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Abstract
The nature of inter-microbial metabolic interactions defines the stability of microbial com-

munities residing in any ecological niche. Deciphering these interaction patterns is cru-

cial for understanding the mode/mechanism(s) through which an individual microbial

community transitions from one state to another (e.g. from a healthy to a diseased state).

Statistical correlation techniques have been traditionally employed for mining microbial

interaction patterns from taxonomic abundance data corresponding to a given microbial

community. In spite of their efficiency, these correlation techniques can capture only

'pair-wise interactions'. Moreover, their emphasis on statistical significance can poten-

tially result in missing out on several interactions that are relevant from a biological

standpoint. This study explores the applicability of one of the earliest association rule

mining algorithm i.e. the 'Apriori algorithm' for deriving 'microbial association rules' from

the taxonomic profile of given microbial community. The classical Apriori approach

derives association rules by analysing patterns of co-occurrence/co-exclusion between

various '(subsets of) features/items' across various samples. Using real-world micro-

biome data, the efficiency/utility of this rule mining approach in deciphering multiple

(biologically meaningful) association patterns between 'subsets/subgroups' of microbes

(constituting microbiome samples) is demonstrated. As an example, association rules

derived from publicly available gut microbiome datasets indicate an association between

a group of microbes (Faecalibacterium, Dorea, and Blautia) that are known to have mutual-

istic metabolic associations among themselves. Application of the rule mining approach on

gut microbiomes (sourced from the Human Microbiome Project) further indicated similar

microbial association patterns in gut microbiomes irrespective of the gender of the subjects.

A Linux implementation of the Association Rule Mining (ARM) software (customised for

deriving 'microbial association rules' from microbiome data) is freely available for download

from the following link: http://metagenomics.atc.tcs.com/arm.
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Background
Recent advances in high-throughput sequencing technologies have enabled life sciences
researchers to investigate structure and functional relationships between various organisms
constituting a microbial ecosystem (referred to as microbiome). Deciphering such relationships
and interpreting them in the context of the studied environment is a prime objective of con-
temporary microbiome research initiatives. Inferences drawn by analysing (and comparing)
patterns of co-occurrence of various microbes (taxa) constituting microbial communities (sam-
pled across space and/or time) are expected to aid in (1) obtaining better understanding of
inter-microbial interactions in various environmental niches (2) identifying specific microbial
interaction patterns that directly or indirectly determine the stability of a given microbial com-
munity, and (3) studying and understanding the mode/mechanism(s) by which a microbial
community transitions from one state to another (e.g. from healthy to a diseased state).

Typically, identification of microbial interactions (i.e. their co-occurrence patterns) is done
by employing correlation coefficient measures such as Pearson, Kendall, Spearman, Kullback-
Leibler Distance, or a dissimilarity measure like Bray Curtis. To eliminate spurious correlation
artefacts that may result due to differences in sequencing and/or sampling depth, the input
(taxa) abundance matrix is usually subjected to various normalization techniques prior to com-
puting correlation coefficients. Rows (in the abundance matrix) corresponding to organisms
having (a) null observations in a majority of samples, or (b) low abundance values (below a
specified threshold), are usually purged from the abundance matrix prior to analysis.

A wide variety of algorithms and statistical tools are currently available for visualizing and
analysing networks that are generated using results obtained in such correlation analyses.
These tools help in identifying pairs of microbes having positive/negative correlations in their
abundance patterns and visualize the identified pairs in form of interaction networks. Nodes
and edges in such networks correspond to pairs of microbes having a positive/negative correla-
tion. Recent methods like CoNet [1] improve the confidence of the predicted interactions by
employing an ensemble of correlation and similarity measures that are integrated along with
suitable randomisation and test correction routines (e.g. Simes method, FDR correction, etc.)

The overall topology and patterns of inter-connectivity observed in the generated network
(s) provide valuable biological insights with respect to 'pair-wise' microbial interactions.
Although, such insights help in predicting/understanding the functional/metabolic exchanges
that potentially occur between the identified member pairs, in a real-world scenario, the
nature/complexity of inter-microbial interactions is significantly beyond simple 'pair-wise'
interactions. It is well known that the metabolic potential of any naturally occurring microbial
community is defined by the combined action of several 'groups/subsets' of resident microbes
that interact due to mutual dependencies in terms of shared reactant/intermediate metabolites
and other essential enzymes. This scenario calls for exploration, development and application
of novel algorithms, tools, and suitable data-mining techniques that can go beyond prediction
and analysis of simple 'pair-wise' interactions.

