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Numerous antibodies have been described that potently neutralize a broad range of 
hepatitis C virus (HCV) isolates and the majority of these antibodies target the binding 
site for the cellular receptor CD81 within the major HCV glycoprotein E2. A detailed 
understanding of the major antigenic determinants is crucial for the design of an efficient 
vaccine that elicits high levels of such antibodies. In the past 6 years, structural studies 
have shed additional light on the way the host’s humoral immune system recognizes 
neutralization epitopes within the HCV glycoproteins. One of the most striking findings 
from these studies is that the same segments of the E2 polypeptide chain induce 
antibodies targeting distinct antigen conformations. This was demonstrated by several 
crystal structures of identical polypeptide segments bound to different antibodies, high-
lighting an unanticipated intrinsic structural flexibility that allows binding of antibodies 
with distinct paratope shapes following an “induced-fit” mechanism. This unprecedented 
flexibility extends to the entire binding site for the cellular receptor CD81, underlining 
the importance of dynamic analyses to understand (1) the interplay between HCV and 
the humoral immune system and (2) the relevance of this structural flexibility for virus 
entry. This review summarizes the current understanding how neutralizing antibodies 
target structurally flexible epitopes. We focus on differences and common features of the 
reported structures and discuss the implications of the observed structural flexibility for 
the viral replication cycle, the full scope of the interplay between the virus and the host 
immune system and—most importantly—informed vaccine design.

Keywords: hepatitis C virus, glycoprotein e2, neutralizing antibodies, conformational flexibility, immunoglobulin-
like domain, CD81-binding site, vaccine design

inTRODUCTiOn

Approximately 71 million people worldwide are chronically infected with hepatitis C virus (HCV), 
which is one of the major causes of liver cirrhosis, liver failure, and hepatocellular carcinoma (1). 
Small-molecule drugs targeting HCV proteins termed direct-acting antivirals achieve cure rates of 
>95% (2), but high treatment costs, lack of awareness about hepatitis C, the emergence of multi-
drug resistant viruses, and the need to protect patients from re-infection indicate that a prophylactic 
vaccine is still urgently required. In most viral infections, neutralizing antibodies (nAbs) are in the 
first line of defense of the adaptive immune response. For HCV, rapid induction of nAbs along with 
a broadly reactive T-cell response correlates with spontaneous clearance during acute infection 
and several studies highlighted the role of humoral immunity for the control both in the acute and 
chronic phase of infection (3, 4).
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The two glycoproteins E1 and E2 of HCV are the major targets 
for nAbs. In particular, the receptor-binding glycoprotein E2 
contains major antigenic determinants of HCV, mostly overlap-
ping with binding sites for cellular receptors, including scavenger 
receptor class B type 1 (SR-B1) (5), the low-density lipoprotein 
receptor (LDLr) (6), and the tetraspanin CD81 (7). In addition to 
an extensive disulfide bridge network involving 8 and 18 conserved 
cysteines in E1 and E2, respectively, both proteins are heavily 
glycosylated in their N-terminal ectodomains (8, 9). Glycans are 
important for protein folding and affect epitope presentation and/
or accessibility (10). The C-terminal transmembrane domains 
of E1 and E2 are anchored in the lipid envelope and interact to 
form an E1E2 heterodimer in HCV particles that are associated 
with lipoproteins and therefore also termed “lipo-viro particles” 
(11). Moreover, an E1 trimer observed at the surface of cell 
culture-derived HCV (HCVcc) and pseudoparticles suggested 
the presence of E1E2 heterodimers assembled as heterohexam-
eric complexes (12, 13). However, due to the lack of structural 
information, many features of the architecture and glycoprotein 
arrangement at the surface of infectious HCV particles remain 
elusive.

