor recurrence.

Kwizera et al. [57] developed a Raman-based assay for the molecular profiling of EVs
and the detection of HER2 and EpCAM-EV contents, with high sensitivity and specificity.
Although Raman-based technology still require standardization, this tool has been pro-
posed for biomarker discovery in HER2-positive BC patients, being able to differentiate
either different subtypes of cancer cells or cancer cells from normal cells. EV-associated
biomarkers investigated for breast cancer diagnosis are reported in Table 1.

Table 1. EV-associated biomarkers in breast cancer.

mRNAs Up/Downregulation Fold-Change References

Lactate Dehydrogenase C Upregulated N/A [45]

miRNAs

miR-21 Upregulated 16.51 [46]

miR-1246 Upregulated 8.72 [46]

miR-106a-3p Downregulated 2.55 [47]

miR-106a-5p Upregulated 3.59 [47]

miR-20b-5p Upregulated 11.25 [47]

miR-92a-3p Downregulated 5.54 [47]

miR-92a-2-5p Upregulated 2.35 [47]

miR-19b-3p Upregulated 10.18 [47]

miR-424 Upregulated N/A [33]

miR-423 Downregulated N/A [33]

miR-660 Downregulated N/A [33]

Let7-i Downregulated N/A [33]

miR-142-5p Upregulated N/A [48]

miR-320a Upregulated −2.03 [48]

miR-4433b-5p Upregulated N/A [48]

miR-101 Upregulated N/A [49]

miR-372 Upregulated N/A [49]

miR-373 Upregulated N/A [49]

Proteins

EpCAM Upregulated
Upregulated N/A [36]

[57]

Fibronectin (FN) Upregulated N/A [51]

LDH-C4 Upregulated N/A [45]

CD47 Expressed N/A [52]

HER2 Expressed
Expressed N/A [36]

[57]
N/A: Not Available.

4. Uterine and Cervical Cancer
4.1. Uterine Cancer

Endometrial cancer (EC) is the most prevalent gynecological cancer in developed
countries [4]. In particular, uterine mesenchymal tumors (UMT) are a heterogeneous group,
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comprising both benign and malignant variants and affecting over 50% of Caucasian
women and up to 80% of African women. UMT are also one of the foremost causes of
hysterectomy [58,59]. Srivastava et al. [60] have suggested the potential application of the
EV-hsa-miR content as a biomarker for endometrial cancer diagnosis.

Dvorská et al. [61] concluded that currently there are no reliable liquid biopsy (LB)
biomarkers able to distinguish specific UMT subtypes at early stages. They also pointed
out that sarcomas appear to be an almost negligible statistical threat to life in comparison
to the “deadliest” cancer types, such as breast, lung, and colon cancers.

4.2. Cervical Cancer

Despite the application of the Papanicolaou test, cervical cancer remains the third
most common cancer in women, second in mortality only after breast cancer. Again, early
diagnosis represents the key strategy to reduce mortality; therefore, there is a constant need
for novel biomarkers with high sensitivity and specificity.

Liu et al. [62] have previously shown the elevated levels of EV miRNA content in cer-
vicovaginal lavage specimens in cervical cancer patients, implying a potential application
of EV miRNAs in non-invasive screening for cervical cancers. Furthermore, they found
that the expression of EV miRNA-21 and miRNA-146a in cervicovaginal lavage specimens
of cervical cancer patients was significantly higher than in HPV-positive subjects and
HPV-negative healthy subjects (in both p < 0.01), suggesting their potential contribution
to cervical cancer development. More recently, Zhang et al. [63] analyzed EV lncRNA
levels in a cohort of 30 cervical cancer patients; 30 cancer-free, HPV-positive subjects; and
30 HPV-negative healthy subjects. They showed that the expression of EV-HOTAIR and
MALAT1 in the cervicovaginal lavage samples of cervical cancer patients was significantly
higher than in HPV-positive subjects and HPV-negative, cancer-free subjects (p < 0.01
and p < 0.05, respectively). Conversely, the EV-MEG-3 level was significantly lower than
in HPV-positive subjects and HPV-negative, cancer-free subjects (p < 0.01 and p < 0.05,
respectively). In a different study, ATF1 and RAS were found to be significantly elevated
in tumors of primary and recurrent cervical cancer mouse models. Moreover, they found
that ATF1 and RAS were among the 5 most expressed genes detected in circulating EVs,
proposing them as diagnostic markers for cervical cancers [64].

Honegger et al. [65] demonstrated that the expression of the E6/E7 oncogenes in
HPV+ cancer cells can induce the upregulation of EV-miR-21-5p and the downregulation
of 6 cervical-cancer-associated EV miRNAs (let7d-5p, miR-20a-5p, miR-378a-3p, miR-423-
3p, miR-7-5p, and miR-92a-3p). Recently, miRNA-7, miRNA-99, miRNA-378, and the
miRNA-17-92 miRNA families were found to be the most dysregulated EV miRNAs in
HPV-associated cancers, particularly in cervical cancer [66]. EV-associated biomarkers
investigated for cervical cancer diagnosis are reported in Table 2.

Table 2. EV-associated biomarkers in cervical cancer.

miRNAs Up/Downregulation Fold-Change References

miR-21 Upregulated N/A [61]

miR-146a Upregulated N/A [61]

miR-20a-5p Downregulated 1.5 [65]

miR-92a-3p Downregulated 1.5 [65]

miR-423-3p Downregulated 1.5 [65]

miR-378a-3p Downregulated 1.5 [65]

miR-7d-5p Downregulated 1.5 [65]
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Table 2. Cont.

miRNAs Up/Downregulation Fold-Change References

lncRNA

HOTAIR Upregulated '5 [63]

MALAT1 Upregulated '3.5 [63]

MEG-3 Downregulated '3 [63]

Proteins

ATF1 Upregulated N/A [64]

RAS Upregulated N/A [64]
N/A: Not Available.

5. Renal Cancer

Renal cell carcinoma (RCC) is one of the most common malignant tumor of the urinary
system, being clear cell RCC (ccRCC) the most common subtype of RCC, which accounts
for 70–85% of the renal parenchymal cancers [6]. A few studies have investigated the
role of urinary EVs as biomarkers in RCC. A RCC-specific signature including 10 up- or
downregulated proteins (such as MMP-9, podocalyxin (PODXL), Dickkopf-related protein
4 (DKK4), carbonic anhydrase IX (CAIX) and ceruloplasmin) were found in the urinary
EVs from RCC patients by proteomics [67]. In a different study, urinary EV transcriptomics
showed a significant difference in mRNA content in ccRCC patients compared to healthy
controls and patients with other RCC types: lower level of EV-GSTA1, CEBPA and PCBD1
mRNA content was proved specific for ccRCC. These data were further sustained by
normalization of their EV expression one month after treatment [68].

Urinary EV lipidomics were also investigated by Del Boccio et al. [69], who demon-
strated a differential lipid composition between RCC patients and healthy subjects, sug-
gesting a relationship between the lipid compositions of urinary EVs and RCC.