Given the complexity of interactions within microbial communities, the aim of the present
study is to explore the applicability of one of the earliest association rule mining algorithm, the
'Apriori algorithm' (R. Agrawal and R. Srikant, 1994), for deriving 'association rules' from
microbial abundance data. The derived rules are expected to indicate biologically meaningful
co-occurrence/co-exclusion patterns between 'subsets/subgroups' of microbes/ taxa constitut-
ing these microbiome samples. Various customisations performed for adapting the Apriori
approach for microbiome data are appropriately described. Validation experiments that high-
light the efficiency of this 'customised' Apriori approach in deciphering association rules
between various microbial groups in real-world microbiome datasets are also detailed.
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Methods
The principle and methodology of the classical Apriori approach is first summarised using the
classical 'market-basket' analysis problem as a representative example. An introduction to vari-
ous parameters/thresholds (employed in the Apriori approach) that determine the overall con-
fidence of the derived/mined association rules is also included in this summary. Subsequently,
an explanation of various customisations that were done for making the Apriori rule mining
approach efficient and amenable for analysing microbial abundance data is provided.

Principle and methodology of the classical Apriori approach
The classical Apriori algorithm is based on the principle of frequent pattern mining. It is pri-
marily a deductive approach that derives/extracts conclusions (or 'rules') by identifying the
presence of correlations, frequent patterns, and/or associations between various (subsets of)
features/items in existing information. Performing Apriori analysis on given information/data
involves the following two steps -

1. Candidate-set generation. This step involves finding those features/items that occur (in the
given information/data) with a frequency that exceeds a specified threshold (referred to by
the term 'support-count'). Occurrence of a feature is defined in terms of its presence/absence
in the given data. Such a group of frequently occurring feature/items constitute the 'candi-
date-set'. In the classical 'market basket' example, the Apriori property is employed with the
objective of analysing the purchasing behaviour of customers by observing their individual
co-purchasing patterns with respect to certain items (or) groups of items. For this purpose,
data pertaining to purchase history (of various customers) is first analysed for generating a
candidate-set that contains items that are 'frequently' purchased by customers (the fre-
quency being defined by the 'support-count' parameter)

2. Associative Rule mining. This steps analyses items in the candidate set for identifying/min-
ing 'association' rules which essentially indicate the presence of a group given the presence
of the other. This mining process involves the following steps. Initially, all possible groups/
subsets that can potentially be formed using items in the candidate-set are first generated.
Conditional probabilities between each pair of 'groups' are subsequently computed. Rules
are generated based on pairs whose conditional probability value exceeds a user-defined
threshold (the probability threshold being defined by a parameter referred to as 'confidence
value'). In the context of the market-basket example, co-purchasing patterns between vari-
ous items in the candidate item set are identified/ mined. The association rules mined in
this example indicate the likely-hood of a customer purchasing a group of items given that
he/she has purchased another item or group of items.

Adapting Apriori approach for mining association rules from microbiome
data
The classical 'association rule mining' process was customised for identifying analogous associ-
ations between microbial groups (in microbiome samples) in the following manner.

Customisation of candidate set generation process. Microbial abundance data does not
capture the abundances of various microbes/taxa (constituting an environmental sample) in
terms of 'mere' presence/absence. Appropriate methods are therefore required to decide a suit-
able (minimum) abundance threshold for reporting a taxon to be 'present' in the sample being
analysed. For individual taxa, the (minimum) abundance threshold was computed/ defined
using one of the following parameters/strategies. These strategies are illustrated in Fig 1 –

Deciphering Microbial Interaction Patterns fromMetagenomic Datasets Using Associative Rule Mining

PLOS ONE | DOI:10.1371/journal.pone.0154493 April 28, 2016 3 / 16



1. Strategy I: A taxon whose (normalized) abundance proportion (in a sample) exceeds 0.1% is
considered as 'present' (in that sample).

2. Strategy II: For a taxon, compute its mean/median abundance value across various samples.
A taxon is reported as 'present' (in a sample) only if its abundance value (in that sample) lies
between the 2nd and 3rd quartile range of the computed mean/median value.

3. Strategy III: A distance matrix is created based on Manhattan distances computed between
individual abundance values of a taxon (in each of the samples). The distance values are
then hierarchically clustered (and progressively merged) until 2 clusters remain. The taxon
is reported as 'present' only for those samples whose abundance values constituted the big-
gest cluster. In case of a tie, the hierarchical clustering (and progressive merger) process is
continued until a stage wherein the final resulting clusters differ in size.

The support-count parameter (similar to that used in the classical Apriori procedure), is
subsequently employed to retain only those taxa that are reported as 'present' in at least 65%
(i.e. close to two-thirds) of the samples constituting a given microbiome dataset. Taxa retained
in this manner constitute the final 'candidate (taxa) set'.