E2 contains four hypervariable regions (HVR) termed HVR1 
(residues 384–410 in the prototype H77 sequence), HVR2 (resi-
dues 460–485) (14, 15), HVR3 (residues 431–466) (16), and the 
intergenotypic variable region (igVR, residues 570–580) (17). 
The fact that the HVR1 interacts with SR-B1 and LDLr during 
virus entry (5, 6) would per se render this segment an interesting 
target for nAbs. Indeed, the first described HCV neutralization 
epitope is localized in HVR1 (18). However, nAbs targeting the 
HVR1 tend to be mostly strain specific, making the HVR1 less 
interesting for vaccine design (19). Although viruses lacking 
the HVR1 infect chimpanzees (20) they are more susceptible to 
neutralization by patient sera and other human mAbs (21–24), 
indicating that the HVR1 masks neutralization epitopes and 
serves as an “immune decoy,” recombinant glycoproteins lacking 
the HVR1 are not superior vaccine antigens (25). In addition, the 
binding of poorly neutralizing Abs to HVR1 can block the bind-
ing of broadly neutralizing Abs (bnAbs) to adjacent, conserved 
regions on E2 (26). These observed antagonistic effects suggest 
that the induction of anti-HVR1 Abs can interfere with a protec-
tive humoral response against HCV infection. By contrast, both 
HVR2 and the igVR seem neither to be direct targets for nAbs 
nor be directly involved in receptor binding. Nevertheless, similar 
to HVR1, both regions were found to modulate the accessibility 
of the CD81-binding site and the presentation of neutralizing 
epitopes on the E2 ectodomain (17, 27).

neUTRALiZATiOn ePiTOPeS

On the quest to develop a safe and efficient B-cell vaccine, numer-
ous neutralization epitopes within the HCV glycoproteins have 
been mapped using a variety of approaches. Peptide scanning 
approaches using overlapping peptide libraries or random peptide 
display libraries have revealed a number of linear epitopes, but 
such an approach is not suitable to identify residues that contri-
bute to conformation-sensitive epitopes (27). Another powerful 
approach is alanine scanning, probing panels of protein variants 

with distinct amino acid substitutions for binding to the Abs of 
interest (28–33). However, amino acid substitution frequently 
results in protein misfolding and thereby in false contact residues 
in case of conformation-sensitive epitopes—as illustrated for 
the bnAb AR3C, where the crystal structure revealed different 
contact residues than expected from previous alanine scanning 
(34). This pitfall is often alleviated by the use of non-competing 
conformational Abs to probe overall protein conformation and 
cross-competition analysis using a panel of well-characterized 
nAbs. In vitro studies of antibody escape can provide or confirm 
information about key epitopes (35–43). The gold standard to 
identify neutralization epitopes still remains the structural analy-
sis of the immune complex, however, HCV glycoproteins are dif-
ficult to crystallize and only one neutralization epitope has been 
structurally characterized in complex with the E2 ectodomain 
to date (34). The combination of peptide and alanine scanning 
together with Ab cross-competition studies have yielded differ-
ent nomenclature systems to describe and cluster epitopes on 
E2 to date such as antigenic domain A–E (44), antigenic region 
1–5 (45), and epitope I–III (46). Of note, extensive overlap exists 
between these three systems of epitope nomenclature (47).

E1 is less immunogenic but two regions targeted by nAbs 
have been identified: residues 192–202 (in the prototype H77 
sequence), which are recognized by the weakly nAb H-111 (48) 
and residues 313–324, which interact with the cross-reactive 
nAbs IGH-526 and IGH-505 (49, 50).

e2 STRUCTURe AnD COnFORMATiOnAL 
FLeXiBiLiTY

The two crystal structures of E2 core fragments, one in complex 
with the non-nAb 2A12 and the other with the bnAb AR3C, show 
that E2 features a central immunoglobulin (Ig)-like β-sandwich 
with two adjacent layers, one in front and one at the back (34, 51). 
Several regions of the protein are found in loop configurations or 
are disordered suggesting a high flexibility in parts of the struc-
ture (34). The igVR forms a disulfide-constrained loop within a 
flexible region spanning residues 567–596 but HVR1 and HVR2 
are not included in the expression construct (51) or are only 
partially resolved in the electron density (34). Both structures are 
highly similar in the overall fold but the disulfide bond connec-
tivity differs, suggesting that E2 features an enhanced plasticity 
compared to other viral glycoproteins, allowing for rather drastic 
local structural changes without affecting the overall fold of E2 
(52). Of note, free thiol groups within the viral glycoproteins are 
required for virus entry (53), indicating a functional role of the 
observed plasticity.