In order to identify a specific biomarker that could distinguish between ccRCC pa-
tients and patients with other urinary cancers, Song et al. [70] evaluated urine EV miRNAs
obtained from ccRCC patients, prostate and bladder cancer patients, and healthy con-
trols. They identified miR-30c-5p as being significantly downregulated in ccRCC patients
compared to normal individuals. Furthermore, no significant differences in the urine EV
miR-30c-5p content were found between prostate and bladder cancer patients and healthy
individuals. For the ccRCC diagnosis, the urinary EV-miR-30c-5p content displayed sensi-
tivity and specificity corresponding to 68.57% and 100%, respectively, while the AUC was
0.8192 (95% confidence interval, p < 0.1). Butz et al. [71] showed that several EV-derived
miRNAs used in combination can differentiate ccRCC patients from healthy controls and
patients with benign lesions. In a recent study, Zhao et al. [72] collected serum and urine
samples from 4 ccRCC patients before and after surgery and from controls. Western blot
analysis of the EV protein content in urine showed that ccRCC was associated with in-
creased expression and secretion of PTRF, which significantly decreased after surgery. PTRF
was shown to play an important role in the formation and secretion of EV in malignant
tumors and to be mainly regulated by the EGFR-Akt pathway. Interestingly, the expression
of PTRF was reduced in both cells and EV surfaces by knocking down Shc1 and inhibiting
the Akt pathway in vitro. This demonstrates that the EGFR pathway regulated by Shc1
is closely related to the EV release and cargo in ccRCC. Moreover, the authors suggested
that urine EV enriched in PTRF can reflect the expression of Shc1, proposing it as a ccRCC
biomarker.

EV isolation from clear cell renal cell carcinoma tissue is particularly difficult due to
the intracellular lipids that give the white, “clear” appearance to the ccRCC cells. Based on
this principle, recently Zieren et al. [73] first used NanoFCM on EVs from kidney (tumor)
tissue, demonstrating its advantages over NanoSight; hence, they proposed this optimized
protocol for biomarker discovery and EV biological studies in renal cancers.
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Kurahashi et al. [30] focused on the RCC subtype TFE3 Xp11 translocation RCC
(tRCC), which has been recently recognized as the cause of almost 42% of RCC in children
and young adults [74]. The authors not only demonstrated the significantly increased
expression of miR-204-5p in urinary EVs of 40-week-old tRCC Tg mice compared to
controls, but also that its expression is increased in urinary EVs from 20-week-old Tg mice
prior to the development of tRCC. Moreover, since its increase in the 20-week-old mice was
similar to the 40-week-old Tg mice, miR-204-5p was proposed as a useful biomarker for
early diagnosis of Xp11 tRCC patients. EV-associated biomarkers investigated for renal
cancer diagnosis are reported in Table 3.

Table 3. EV-associated biomarkers in renal cell carcinoma.

mRNAs Up/Downregulation Fold-Change References

GSTA1 Downregulated −1.7 [68]

CEBPA Downregulated −1.89 [68]

PCBD1 Downregulated −2 [68]

miRNAs

miR-30c-5p Downregulated −6.39 [70]

miR-204-5p Upregulated N/A [30]

Proteins

PTRF Upregulated N/A [72]

MMP-9 Upregulated N/A [67]

PODXL Upregulated N/A [67]

DKK4 Upregulated N/A [67]

CAIX Upregulated N/A [67]

Ceruloplasmin Upregulated N/A [67]
N/A: Not Available.

6. Bladder Cancer

Bladder cancer (BCa) is one of the five most frequent malignant tumor types in devel-
oped countries. Moreover, BCa is the second most common cancer among malignancies of
the genitourinary tract [7]. BCa-derived EVs are released directly into the urine; therefore,
urine is an excellent source for biomarker discovery in BCa. The concentration of CD63-
positive urinary EVs is significantly elevated in BCa patients compared to healthy controls,
demonstrating the potential application of EVs as disease biomarkers [75]; however, few
studies have been performed and EVs are still far from being exploited as biomarker tools
in BCa clinical practice [76].

Several studies have focused on the proteomic profiling of EVs released by BCa cell
lines and urinary EVs from BCa patients [77,78] to allow the development of reference
libraries for biomarker discovery approaches in patient samples [77,78]. These studies
demonstrated that seven proteins (i.e., APOA1, CD5L, FGA, FGB, FGG, HPR, and HP)
were differentially expressed when low- and high-grade BCa were compared. Furthermore,
tumor-associated calcium signal transducer 2 (TACSTD2) was proposed as a diagnostic
biomarker owing to its content in patients with BCa. Welton et al. [79] demonstrated a
strong association of the proteomic profiling of EVs derived from the HT1376 bladder
cancer cell line and showed elevated levels of CD36, CD44, 5T4, basigin, and CD73 in
BCa. Lin et al. [80] applied MALDI-TOF spectrometry to demonstrate the enrichment of
alpha 1-antitrypsin and histone H2B1K in urinary EVs. Based on the AUC value of 0.87,
they proposed this EV enrichment for diagnostic and prognostic purposes, showing the
sensitivity and specificity of the combination of the two peaks for detecting urothelial
cancer (UC) of 62.70% and 87.59%, respectively. Periostin has also been considered as a
potential BCa biomarker, since a high level was found in urinary EVs from BCa patients
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compared to healthy subjects. Furthermore, periostin-enriched EVs have been proven
to increase aggressiveness, to promote progression, and to correlate with a poor clinical
outcome [81,82].

Noncoding RNAs (e.g., lncRNAs, miRNAs, and mRNAs) in EVs are considered
a promising class of biomarkers. In 2014, Perez et al. [83] performed differential gene
expression profiling in urinary EVs from 3 BCa patients and 5 healthy subjects by using
a whole transcriptome array, followed by PCR validation. They found EVs enriched in
the polypeptide N-acetylgalactosaminyltransferase 1 (GALNT1) and ceramide synthase
2 (CERS2) mRNAs only in cancer patients, while finding EVs enriched in the tumor
suppressors, ARHGEF39, and FOXO3 mRNAs only in controls. Given the number of
samples analyzed, this may be considered as a pilot study providing a methodological
approach to identify candidate mRNAs potentially useful for biomarker discovery in BCa.