Customisation of rule mining procedure. In spite of retaining the classical rule mining
procedure using a confidence value of 0.65, an additional ‘scoring process’ was adopted for fil-
tering out spuriously predicted rules. This scoring process involved the following steps. A pre-
determined proportion of reads (e.g. 75%) were drawn from each individual sample (from

Fig 1. Schematic diagram depicting the three strategies employed for indicating the presence/
absence of a taxon. Schematic diagram depicting the three strategies employed for indicating the presence/
absence of a taxon (in various samples) based on their abundance values (in the respective samples). The
first strategy (depicted in section A), relies only on the abundance proportion of the taxa in each sample. A
taxon whose (normalized) abundance proportion (in a sample) exceeds 0.1% is considered as 'present' (in
that sample). In the second strategy (depicted in section B), a taxon is reported as 'present' (in a sample) only
if its abundance value (in that sample) lies between the 2nd and 3rd quartile range of the computed mean/
median value. Strategy 3 (depicted in section C) involves computing Manhattan distances between individual
abundance values of a taxon (in each of the samples) and then hierarchically clustering the samples on basis
of the computed distances. Given that hierarchically clustering in this case involves only singular abundance
values, the clustering can be achieved by progressively merging sample pairs with the least distance. The
sorting mechanism indicated in the figure helps in making the distance calculation process less time
consuming (i.e. computationally efficient). Note that the final two clusters obtained indicate that the taxon is
reported as 'present' in all samples except for Sample S1.

doi:10.1371/journal.pone.0154493.g001
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amongst multiple samples constituting a microbiome dataset) and a normalized taxonomic
abundance table was generated based on the classification of various drawn reads. Rules were
generated from this abundance table. This process of rule generation was repeated several
times (the number of repetitions defined by the end-user). Rules that appeared consistently in
at least two-thirds of the iterations are retained. Fig 2 schematically depicts with an example,
the associative rule mining process that has been customised for microbial abundance data.

Fig 3 provides a 'minimalist' graphical representation of associative rules (involving 3 or
more genera) generated from an example dataset containing 26 genera named alphabetically
(A to Z). This minimalist representation, analogous to a ‘concept linkage’ diagram which repre-
sents connections between co-occurring words/topics/concepts identified through a text-min-
ing exercise, allows users to easily visualise/interpret the co-occurrence and potential
interactions between ‘associated’ genera. Rules indicated in this example involve only 13 out of
26 genera. It is pertinent to note here that genera (and/or groups of genera) constituting an
individual rule share an all-to-all associative relationship. For examples rule 3 (involving 5 gen-
era viz. X, Y, Z, H, and O) not only indicates an associative relationship between all possible
genera pairs, but also between all possible combinations of genera. For the purpose of clarity,
an exhaustive list of such combinations (possible from rule 3) is provided in section A of the
table depicted in Fig 3. As indicated, rule 3 (for instance) indicates an association between the
abundances of genera pair (X, Y) and the genera group (Z, H, and O). Given that Fig 3 illus-
trates a 'minimalist' graphical representation of all associative rules, genera X, Y, and Z

Fig 2. Schematic work-flow depicting the associative rule mining procedure customised for microbial
abundance data. A schematic work-flow depicting the associative rule mining procedure that has been
customised for microbial abundance data. The work-flow has been explained using an initial example
abundance matrix which depicts normalized proportions of five distinct microbes in nine microbiome samples
(S1 to S9). The subsequently indicated Boolean matrix (wherein taxa abundances have been indicated by
presence/absence values i.e. 0 and 1) was generated by employing strategy I in which taxa whose
normalized abundance were greater than 0.1 are considered as 'present'. The subsequent steps represent
the process of candidate set generation. The depicted example indicates the use of a Support Count Value of
6. Taxa whose Support Count Value exceeded 6 (indicated in green font) eventually constitute the candidate
set. The final matrix represents the sole association rule generated after validating various taxa combinations
(in the candidate set) for confidence value threshold. Note that this rule is generated only if all possible
(indicated) taxa combinations exceed the confidence value threshold.

doi:10.1371/journal.pone.0154493.g002
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(common to rules 3 and 4) are shown only once in the circled portion of the illustrated figure.
Section B of the table depicted in Fig 3 provides an exhaustive list of taxa/taxa group combina-
tions generated from rule 4.