To date, no detailed structural information on the CD81–E2 
interaction is available but different techniques including alanine 
scanning mutagenesis, negative stain electron microscopy, nAb 
competition experiments, and in silico docking have been applied 
to map the CD81-binding site on E2 (34, 54, 55). Critical contact 
residues include highly conserved residues W420, Y527, W529, G530, 
D535 (54), and the G436WLAGLF motif (55, 56) most of which are 
located within (1) a conserved N-terminal region (aa412–423), 
(2) a front layer region (aa428–446), and (3) an adjacent loop 
named CD81-binding loop (aa518–542). The majority of α-E2 
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bnAbs identified to date compete with CD81 for binding to E2. 
Hence, it is not surprising that their epitopes overlap with one 
or more of these three regions corresponding to three antigenic 
regions named epitope I, II, and III (46) (Figure 1). Interestingly, 
not all Abs targeting one of these three epitopes neutralize HCV 
infection, in spite of similar contact residues (57–59). For non-
nAbs directed against epitope II interference with neutralization 
by nAbs targeting epitope I was proposed (60), but also coopera-
tivity effects between nAbs directed against epitope I and nAbs 
targeting epitope II have been reported (29).

Within the last years a number of crystallographic studies 
have revealed molecular details of how Abs interact with these 
three epitopes, illustrating a great structural heterogeneity in 
particular within the epitope I (26, 41, 61–66), but also epitope II 
(59, 67–69), and more recently epitope III comprising the CD81-
binding loop and parts of the core Ig-like domain (58). Of note, all 
three segments are largely conserved in sequence across all HCV 
genotypes and subtypes (Figure 1).

In the E2 core–AR3C Fab complex structure, epitope I is mostly 
disordered but synthetic peptides mimicking this epitope were 
complexed and crystallized with Fabs from bnAbs isolated from 
immunized rodents or from HCV-infected individuals. Human 
nAb HCV1, mouse nAbs AP33 and mAb24, and humanized and 
affinity-matured nAbs MRCT10.v362 and hu5B3.v3 (derived 
from AP33 and mu5B3, respectively) bind such epitope I peptides 
in a very similar β-hairpin conformation (Figure  1B) (41, 62, 
63, 65, 66). However, the superposition of the linear epitope in 
complex with AP33 and HCV1 Fab reveal a 22° difference in the 
binding angle highlighting that both Abs engage the epitope on 
E2 from different directions (62). nAb paratopes are similar in 
shape and surface charge but interactions with E2 are realized 
by different nAb residues resulting in small conformational 
differences within a conserved β-hairpin conformation. In both 
cases, residues L413, N415, G418, and W420 of E2 are deeply buried in 
Fab-peptide interface.

By contrast, the same peptide is recognized in an extended con-
formation in a deep cleft between heavy and light chains of the Fab 
from the rat nAb 3/11 (Figure 1B) (61). E2 residues N415, W420, and 
H421 are especially critical for the 3/11-antigen interaction in line 
with epitope mapping by alanine scanning mutagenesis (32, 61). 
A third conformation of epitope I is recognized by a group of 
human mAbs named HC33 that were isolated from HCV-infected 
blood donors (Figure 1B) (64). In complex with the HC33.1 Fab, 
residues I414 and N415 form an anti-parallel β-sheet with strand F 
of the heavy chain variable region Ig domain and the remaining 
part of the peptide is recognized in an extended coil conformation. 
This interaction mode results in a turn (residues T416–S419) super-
imposing with the turn observed in the β-hairpin conformation in 
complex with HCV1 and AP33 Fabs. Residues L413, G418, and W420 
constitute key anchors for the interaction and are deeply buried in 
the HC33.1-E2 interface (29, 64). An adaptive mutation N417S is 
associated with a shift of an N-linked glycosylation site from N417 
to N415 that abolishes neutralization by nAbs HCV1, AP33, and 
mAb24. Residue N415 is buried by HCV1, AP33, and mAb24 but it 
is solvent-exposed in the HC33.1 Fab-peptide complex structure 
and allowing for glycosylation at N415 (29, 41, 64). Mutations N417S 
and N415D enhance the sensitivity to HC33.1 neutralization but 

also to neutralization by other human nAbs targeting different 
epitopes, suggesting that this region has a global impact on the 
conformation of HCV glycoproteins (41).