Several studies have focused on the identification of diagnostic and prognostic miR-
NAs in BCa; however, different miRNAs have been identified [84]. Andreu et al. [85]
applied qPCR to validate EV miRNAs selected by microarray analysis from 34 morning
first urine samples collected from patients with BCa (18 high-grade and 16 low-grade)
prior to surgery and from 9 healthy volunteers. They demonstrated that miR-375 was
significantly lower in high-grade BCa patients compared to healthy volunteers, while
miR-146a was found to be upregulated in low-grade BCa patients compared to high-grade
patients. Matsuzaki et al. [86] analyzed miRNAs in urinary EV from 36 patients and 24 con-
trols (donors for kidney transplantation, healthy volunteers, and postoperative patients
of urothelial carcinoma). They identified the EV-miR-21-5p content as the most powerful
biomarker for detecting urothelial carcinoma, displaying an AUC of 0.900 (the sensitivity
and specificity were 75.0% and 95.8%, respectively). In a different study, the presence of
miR-1224-3p, miR-135b, and miR-15b and the ratio of miR-126 to miR-152 in urinary pellets
were shown to correlate with the diagnosis of BCa [87]. Armstrong et al. [88] also identified
several upregulated miRNAs (miR-4454, miR-720, miR-21, miR-205-5p, and miR-200c-3p)
in urinary EVs from BCa patients. More recently, Amuran et al. [89] suggested that urine
EV miR-19b1-5p, 136-3p, and 139-5p contents and urinary APE1/Ref1, BLCA-4, and CRK
concentrations could be promising candidates for BCa diagnosis. Moreover, they proposed
a combo panel that differentiates BCa patients from healthy controls with 80% sensitivity
and 88% specificity (AUC = 0.899) and differentiates low-risk patients from controls with
93% sensitivity and 95.5% specificity (AUC = 0.976).

Berrondo et al. [90] focused on long non-coding RNA (lncRNA) in BCa EVs. They
demonstrated that HOTAIR, HOXA cluster antisense RNA 2 (HOXA-AS2), metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1), the mRNAs for SRY-box 2 (SOX2),
and POU class 5 homeobox 1 (POU5F1) were selectively enriched in urinary EVs from
eight patients with high-grade muscle-invasive urothelial BCa compared to urinary EVs
from healthy volunteers. More recently, the diagnostic value of EV-H19 content for dis-
tinguishing BCa patients from benign tumors and healthy individuals was analyzed by
Wang et al. [91]. The ROC curve analysis showed an AUC of 0.851 with a sensitivity and
specificity reaching 74.07% and 78.08%, respectively. Zhang et al. [92] identified a panel
of three lncRNAs (PCAT-1, UBC1, and SNHG16) characterized by high BCa diagnostic
accuracy with AUC values of 0.857 and 0.826 in training and validation sets, respectively.
This was a significantly higher value than that of urine cytology [92]. Similarly, a panel
consisting of three differently expressed urinary EV lncRNAs (MALAT1, PCAT-1, and
SPRY4-IT1) was proposed by Zhan et al. [29] for BCa diagnosis, showing an AUC of 0.854
for the training set and an AUC of 0.813 in the validation set. Again, these values were
significantly higher than for urine cytology.

Urinary EV-DNA content could be considered as an alternative liquid biopsy source
to identify genetic alterations in BCa, as well as in other malignancies. A pilot study
by Lee et al. [93] included 9 patients who underwent surgery for BCa. They found that
urinary cfDNA and EV-DNA matched the genomic profiling of tumor samples, firstly iden-
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tifying the somatic mutations and copy number variations (CNV) in BCa. EV-associated
biomarkers investigated for bladder and urothelial cancer diagnosis are reported in Table 4.

Table 4. EV-associated biomarkers used for bladder cancer diagnosis.

mRNAs Up/Downregulation Fold-Change References

GALNT1 Upregulated −1.1 [83]

CERS2 Upregulated N/A [83]

ARHGEF39 Downregulated N/A [83]

FOXO3 Downregulated 1.1 [83]

miRNAs

miR-21 Upregulated N/A [88]

miR-146a Upregulated 11.3 [85]

miR-126 Ratio N/A [87]

miR-19b1-5p Upregulated N/A [89]

miR-1224-3p Downregulated N/A [87]

miR-135b Downregulated N/A [87]

miR-15b Downregulated N/A [87]

miR-152 Ratio N/A [87]

miR-4454 Upregulated N/A [88]

miR-21-5p Upregulated 3.76 [86]

miR-720 Upregulated N/A [88]

miR-375 Upregulated −3.3 [85]

miR-205-5p Upregulated N/A [88]

miR-200c-3p Upregulated N/A [88]

miR-136-3p Expressed N/A [85]

miR-139-3p Downregulated N/A [85]

lncRNAs

MALAT1 Upregulated
Upregulated

N/A
N/A

[29]
[90]

HOTAIR Upregulated '10 [90]

HOXA-AS2 Upregulated '9 [90]

SOX2 Upregulated N/A [90]

POU5F1 Upregulated N/A [90]

H19 Upregulated N/A [91]

PCAT-1 Upregulated N/A [92]

UBC1 Upregulated N/A [92]

SNHG16 Upregulated N/A [92]

SPRY4-IT1 Upregulated N/A [92]

Proteins

APOA1 Upregulated N/A [77]

CD5L Upregulated N/A [77]



Int. J. Mol. Sci. 2021, 22, 8430 11 of 31

Table 4. Cont.

mRNAs Up/Downregulation Fold-Change References

FGA Upregulated N/A [77]

HPR Upregulated N/A [77]

HP Upregulated N/A [77]

TACSTD2 Upregulated 8.02 [77]

CD36 Upregulated N/A [79]

CD44 Upregulated N/A [79]

5T4 Upregulated N/A [79]

CD73 Upregulated N/A [79]

BSG Upregulated N/A [79]

Alpha 1-antitrypsin Upregulated N/A [80]

H2B1K Upregulated N/A [80]

Periostin Upregulated N/A [82]
N/A: Not Available.

7. Prostate Cancer

Prostate cancer (PC) is the most common solid malignancy and the second cause
of mortality in men in Western countries, due to the high rate of deferred diagnosis [5].
The most used biomarker, PSA, does not accurately discriminate between aggressive
cancers and indolent, more benign lesions such as benign prostatic hyperplasia (BPH) and
prostatitis. EV derived from serum, plasma, urine, and seminal fluid are summarized here
as proposed biomarkers.

Several EV isolation methods have been applied in PC [94]. Even though consensus
has not yet emerged on specific EV markers [12,95], several proteins alone or in combination
have been proposed as EV biomarkers for PC.