Results
The Apriori algorithm, customised for deciphering association rules from microbiome abun-
dance data, was evaluated using the following datasets -

A. Prebiotic datasets
445 samples from publicly available microbiome datasets from two previous studies [2, 3]
which had analysed the impact of prebiotics on the gut microbiome. In both studies, samples
were segregated into three groups (pre, during, and post). While the first group comprised gut
microbiome (i.e. stool) samples taken from subjects prior to the administration of specific pre-
biotic supplements, the second and third groups had samples obtained during the administra-
tion and post-administration phase respectively.

B. HMP datasets
Gut Microbiome datasets from the HMP i.e. the Human Microbiome Project [4]. Available
datasets (containing a total of 309 samples), based on subject metadata, were divided into two
groups viz. Females and Males.

Fig 3. Minimalist graphical representation of associative rules involving 3 or more genera. A
'minimalist' graphical representation of associative rules (involving 3 or more genera) generated from an
example dataset containing 26 genera named alphabetically (A to Z). Rules indicated in this example involve
only 13 out of 26 genera. It is pertinent to note here that genera (and/ or groups of genera) constituting an
individual rule share an all-to-all associative relationship. For examples rule 3 (involving 5 genera viz. X, Y, Z,
H, and O) not only indicates an associative relationship between all possible genera pairs, but also between
all possible combinations of genera. For the purpose of clarity, an exhaustive list of such combinations
(possible from rule 3) is provided in the table depicted in Fig 3. As indicated, rule 3 (for instance) indicates an
association between the abundances of genera pair (X, Y) and the genera group (Z, H, and O). Given that Fig
3 illustrates a 'minimalist' graphical representation of all associative rules, genera X, Y, and Z (common to
rules 3 and 4) are shown only once in the circled portion of the illustrated figure. The table depicted in Fig 3
also provides an exhaustive list of taxa and combinations of taxa generated from rule 4.

doi:10.1371/journal.pone.0154493.g003
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The rationale behind choosing the above mentioned datasets for evaluating the customised
Apriori algorithm is the following -

1. All evaluation datasets correspond to microbiome samples taken from the human gut. At
the current juncture, there is availability of several research papers and reviews that provide
information with respect to the physiological interdependence of various bacterial genera
residing in the human gut. Such information would primarily help in validating whether the
association rules generated contain the expected set of interacting genera.

2. In prebiotic datasets, comparison of the association rules generated at various phases (i.e.
pre, during, and post administration) would help in identifying a core set of genera that are
always seen to be associated irrespective of the transition state. Moreover, the generated
association rules would help in understanding microbial interaction dynamics associated
with this transition.

3. HMP datasets were obtained from subjects belonging to the same geography. A comparison
of association rules generated using datasets from male and female subjects would help in
observing patterns of similarities/differences between human gut microbial interactions in
male and female subjects.

Taxonomic assignments for individual reads (in all samples) were obtained using RDP clas-
sifier (version 2.10; bootstrap confidence threshold: 0.8). Abundance tables were generated
based on the number of reads assigned to individual genera in each of the samples. S1 File pro-
vides all abundance tables (used in the present study) in the form of a zip archive. Generated
tables (corresponding to individual datasets) were provided as input to the customised Apriori
implementation. During the candidate taxa generation process, strategy 1 was adopted for
defining the (minimum) abundance threshold for individual taxa. Support count value of 65,
and a rule-mining confidence value of 0.65 were used as parameters during the rule-mining
process.

For each of the validation datasets, Table 1 summarizes information pertaining to (a) the
number of samples, (b) the number of generated association rules (total as well as rules that
involve 3 or more genera), (c) the unique number of microbial genera involved in the identified
association rules, and (d) execution time. Figs 3–5 provide a graphic representation of associa-
tive rules (involving 3 or more genera) generated from individual validation datasets used in
this study.

Results obtained with Prebiotic datasets
With respect to the number of rules having three or more genera, graphs generated from both
studies (depicted in Fig 4) primarily indicate associations between groups of genera that share
related physiological functions. For e.g. in both studies related to prebiotics, in datasets that
were obtained prior to the administration of the prebiotic, the generated rules indicate an asso-
ciation between the genera Blautia, Faecalibacterium, and Dorea. These three genera are physi-
ologically associated in the following manner. Blautia is known to produce acetate from
hydrogen and carbon dioxide [5]. Acetate, in turn, is utilized as an energy source by Faecalibac-
terium which results in generation of butyrate as an end-product [6]. Butyrate is known to
induce mucin synthesis [7]. Given that mucosal layer thickness is defined by a fine balance
between mucin synthesis and degradation rates, it is interesting to find an association between
Faecalibacterium and Dorea, a genus known for its mucin degrading capabilities [8].