In the complex structures of the related HC33.4 and HC33.8 
Fabs, a similar extended conformation is observed for E2 aa418–423 
and aa415–423, respectively (26) (Figure  1B), but N-terminal 
residues aa412–414 are disordered. Although the HVR1-residue 
K408 was identified by alanine scanning mutagenesis to be part 
of the HC33.8- and HC33.4- but not of the HC33.1-epitope, no 
structural evidence for further epitope–paratope interactions 
beyond epitope I was observed (26). In summary, epitope I adopts 
at least three distinct conformations and greatly differs in its nAb 
interactions depending on the individual nAb. However, in all 
cases, the hydrophobic interaction networks involves W420, which 
is strictly conserved across HCV genotypes (Figure  1B) and 
serves also as a critical residue for CD81 binding (54). A recent 
electron microscopy study demonstrated that the HCV1 Fab 
binds soluble E2 from different angles of approach thereby further 
highlighting the conformational flexibility in epitope I (70).

At the surface of HCV particles, the epitope is either present 
in different conformations or readily converts between them (i.e., 
with a minimal kinetic barrier for conversion) and individual 
nAbs bind the epitope with their particular conformational 
selectivity. Indeed, the dose-dependent neutralization of nAbs 
3/11 and AP33 suggests that the different conformations are in 
a dynamic equilibrium and can be converted in either direction 
(61). Interestingly, in  silico predictions of the peptide alone 
propose a β-hairpin similar to the one observed in complex with 
Fabs from HCV1, AP33, and mAb24 (64). Together with the fact 
that the β-hairpin was observed in the majority of Fab complex 
structures, this suggests that the β-hairpin represents a preferred, 
but extremely unstable conformation on the HCV particle that 
can be readily converted into different conformations following 
an “induced-fit” binding mode to the antibody. This is further 
supported by the reported differences in neutralization potency 
of nAbs targeting the three described epitope I conformations 
(39, 71). The observation that nAbs targeting this segment usu-
ally have a broad neutralization activity suggests that genotype-
specific sequence variations do not dictate the predominant 
epitope I conformation, although neutralization efficiency may 
be modulated by these sequence variations (61). The observed 
structural flexibility could explain the limited immunogenicity to 
the epitope I observed in HCV-infected patients (72).