Circulating EVs harbor specific PC proteins. PTEN has been detected in patients with
PC but not in healthy subjects [96]. Minciacchi et al. [97] demonstrated that cytokeratin
18 (CK18) is significantly enriched in circulating EVs from PC patients, in line with its
expression in tissue samples. Kawakami et al. [98] showed that the EV GGT content is
significantly higher in PC patients compared with BPH individuals and suggested the
feasibility of this marker to discriminate patients with PC and BPH who display close
PSA levels. Indeed, the AUC for serum EV GGT activity was found to be higher than
for serum GGT activity and serum PSA concentration. Khan et al. [99] suggested the EV
survivin content as a promising biomarker for patients with high PSA with or without
tumors, reporting that survivin in circulating EV shows higher expression in patients
with PC compared to BPH and healthy controls. Park et al. [100] found that PSMA- and
CD63-positive circulating EVs were differentially expressed in BPH and PC patients. In a
recent study, Øverbye et al. [101] found that TM256 in urine EVs was able to discriminate
PC patients (n = 16) from controls (n = 15) with a sensitivity of 94%. The sensitivity
reached 100% when TM256 was analyzed in combination with the autophagy inhibitor late
endosomal–lysosomal adaptor, MAPK, and MTOR activator 1 (LAMTOR1). A different
panel consisting of flotillin 2 and parkinsonism-associated deglycase (PARK7) enriched in
urine EVs from PC patients was suggested by Wang et al. [102]. Similarly, the overexpressed
level of fatty-acid-binding protein 5 (FABP5) in EVs from PC has been associated with the
Gleason score [103]. Lu et al. [104] demonstrated that δ-catenin, caveolin-1, and CD59 were
positive in urine EVs of PC patients, proposing them as PC biomarkers. Principe et al. [105]
identified 877 proteins derived from the prostatic secretions in urine, 14 of which were
most-readily detectable in EVs (ACPP, LTF, DDP4, TGM4, MME, PSA, SEMG1, AZGP1,
ANPEP, G3BP, PSMA, TMPRSS2, FASN, LGALS3, PSCA, KLK2, KLK11, TIMP1, ANXA2,
CLSTN1, FASN, FLNC, FOLH1). Increased levels of α1-integrin and β1-integrin were
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found in urine EVs of patients with metastatic PC compared with patients with BPH [106].
Similarly, Sequeiros et al. [107] distinguished PC and BPH by combining EV contents of
adseverin and transglutaminase-4.

Seminal fluid and prostatic secretions, which contain considerable amounts of EVs,
represent ideal fluids for EV-derived biomarker discovery; however, the major drawbacks
are the limited studies and the lack of a systematic, high-quality biobanking system for
proximal prostate fluids [105,108–110].

Several differentially expressed proteins in EV from PC cell lines have been also
identified (PDCD6IP, XPO-1, ENO1, CDCP1, CD151, CD147) [111–113], although the lack
of expression in urine-derived EVs has limited the use of PC cell lines for biomarker
discovery [114].

The EV PSA content has also displayed great potential as a more reliable marker
than serum PSA. Logozzi et al. [115] recently showed that PC patients had four-fold
levels of circulating EVs expressing both CD81 and PSA compared to BPH patients and
healthy controls. Similarly, Øverbye et al. [101] showed that the PC protein markers (PSA,
FOLH1/PMSA, TGM4, and TMPRSS) are highly expressed in EVs derived from PC patients
compared to healthy subjects.

Despite prostasomes (EVs secreted by epithelial cells in the prostate gland) being
considered the most accurate sources for proteomic or transcriptomic biomarker discovery
in PC, to date only one study has reported that metastatic PC tissues release EVs, dis-
playing altered annexins A1, A3, A5, and dimethylarginine dimethylaminohydrolase 1
expression [116]. A highly specific and sensitive method named the proximity ligation
assay has been applied to detect elevated levels of prostasomes in blood samples from
patients with PC before radical prostatectomy [37].

The study of glycan sugar groups, which are closely associated with the development
and progression of PC, holds promise for the stratification of PC patients [117]. As EVs
are enriched in specific glycans, glycomics can be used to study EV surface glycans or
glycoproteins to improve PC diagnosis. Glycan profiling of urinary EVs derived from
prostatic secretions indicated that changes in glycosylation of N-linked glycoproteins, such
as an increase in larger tetra-antennary glycans, might reflect the clinical status of PC
patients; however, no conclusions can be drawn for these limited pilot analyses on pooled
samples [108–117]. Some data have been reported on the role of the cancer biology of
EV glycosylation, particularly in PC. A better understanding of glycans and glycopro-
teins associated with EVs may provide new avenues for PC diagnosis and monitoring of
progression [94].

Several studies on protein cargo have identified potential EV biomarkers; however,
these data should be confirmed in larger cohorts of patients to move towards the develop-
ment of EV-based non-invasive diagnostic tools for personalized medicine [97].

Recently, the meta-analysis by Yang et al. [118] confirmed that plasma EV miRNAs
have high diagnostic value for PC patients. Hessvik et al. [119] identified 36 EV miRNAs
as candidate biomarkers for PC in clinical studies.

PC-associated transcripts such as the lncRNA PCA3 and the TMPRSS2-ERG fusion
mRNA were detected in urinary EVs in PC patients [97,120,121]. Nilsson et al. [120] an-
alyzed the RNAs in EVs from urine of nine PC patients and demonstrated that urinary
EVs are enriched in TMPRSS2:ERG gene fusion. This gene fusion results from a chromo-
somal rearrangement of ERG to the androgen-responsive gene TMPRSS2 and prostate
cancer antigen 3 (PCA3). PCA3 is a lncRNA and is considered one of the most specific PC
biomarkers. Donovan et al. [122] recently developed a patient score (EXO106) based on
mRNA levels of PCA-3, ERG, and SPDEF in urine-derived EVs, which predicts both PC
and high-grade disease (Gleason score 7 or higher), with an AUC corresponding to 0.764.
This score allows the high-grade PC diagnosis of ‘grey zone’ patients based on serum PSA
levels. In a follow-up study, the score provided by assaying PCA-3, ERG, and SPDEF gene
expression in urine EVs (ExoDx Prostate IntelliScore) outperformed standard of care values,
discriminating PC patients with ≥GS7 from GS6 or with a negative biopsy (AUC = 0.73).
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In a large validation study, this score improved the discrimination among high-grade,
low-grade, and benign disease compared with the standard of care [121]. In a different
study, Isin et al. [31] evaluated the EV contents of two tumor-suppressive lncRNAs, named
GAS5 and TP53COR, in urine samples after digital rectal examination of 30 patients with
PC and 49 BPH patients. TP53COR1 was more expressed in PC patients than in patients
with BPH and the sensitivity and specificity of TP53COR1 to predict PC corresponded
to 67% and 63%, respectively, while 94% specificity was reported when TP53COR1 was
considered in combination with PSA. Foj et al. [123] analyzed five miRNAs commonly
deregulated in PC (tumor tissues, serum or plasma, or EVs from freshly voided urine
samples) and miR-375, miR-21, and let-7c were found significantly to be upregulated in
the PC group compared with the healthy group, with AUC values corresponding to 0.799,
0.713, and 0.679, respectively. Furthermore, they identified a panel of miRNAs from a
urinary pellet, mainly consisting of miR-21 and miR-375, able to discriminate between
healthy individuals and PC patients (AUC 0.872); however, the small sample size was the
most relevant limitation of the study.

The role of miR-375 was also confirmed by Endzelin, š et al. [124]. Rodriguez et al. [125]
reported that miR-196a-5p and miR501-3p are significantly decreased in urinary EVs
from PC patients, with AUC values corresponding to 0.73 and 0.69, respectively. Korze-
niewski et al. [126] identified three miRNAs (miR-483-5p, miR-1275, miR-1290) as the
most abundant miRNAs released by PC cells. Furthermore, miR-483-5p alone, as well as
in combination with miR-1275 and miR-1290, was able to significantly discriminate PC
patients with biopsy-proven tumor mass from patients with microscopic tumors; however,
these miRNAs failed to show advantages over conventional methods. Samsonov et al. [127]
proposed the upregulation of miR-21, miR-574, and miR-141 in urinary EVs as diagnostic
markers based on the AUC (0.86). Recently, Kohaar et al. [128] used a 2-gene panel (PCA3,
PCGEM1) to improve the prediction of high-grade cancer at diagnosis compared to stan-
dard of care variables in a racially diverse patient cohort (AUC of 0.88 vs 0.80, respectively).
Different urinary EV miRNAs potentially diagnostic for PC include miR-19, miR-145, and
miR-2909 [102,129–131].