Similarly, Fab-peptide structures provided molecular insights 
into recognition of epitope II. Structural information is available 
for epitope II in complex with different Abs—potent human nAbs 
on the one hand and weakly and non-nAbs derived from immu-
nization with synthetic peptides on the other hand. When recog-
nized by potent nAbs HC84.1, HC84.27, and the affinity-maturated 
nAb HC84.26.5D, an E2 peptide comprising aa434–446 forms a 
short α-helix spanning residues W437–F442 with an extended con-
formation on the C-terminal side comprising residues 443–446 
(68, 69). This short α-helix can also be found in the AR3C Fab–E2 
complex structure (34). Two other crystal structures of murine 
Fabs from the non-nAb #12 and the weakly neutralizing mAb #8 
reveal an epitope that is located few amino acids upstream, but 
also includes the short α-helix (59, 67). Of note, residues W437 and 
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FiGURe 1 | Structural flexibility of the hepatitis C virus (HCV) E2 glycoprotein. (A) Cartoon representation of the E2 ectodomain crystallized in complex with AR3C Fab 
(PDB 4MWF). The composite CD81-binding site consisting of epitope I (aa412–423; green), epitope II (aa428–446; orange), and the CD81-binding loop (aa518–542; 
blue) is highlighted in color and sidechains of selected residues are displayed as sticks. (B–D) Close-up views of the three antigenic sites mentioned above. (B) Epitope I 
is disordered in the context of the E2 structure but a synthetic epitope peptide folds as β-hairpin in complex with neutralizing antibodies (nAbs) AP33 (PDB 4GAJ), HCV1 
(PDB 4DGV), hu5B3.v3 (PDB 4HS8), and mAb24 (PDB 5VXR) (upper panel). By contrast, the same peptide adopts two distinct extended conformations in complex 
with nAbs HC33.1 (PDB 4XVJ) and HC33.8 (PDB 5FGC) (middle panel) or 3/11 (PDB 4WHY; bottom panel), respectively. The peptide in the nAb HC33.4 complex (PDB 
5FGB) adopts an amino acid backbone conformation identical to the one in complex with nAb HC33.8 and is not shown for simplicity. (C) Superposition of the epitope 
II peptide structure in complex with HC84.1 and HC84.27 Fabs (PDB 4JZN and 4JZO, respectively) onto the E2 ectodomain structure (upper panel) reveals a conserved 
1.5-turn α-helix (aa437–442) with an extended C-terminal segment containing aa443–446. Superposition of the N-terminal loop of epitope II (aa430–434) from the 
peptide structure in complex with mAb #8 (PDB 4HZL) onto its counterparts in the E2 structure suggests that the short α-helix flips out to expose residues W437 and L438 
for mAb #8 binding (bottom panel). (D) Residues 532–540 of the CD81-binding loop were observed in an extended conformation in the context of the E2 ectodomain 
structure (A) and in a helical conformation in the DAO5 Fab–E2 peptide complex structure (PDB 5NPJ) suggesting thereby a putative open and closed conformation of 
the immunoglobulin-like domain. Amino acid sequence conservation of the respective antigenic site was calculated across the six HCV genotypes for 481 isolate 
sequences (100 sequences each for genotypes 1, 2, 3, 6, and 70, 9 and 2 sequences for genotypes 4, 5, and 7, respectively) obtained and analyzed from the ViPR 
database (http://www.viprbrc.org) and is shown below each close-up view. Residues with side chains shown as sticks are highlighted by black arrows.
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L438 crucial for binding of mAb #12 and #8 are not accessible in the 
AR3C Fab–E2 complex, suggesting that a conformational change 
exposing these two residues is required to allow E2 binding. In 
line with this observation, superposition of the respective peptide 
structures using the N-terminus, which should be anchored to 
the Ig-like domain via a disulfide bridge (C429–C503), reveals that 
the C-terminal α-helix has to flip out to allow for mAb #8 binding 
(Figure  1C). This flexibility has been attributed to the strictly  
conserved G436 constituting a hinge between N- and C-terminus 
of the polypeptide chain, thereby resulting in an open and a closed 
state of E2 that implies the different presentation of epitope II 
(59, 70). Potent nAbs HC84.1, HC84.26.5D, and HC84.27 recog-
nize the closed state similar to AR3C, indicating that this represents 
the preferred state of E2 in the viral particle and the open state 
targeted by weakly or non-nAbs is less frequently observed on 
virus particles. However, minor differences in the spatial 
arrangement of the C-terminal part of epitope II (aa443–446) 
(69) suggests that additional local structural changes may also  
occur in the closed conformation (59, 69).

A detailed functional and structural analysis of the non-nAb 
DAO5 provided a glimpse onto conformational changes in the 
CD81-binding loop (epitope III) and the adjacent part of the 
Ig-like domain (58) (Figure  1D). In the AR3C–E2 complex 
structure, the CD81-binding loop is stabilized by the Fab and the 
side chains of residues F537 and L539 (located on β-strand E) are 
buried inside the hydrophobic core of the Ig-like domain resem-
bling a hypothetical closed conformation (34). In the absence of 
stabilizing Fab interactions, residues 524–535 are disordered and 
F537 is solvent-exposed (51). The crystal structure of non-nAb 
DAO5 Fab in complex with the E2 peptide aa532–540 reveals a 
helical conformation in which residues F537 and L539 are buried in 
the Fab interface, suggesting that on E2 they need to be solvent 
exposed to allow for interaction with DAO5 in a putative open 
conformation. A high sequence conservation within this region 
suggests that the observed conformational flexibility in the Ig-like 
domain is an intrinsic feature of E2. Indeed, both conformations 
are present simultaneously on infectious particles; hence, it is 
tempting to speculate that the open conformation recognized 
by non-Ab DAO5 acts as an immunological decoy that distracts 
the humoral immune system from the relevant CD81-binding 
conformation (58).

In addition to the static crystal structures, representing snap-
shots of an apparently highly dynamic protein, solution-based 
studies such as hydrogen deuterium exchange mass spectrom-
etry (HDXMS) and limited proteolysis help to characterize 
flexible regions in E2 (51, 70). HDXMS detects the deuterium 
incorporation into the backbone amides when proteins are 
exposed to deuterated solvent. The exchange rate depends on the 
conformational flexibility and accessibility of individual residues 
to the solvent (73). As expected, HDXMS data confirmed the high 
structural flexibility in the E2 front layer including the composite 
CD81-binding site overlapping with epitopes of most bnAbs 
(70). Moreover, HVR1, HVR2, and igVR are highly flexible and 
heterogeneous in presented conformations in addition to being 
hypervariable in sequence (70). Interestingly, despite its unique 
conformational flexibility E2 has a high thermal stability when 
compared to proteins from thermophilic organisms or other viral 

envelope proteins such as HIV-1 env or influenza hemagglutinin 
presumably also due to its dense disulfide bridge network (70).