Little is known about the potential application of EV lncRNAs as circulating diagnostic
markers for PC. Isin et al. [31] suggested lncRNA-p21, a suppressor of p53 signaling, as
a marker, whose level in urinary EVs could distinguish PC patients from those with the
benign disease.

Bryant et al. [132] showed that miR-107 and miR-574-3p were increased in the cir-
culating EVs of men with non-metastatic PC compared with healthy individuals. The
authors also demonstrated that both miR-141 and miR-375 were upregulated in patients
with recurrent metastatic PC compared to patients with the non-recurring disease (esti-
mated AUC = 0.8). The role of miR-141 as a PC oncomiR was further supported by the
analysis of 20 patients with PC, 20 patients with BPH, and 20 healthy volunteers, in whom
Hao et al. [133] demonstrated that circulating EV-miR-141 levels were significantly higher
in PC patients than in BPH patients or healthy controls. Endzelin, š et al. [124] also sug-
gested that miR-200 and miR-21 enriched in circulating EVs could differentiate PC from
BPH patients, with AUCs corresponding to 0.68 and 0.67, respectively. Other potentially
diagnostic circulating markers for PC include the splice variant of the AGR2 transcript and
miR-1246 [134,135].

PC DNA aberrations, such as PTEN and TP53 mutations, can be detected by analyzing
urine EV DNA content. The profiling of EV enriched in mutated DNA in combination with
the EV-RNA expression provides a comprehensive map of intra-EV changes in PC using
urine-based liquid biopsies [136].

Lipid EV composition was reported as a potential biomarker for the development of
PC. Several lipid classes, such as diacylglycerol (DAG) and triacylglycerol (TAG) species,
are differentially enriched in urinary EVs from PC patients and healthy controls, and
differences in the EV molecular lipid species from non-tumorigenic, tumorigenic, and
metastatic prostate cells have been proposed for diagnostic purposes [137,138].
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The analysis of small metabolites can potentially reveal dynamic changes in the
metabolism downstream of genetic and proteomic regulation. Metabolomic profiling of
urinary EVs is considered feasible to identify disease profiles, which cannot be revealed by
conventional urine analyses. For example, the levels of adenosine, glucuronate, isobutyryl-
L-carnitine, and D-ribose 5-phosphate were significantly lower in pre-prostatectomy urine-
derived EVs as compared to post-prostatectomy and control samples [139].

In a recent pilot study, Rikkert et al. [140] tried to determine whether metastatic
castration-resistant PC patients could be discriminated from healthy controls based on
the presence of EV subtypes in plasma or urine samples, using flow cytometry (FCM)
and surface plasmon resonance imaging (SPRi); however, a significant difference between
patients and controls was only found for the lactadherin+ particle and the EV plasma
concentration. EV-associated biomarkers investigated for prostate cancer diagnosis are
reported in Table 5.

Table 5. EV-associated biomarkers of prostate cancer.

mRNAs Up/Downregulation Fold-Change References

TMPRSS2:ERG Upregulated N/A [120]

ERG Expressed N/A [122]

SPDEF Expressed N/A [122]

PCA3 Expressed
Upregulated

N/A
N/A

[122]
[128]

PCGEM1 Downregulated N/A [128]

AGR2 Upregulated N/A [134]

miRNAs

miR-21
Upregulated
Upregulated
Upregulated

N/A
N/A
N/A

[123]
[118]
[124]

miR-145 Upregulated N/A [130]

miR-1246 Upregulated 30 [135]

miR-196a-5p Downregulated −2.375 [125]

miR-483-5p Upregulated 23.59 [126]

miR-19 Upregulated 2.94 [129]

Let7-c Upregulated N/A [123]

miR-574 Upregulated 3.90 (ratio) [127]

miR-574-3p Upregulated [132]

miR-375 Upregulated
Upregulated

N/A
N/A

[123]
[124]

miR-200 Upregulated N/A [124]

miR-501-3p Downregulated −7.315 [125]

miR-1275 Upregulated 22.81 [126]

miR-1290 Upregulated 4.9 [126]

miR-141 Upregulated
Upregulated

11.7 (ratio)
3.85

[127]
[133]

miR-2909 Upregulated N/A [131]

miR-107 Upregulated 11.26 [132]
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Table 5. Cont.

mRNAs Up/Downregulation Fold-Change References

lncRNA

PCA3 Upregulated N/A [120]

TP53COR Upregulated N/A [31]

P21 Upregulated N/A [31]

Proteins

AZGP1 Expressed N/A [96]

CK18 Upregulated N/A [107]

GGT Upregulated
Expressed

N/A
N/A

[98]
[105]

CD63 Upregulated N/A [100]

TM256 Expressed N/A [101]

LAMTOR1 Expressed N/A [101]

Flotillin Upregulated N/A [102]

PARK7 Upregulated N/A [102]

FABP5 Upregulated 2.31 [103]

D-catenin Expressed N/A [104]

Caveolin-1 Expressed N/A [104]

CD59 Expressed N/A [104]

ACPP Expressed N/A [105]

LTF Expressed N/A [102]

DDP4 Expressed N/A [102]

TGM4 Expressed
Upregulated

N/A
N/A

[102]
[98]

MME Expressed N/A [102]

PSA
Expressed

Upregulated
Upregulated

N/A
N/A

[102]
[112]
[98]

SEMG1 Expressed N/A [102]

ANPEP Expressed N/A [102]

G3BP Expressed N/A [102]

TMPRSS Upregulated N/A [98]

TMPRSS2 Expressed N/A [102]

PASN Expressed N/A [102]

LGALS3 Expressed N/A [102]

PSCA Expressed N/A [102]

KLK2 Expressed N/A [102]

KLK11 Expressed N/A [102]

TIMP1 Expressed N/A [102]

ANXA2 Expressed N/A [102]



Int. J. Mol. Sci. 2021, 22, 8430 16 of 31

Table 5. Cont.

mRNAs Up/Downregulation Fold-Change References

CLSTN1 Expressed N/A [102]

FASN Expressed N/A [102]

FLNC Expressed N/A [102]

FOLH1 Expressed N/A [102]

FOLH1/PMSA Upregulated N/A [98]

A3-integrin Upregulated 1–3.5 [103]

B1-integrin Upregulated 1.5–3.5 [103]

Adseverin Upregulated 1.34 [104]

Transglutaminase-4 Downregulated 0.6 [104]

Annexin A1 Altered expression N/A [113]

Annexin A3 Altered expression N/A [113]

Annexin A5 Altered expression N/A [113]

DDAH I Altered expression N/A [113]

DNA

PTEN Mutated N/A [133]

TP53 Mutated N/A [133]

Metabolites

Adenosine Downregulated N/A [136]

Glucuronate Downregulated −22 [136]

Isobutyril-L-carnitine Downregulated N/A [136]

D-ribose 5P Downregulated N/A [136]
N/A: Not Available.