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

The conformational flexibility within HCV E2 extends to the 
entire composite CD81-binding site, which overlaps most of the 
conserved neutralization epitopes present in E2. This finding 
raises the question how such a conformational flexibility emerges 
during virus evolution? Which functional importance does this 
flexibility have—or in other words—which selective advantage 
does this flexibility provide for the virus?

One possible explanation could be that the observed conforma-
tions represent different stages during virus entry, where a number 
of changes in environmental conditions (e.g., receptor binding, 
endosomal acidification, or a putative conformational change 
to fuse viral and endosomal membrane) may require different 
glycoprotein conformations. However, all nAbs mentioned above 
targeting epitope I block CD81 binding, suggesting that the differ-
ent epitope I conformations can be adopted upstream of receptor 
binding. To date, the epitope I conformation in complex with CD81 
remains elusive, but a conformationally flexible surface could be 
required for receptor binding. It is estimated that ~30% of protein–
protein interactions include disordered protein regions (74) and 
the region within the large extracellular loop of CD81 thought to 
interact with E2 was described to display marked conformational 
fluctuations (75, 76). Therefore, a conformationally flexible surface 
on the glycoprotein may be favorable to establish a highly specific 
receptor interaction via an ordered interface following an induced 
fit binding mechanism. Structural studies on E2 in complex with 
CD81 will be required to further address this hypothesis.

Another possible explanation could be that the observed 
conformational flexibility is required for a putative dynamic rear-
rangement at the virus surface during infection of the host cell, 
resulting in exposure of the conserved receptor-binding region 
in E2—similar to the structural dynamics or “virus breathing” 
described for the related flaviviruses [reviewed in Ref. (77)]. Such 
an “opening” rearrangement would be in line with the observed 
time- and temperature-modulated exposure of neutralization 
epitopes on HCV virions (78).

A third possible explanation could be that this flexibility 
constitutes a viral mechanism to efficiently evade from nAbs. In 
general, the stability of peptides has been reported to directly cor-
relate with their capacity to induce a humoral immune response 
(79), suggesting that conformational flexibility implies a modest 
immunogenicity. In line with this finding, immunization with a 
synthetic HCV epitope I peptide did not elicit bnAbs, likely due to 
its intrinsic structural flexibility (80) and several studies reported 
that even a cyclic variant of epitope I does not elicit high titers of 
Abs neutralizing HCV infection (80, 81).

This has important implications for vaccine design, suggesting 
that— although many subunit vaccine candidates based on HCV 
glycoproteins are currently under development—an unmodified 
form of the latter is limited in its capacity to elicit nAbs. Structure-
guided stabilization of neutralization epitopes within E2 toward 
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the conformation targeted by nAbs can potentially improve 
its immunogenic properties. Alternatively, a recent innovative 
approach termed epitope-focused vaccine design (82, 83) facili-
tates the design of epitope-specific immunogens to elicit nAbs 
where conventional vaccines failed to raise an immune response. 
For this purpose, a structurally characterized neutralization 
epitope is grafted onto an unrelated protein scaffold containing a 
segment with an identical backbone conformation. A successful 
example of this strategy is the development of an epitope scaffold 
presenting a single neutralization epitope of the human respira-
tory syncytial virus F protein and its neutralization potency can 
potentially be further augmented by the incorporation of further 
neutralization epitopes (82). Epitope-focused design has also been 
applied to HCV neutralization epitopes (80, 84) albeit with limited 
success. However, more recently an anti-idiotypic Ab, which also 
functions by mimicking a neutralization epitope on an unrelated 
protein (in this case an antibody), was demonstrated to robustly 
induce HCVcc-nAbs (85), suggesting that epitope-focused immu-
nogens represent a viable strategy to develop a safe and efficient 
B cell vaccine and elicit a protective nAb response.
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