8. Ovarian Cancer

Despite the development of new therapeutic approaches (pharmacological and sur-
gical), the mortality rate for ovarian cancer (OC) patients still remains one of the highest
among females, with a 5-year relative survival rate corresponding to 50%. Less than 20%
of the OCs are diagnosed at the initial stage. This gives a 90% 5-year related survival rate;
therefore, early diagnosis is crucial and EV-related biomarkers are emerging as promising
tools [3,141].

In 2019, Barnabas et al. [142] analyzed EVs derived from utero-tubal lavage (UtL) of
49 women with high-grade serous ovarian cancer (HGSOC) and compared them to 121
healthy women. They suggested a panel of 9 differentially expressed proteins (SERPINB5,
S100A14, MYH11, CLCA4, S100A2, IVL, CD109, NNMT, and ENPP3) able to diagnose
HGSOC with a sensitivity and specificity corresponding to 70% and 76.2%, respectively. In
addition, EpCAM was found to be increased in EVs recovered from body fluids of patients
with epithelial ovarian cancer (EOC) [143–147].

The role of EpCAM as a biomarker was further confirmed by Zhang et al. [148], who
performed a quantitative proteomic analysis of serum EVs from 10 EOC patients and
10 healthy controls. Indeed, they demonstrated that EVs are enriched in EpCAM, C1q,
ApoE, and plasminogen and depleted of serpin C1. ApoE multiplexed with EpCAM,
Plg, serpin C1, and C1q provided optimal diagnostic performance for EOC, with an AUC
corresponding to 0.913. Liang et al. [149] identified protein signatures in EOC-derived EVs
and tissues, including EpCAM, PCNA, TUBB3, EGFR, ApoE, CLDN3, FASN, ERBB2, and
L1CAM, which were proposed as diagnostic OC markers. On the other hand, in a different
study, EVs derived from human ovarian epithelial cells (HOSEPiC) were compared to three
OC cell lines (OVCAR3, IGROV1, and ES-2). The authors showed low EpCAM detection
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(<20%), suggesting that EpCAM should not be considered a proper OC marker in the early
stages [150].

In conclusion, despite some results having suggested the possibility of combining
EpCAM with CD24 to detect OCOvCa-derived EVs, large-scale clinical trials are needed to
verify this hypothesis [151].

In 2017, Stope et al. [152] proposed the heat shock protein 27 (HSP27) as a potential
biomarker, since it was increased in EOC patient EVs. Zhang et al. [153] compared cir-
culating EV protein contents from EOC patients and healthy controls and identified four
promising markers for diagnosis and prognosis (LBP, FGG, FGA, and GSN). More recently,
Dorayappan et al. [154] reported 3 proteins that were significantly elevated in serum EVs
(HGF, STAT3, and IL6) as valuable candidates for the early detection of OC. Peng et al. [155]
selected the AKT1, FAM49B, CLIC4, LTF, SNX3, TUBB3, URP2, and MAP II in circulating
EVs as potential biomarkers for EOC diagnosis. Other studies have suggested claudin-4
and TrkB as potential EV biomarkers [156,157]. In a recent study by Cheng et al. [158],
collagen type V alpha 2 chain (COL5A2) and lipoprotein lipase (LPL) were found to be sig-
nificantly higher in ovarian cancer cell line-derived EVs than in ovarian surface epithelial
cells (HOSEPiC) (p < 0.05). In a different study, soluble E-cadherin (sE-cad) released with
EVs into the ascitic fluid was proposed as a potential biomarker able to distinguish OC
from benign disease [159].

In 2008, Taylor et al. [144] suggested a specific combination of EV miRNAs, including
miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203, miR-205, and miR-214, as
surrogate OC diagnostic markers. More recently, Pan et al. [160] demonstrated statistically
significant overexpression of miR-23a, miR-92a, miR-21, miR-100, and miR-200b and
downregulation of miR-320, miR-16, miR-93, miR-126, and miR-223 in circulating EVs
from EOC patients when compared with healthy women. The authors focused on miR-21,
miR-100, and miR-200b, since they were apparently able to discriminate between EOC
patients and healthy women, with sensitivity levels of 61%, 62%, and 64% and specificity
levels of 82%, 73%, and 86% respectively. Importantly, the combination of those values
did not increase the detection power. Meng et al. [161] showed that circulating EV miR-
373 (p = 0.0001), miR-200a (p = 0.0001), miR-200b (p = 0.0001), and miR-200c (p = 0.028)
contents were significantly higher in EOC patients than in healthy women. Furthermore,
the authors identified a panel consisting of EV miR-200a, miR-200b, and miR-200c that
could discriminate between EOC patients and patients with benign ovarian diseases, with
a sensitivity of 88% and a specificity of 90%. Importantly, miR-200a alone differed between
these patient cohorts, with a sensitivity of 84% and a specificity of 90%, while miR-200a
was found to be elevated in mucinous and serous carcinomas compared to other EOC
subtypes [162]. In a different study, Kim et al. [163] demonstrated a sensitivity of 91.6% for
the circulating EV miR-145 content and a specificity > 90.0% for EV-miR-200c compared
with CA125 for a preoperative diagnosis of OC; however, further studies are needed to
elucidate the potential differences between miR-200 family and EV miR-200 family contents
for both OC diagnosis and prognosis [164].

More recently, Yamamoto et al. [165] identified five mRNAs (CA11, MEDAG, LAMA4,
SPINT2, NANOG) and six miRNAs (let-7b, miR23b, miR29a, miR30d, miR205, miR720)
that were differentially expressed in cancer ascites and peritoneal fluids from benign
patients. Furthermore, a combination of LAMA4, CA11, MEDAG, NANOG, SPINT2, let-7b,
miR23b, and miR29a was selected based on their diagnostic performances; however, reliable
conclusions could not be drawn due to the small sample size. Similarly, the overexpression
of miR-99a-5p in serum-derived EVs of 62 OC patients compared with 20 healthy controls
along with its decrease after de-bulking surgery (p = 0.003) was shown in a different study
by Yoshimura et al. [166]. The diagnostic performance for EOC detection showed 85%
sensitivity and 75% sensitivity. Interestingly, these data changed according to the tumor
histology (sensitivity and specificity of 84% and 40%, respectively, for serous EOC; 33% and
91%, respectively, for clear-cell EOC; 67% and 82%, respectively, for endometrioid EOC; 33%
and 91%, respectively, for mucinous EOC). These data strongly suggest the need for more
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tailored diagnostic approaches. Finally, when compared with CA125, miR-99a-5p showed
improved sensitivity (87 vs. 54) with comparable specificity (73 vs. 75) for the early EOC
detection, justifying further investigation of its clinical role. Wang et al. [167] identified
five differentially expressed miRNAs (miR-205-5p, miR-145-5p, miR-10a-5p, miR-346, and
miR-328-3p) in circulating EVs from EOC patients when compared with a control group,
pointing out the higher diagnostic accuracy (AUC: 0.760; 95% CI: 0.691–0.828) when the
five miRNAs were combined. Su et al. [168] also highlighted the diagnostic value of high
circulating EV-miR-375 and miR-1307 contents.

Masaki Kobayashi et al. [169] showed that miR-1290 was highly expressed in circu-
lating EVs from 70 EOC patients, although when compared with healthy controls, no
statistically significant differences were detected (p = 0.89).

Critical evaluation of the published studies indicates that the accuracy of single miR-
NAs as diagnostic marker is inadequate due to histological diversity and individual differ-
ences, and strongly suggests that a panel of EV biomarkers may be more useful [170,171];
however, even if the data appear promising, several limitations such as the small sample
size with no external validation and the lack of studies evaluating the role of the men-
tioned biomarkers integrated in clinical algorithms (including symptom evaluation, CA125
dosage, and ultrasound findings) prevent us from drawing definitive conclusions [172].

In addition to various protein and miRNA markers, several different biomolecules
have been reported as critical for OC diagnosis [173]. They include phosphatidylserine
EVs [174,175] and EV mitochondrial DNA (mtDNA) copy numbers [176]. Cheng et al. [158]
recently identified 1433 proteins and 1227 lipid species in EVs derived from ovarian cancer
cells (SKOV-3) and ovarian surface epithelial cells (HOSEPiC). Among the 110 lipids
differentially expressed between each group, the highest significance was detected for PG
(34:1)-H and ChE(18:2) + NH4. Furthermore, since some lipid species showed species
specificity, the potential application of EV lipid species as cancer biomarkers has been
proposed. EV-associated biomarkers investigated for ovarian cancer diagnosis are reported
in Table 6.

Table 6. EV-associated biomarkers investigated for ovarian cancer diagnosis.

miRNAs Up/Downregulation Fold-Change References

miR-21 Upregulated
Upregulated

N/A
2.3

[144]
[160]

miR-145 Upregulated 47.7 [163]

miR-145-5p Upregulated 5.10 [167]

miR-126 Downregulated 0.6 [160]

miR-92a Upregulated 1.2 [160]

Let7-b Downregulated 0.01–0.21 * [165]

miR-320 Downregulated 1.5 [160]

miR-375 Upregulated N/A [168]

miR-720 Downregulated 0.01–0.21 * [165]

miR-205 Upregulated
Downregulated

N/A
0.01–0.21 *

[144]
[165]

miR-205-5p Upregulated 2.94 [167]

miR-200a Upregulated
Upregulated

N/A
N/A

[144]
[161]

miR-200b
Upregulated
Upregulated
Upregulated

N/A
5.2

N/A

[144]
[160]
[161]
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Table 6. Cont.

miRNAs Up/Downregulation Fold-Change References

miR-200c
Upregulated
Upregulated
Upregulated

N/A
N/A
46.7

[144]
[160]
[163]

miR-1290 Upregulated 2.26 [169]

miR-141 Upregulated N/A [144]

miR-373 Upregulated N/A [161]

miR-30d Downregulated 0.01–0.21 * [165]

Proteins

EGFR Expressed N/A [149]

Serpin B5 Upregulated N/A [142]

Serpin C1 Downregulated N/A [153]

APOE Upregulated
Expressed

N/A
N/A

[153]
[149]

EpCAM
Upregulated
Upregulated
Upregulated

6.5
N/A
N/A

[176]
[153]
[149]

FGA Upregulated N/A [153]

FASN Expressed N/A [149]

S100A14 Upregulated N/A [142]

S100A2 Upregulated N/A [142]

MYH11 Upregulated N/A [142]

CLCA4 Upregulated N/A [142]

IVL Upregulated N/A [142]

CD109 Upregulated N/A [142]

NNMT Upregulated N/A [142]

ENPP3 Upregulated N/A [142]

Plasminogen Upregulated N/A [153]

C1q Upregulated N/A [153]

PCNA Expressed N/A [149]

TUBB3 Expressed
Upregulated

N/A
N/A

[149]
[155]

CLDN3 Expressed N/A [149]

ERBB2 Expressed N/A [149]

L1CAM Expressed N/A [149]

HSP70 Upregulated 3.43 ± 1.41 [152]

LBP Upregulated N/A [153]

FGG Upregulated N/A [153]

GSN Downregulated N/A [153]

HGF Upregulated 7–8 [154]

STAT3 Upregulated 4–5 [154]

IL6 Upregulated 2–3 [154]
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Table 6. Cont.

miRNAs Up/Downregulation Fold-Change References

AKT1 Upregulated N/A [155]

FAM49B Upregulated N/A [155]

CLIC4 Upregulated N/A [155]

LTF Upregulated N/A [155]

SNX3 Upregulated N/A [155]

URP2 Upregulated N/A [155]

MAP II Upregulated N/A [155]

Claudin-4 Upregulated N/A [156]

TrkB Upregulated N/A [157]

COL5A2 Upregulated >2 [158]

LPL Upregulated >2 [158]

sE-cad Upregulated N/A [159]
N/A: Not Available.

9. Drawbacks for Clinical Application of EVs

Although few studies have investigated the economical and pragmatic feasibility of
the diagnostic application of EVs, the current literature gives a picture of their clinical
application as promising. In 2018, the ISEV provided a guide to standardize the collection,
isolation, and analysis of EVs using different biofluids [12]. For the types of cancers
discussed herein, blood (plasma or serum) and urine have been proposed as the most
suitable EV sources for biomarker discovery; however, when collecting blood, particular
attention should be devoted to the choice of anticoagulants. Heparin-based anticoagulation
is discouraged, since it can inhibit the PCR reaction, providing false negative results.
On the other hand, citrate and ethylenediaminetetraacetic acid (EDTA) can potentially
decrease EV concentrations in clinical samples [177,178]. This implies that the choice of the
anticoagulant should be ideally based on the downstream EV analysis. Moreover, dealing
with blood-derived EVs, circadian rhythms should also be considered for the expression
of specific EV surface markers [177]; however, the impact of circadian rhythms on the
diagnostic accuracy is still debated. Urine collection is easy and non-invasive, making
it the most promising body fluid for liquid biopsies. To avoid uromodulin-mediated EV
capture, diluting agents have been proposed [179]. Moreover, attention should be also
directed to avoid urine bacterial contamination. Overall, these precautions are not specific
for EV isolation, being similar for the daily handling of biological fluids, meaning they
cannot likely be considered as additional economical or time-consuming issues. So far,
studies addressing time consumption for EV isolation are lacking; however, it has been
demonstrated that the timing of EV isolation can match with the workload of a diagnostic
laboratory. Saenz-Cuesta et al. [25] proposed a protocol for hospital-based EV isolation by
comparing different isolation methods, all of which were found to be suitable.

In addition, Konoshenko et al. [17] proposed a precipitation-based isolation protocol
from blood and urine in healthy and prostate cancer patients requiring no more than
110 min for sample preparation and EV isolation. Considering that one of the most
commonly ordered diagnostic tests, the blood culture test, generally requires a turn-around
time (TAT) of 2 days, we are confident that EVs can become good candidates to enter into
clinical practice as diagnostic tools [180].

10. Conclusions

Cancer is one of the major global health problems from both clinical and economic
standpoints. Advances in modern medicine, along with the progressively aging global
population, suggest that cancer care will become even more challenging in the future. The
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improvement of therapeutic cancer approaches driven by basic and clinical research is
crucial to move the field ahead. Similarly, innovative and improved diagnostic strategies
are needed in order to ameliorate the prognosis of cancer patients. As emerged from
data provided in this review, EVs could likely be used as diagnostic tools in innovation
processes. Given their cellular origin, cancer-derived EVs, which carry a huge variety
of biomarkers mirroring the contents of malignant cells, can be recovered through non-
invasive, affordable, and time-saving techniques (e.g., venous blood and urine sampling);
therefore, it is tempting to speculate that EVs represent one of the most promising cancer
derivatives in oncology. This is further supported by the observation that several EV-
associated biomarkers are shared by many tumors (Table 7).

Table 7. EV-associated markers shared among different cancers.

miRNAs Tumor Up/Downregulation References

miR-21

Ovarian cancer
Prostate cancer
Bladder cancer

HPV-related cervical
cancer

Breast cancer

[46,62,86,88,118,123,124,160]

miR-21-5p Urothelial carcinoma

Upregulated
Upregulated
Upregulated
Upregulated
Upregulated
Upregulated
Upregulated

miR-145 Ovarian cancer
Prostate cancer

Upregulated
Upregulated [130,163,167]

miR-126 Ovarian cancer
Bladder cancer

Downregulated
Ratio [87,144]

miR-92a
miR-92a-3p

Ovarian cancer
Breast cancer

Cervical cancer

Upregulated
Upregulated

Downregulated
Upregulated

[47,65,160]

miR-92a-2-5p Breast cancer

Let7b
Let7c
Let7i

Ovarian cancer
Prostate cancer
Breast cancer

Downregulated
Upregulated

Downregulated
[33,123,165]

miR-320
miR-320a

Ovarian cancer
Breast cancer

Downregulated
Upregulated [33,160]

miR-375
Bladder cancer
Prostate cancer
Ovarian cancer

Upregulated
Upregulated
Upregulated

[85,123,124,168]

miR-720 Ovarian cancer
Bladder cancer

Downregulated
Upregulated [88,165]

miR-205
miR205-5p

Ovarian cancer
Ovarian cancer
Bladder cancer

Up or
Downregulated

Upregulated
Upregulated

[88,144,165,167]

miR-200
miR-200
a/b/c

miR-200c-3p

Prostate cancer
Ovarian cancer
Bladder cancer

Upregulated
Upregulated
Upregulated

[88,124,144,160,161,163]

miR-1290 Ovarian cancer
Prostate cancer

Upregulated
Upregulated [126,168]

miR-141 Prostate cancer
Ovarian cancer

Upregulated
Upregulated [127,133,144]

miR-373 Breast cancer
Ovarian cancer

Upregulated
Upregulated [49,160]
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Table 7. Cont.

miRNAs Tumor Up/Downregulation References

miR-30-c-5p
miR-30d

Renal cell carcinoma
Ovarian cancer

Downregulated
Downregulated [70,165]

miR-1246 Breast cancer
Prostate cancer

Upregulated
Upregulated [46,135]

miR-19
miR-19b-3p

miR-19b1-5p

Prostate cancer
Breast cancer

Bladder cancer

Upregulated
Upregulated
Upregulated

[47,89,129]

miR-146a
Bladder cancer

HPV-related cervical
cancer

Upregulated
Upregulated [62,85]

miR-20a-5p
miR-20b-5p

Cervical cancer
Breast cancer

Downregulated
Upregulated [47,65]

miR-423
miR-423-3p

Breast cancer
Cervical cancer

Downregulated
Downregulated [33,65]

LncRNAs

MALAT1 Bladder cancer
Cervical cancer

Upregulated
Upregulated [29,63]

HOTAIR Cervical cancer
Bladder cancer

Upregulated
Upregulated [63,90]

Proteins

B-catenin
D-catenin

Ovarian cancer
Prostate cancer

Upregulated
Expressed [104,140]

EpCAM Ovarian cancer
Breast cancer

Upregulated
Upregulated [35,57,148–150]

FGA Bladder cancer
Ovarian cancer

Upregulated
Upregulated [77,153]

FASN Prostate cancer
Ovarian cancer

Expressed
Expressed [105,149]

LTF Prostate cancer
Ovarian cancer

Expressed
Upregulated [105,155]

It is known that miR-21 is one of the most common onco-miRNAs, whose role in
carcinogenesis has been progressively recognized [181]. Furthermore, miR-21 has been
involved in many cancer-related biological processes, such as proliferation, invasion, and
metastasis formation, and has been found to be upregulated in many types of cancer.
From a diagnostic standpoint, miR-21 dysregulation in EVs shows high consistency among
tumors. Indeed, it was generally found to be upregulated rather than downregulated in
EVs from cancer patients [46,62,86,88,118,123,124,144,160]. A different example is provided
by the miR-200 family, which is mainly involved in the regulation of tumor development
and proliferation [182,183]; however, despite their anti-tumor properties, the miR-200
family members were found to be consistently overexpressed in EVs derived from prostate,
ovarian, and bladder cancers. The different functions and targets in discrete tumors as well
as the different functions in intracellular compartments and EV cargo may explain these
observations. Additional data are required to address this issue. On the other hand, EV-
related biomarkers have been described as highly tumor-specific, reflecting the peculiarities
of their tissues of origin; EVs enriched in TMPRSS2:ERG fusion transcript in prostate cancer
are an example [120]. Nevertheless, it should be kept in mind that biomarkers shared by
many different types of cancer tend to lose specificity, making their diagnostic application
(e.g., screening of asymptomatic patients) at early stages inconsistent. On the other hand,
the same EV biomarkers could be valuable in patients with a high index of suspicion for a
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specific cancer (e.g., in combination with radiological investigation) or once a definitive
diagnosis is obtained during the follow-up.

The research on EVs as diagnostic tools should, therefore, be encouraged. The com-
bined efforts from clinical radiology and biochemistry approaches would bring pioneering
bedside diagnostic multimodal protocols to patients. The numerous clinical trials cur-
rently ongoing (https://clinicaltrials.gov/ct2/results?cond=cancer+&term=exosomes%
2C+diagnosis&cntry=&state=&city=&dist= (accessed on 24 June 2021)), in addition to
confirming the diagnostic potential of EVs, may provide the rational to transfer their
application to day-to-day clinical practice.
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