Results from datasets that were obtained during the administration of the prebiotic supple-
ment indicate similar types of associations described above. One distinct change is the
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inclusion of Bifidobacterium genera in the association rules generated from the Chinese pre-
biotic [2] datasets. The likely role of this genus is to regulate the levels of glucosidases [9].
These enzymes, typically produced during metabolism of fructo-oligosaccharides (i.e. prebi-
otic) by acetate producing microbes (e.g. Bacteriodes, Blautia etc.), unmask mucin-associated
carbohydrate receptors. Such an action increases bacterial adherence rates which in turn lead
to a state of infection. Interestingly, graphs corresponding to the post-administration phase (of
both studies) indicate an increase in the number of associations between the same set of bacte-
ria that were present before or during the administration phase.

In summary, results discussed above indicate that the customised Apriori approach was
able to generate association rules containing groups of genera that are known to have mutualis-
tic metabolic associations among themselves. Furthermore, the rules indicate that 'Faecalibac-
terium-Dorea-Blautia' group always share an associative relationship more or less irrespective
of the transition state indicating thereby reflecting core functional dependencies. It will be
interesting to see if the same functional interdependence is observed in gut microbiomes taken
from diseased states (from subjects in the same geographies).

Results obtained with HMP datasets
As seen in the results obtained in the prebiotic datasets, graphs generated from HMP studies
(Fig 5A and 5B) also indicate rules that capture relationships between a set of bacteria that
have well-known synergistic associations. There are instances of identical/similar rules gener-
ated in both datasets indicating 'conserved' association patterns between microbial community
members in gut samples from amongst subjects originating from the same geography (irre-
spective of their gender). For example, genera sharing functions involving acetate and butyrate

Table 1. Number of association rules generated using the Apriori rule mining approach with various datasets. Summarised information pertaining to
(a) the number of samples, (b) the number of generated association rules (total as well as rules that involve 3 or more genera), (c) the unique number of micro-
bial genera involved in the identified association rules, (d) execution time, and (e) the number of rules generated using an alternative rule mining strategy
(detailed in discussion section of the manuscript).

Study Number of
Samples

Number of
Taxa

Execution Time
for ARM
(minutes)

Number of Rules with ARM Number of rules with the
alternative strategy (3 or

more microbes)
Total

number of
rules

Rules with 3 or
more microbes

Prebiotics
Chinese

Pre
administration

94 24 19 52 15 1

During
administration

97 23 17 43 11 1

Post
administration

93 25 21 56 14 0

Probiotics
Japanese

Pre
administration

19 22 5m 23s 36 5 0

During
administration

72 27 1m 14s 64 13 1

Post
administration

70 24 6m 14s 66 12 0

Human
Microbiome
Project (HMP)

Female 126 26 1m 17s 71 11 3

Male 183 32 1m 37s 76 14 4

doi:10.1371/journal.pone.0154493.t001
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Fig 4. Associative rules (involving 3 or more genera) generated from the prebiotic datasets. A graphic representation of associative rules (involving 3
or more genera) generated from the prebiotic datasets. Parts A, B and C depict association rules generated from the Chinese prebiotic datasets [2]. Parts D,
E and F depict association rules generated from the Japanese prebiotic datasets [3].

doi:10.1371/journal.pone.0154493.g004
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production/degradation, viz. Bacteriodes, Clostridium XVIII, and Coprococcus, are again
observed to be associated [6, 10].

In order to evaluate if the same set and similar number of rules are generated at higher
threshold values, the above experiments (on prebiotic as well as HMP datasets) were also per-
formed with higher ‘confidence value’ and ‘support count’ thresholds. Tables 2 and 3 depict
the number of rules generated as a function of increasing threshold values. Overall, as expected,
results in this table indicate higher threshold values result in fewer rules being generated. How-
ever, in spite of the randomisation procedure adopted during the final rule scoring step, higher
thresholds did not result in generating newer rules. This indirectly reflects the robustness/ util-
ity of the final scoring process in removing false positive predictions. Assuming that values of
65 (for support count) and 0.65 (as probability threshold) provide acceptable /reasonable confi-
dence (with respect to the generated rules), the current experiments used these values as
thresholds.

On a similar note, the process of candidate taxa generation in the above experiments utilized
strategy I (Fig 1) for defining the minimum abundance threshold for individual taxa. Tables 2–
4 provide a summary of results indicating the number of rules generated upon employing the
other two strategies (Fig 1) on the complete HMP dataset. The values in this table also indicate
the number of predicted rules (and the time required to generate the same) as a function of
change in the number of iterations during the final scoring process. Results indicate the follow-
ing trends–

1. All three strategies require almost similar amounts of time for process execution and the
time is observed to scale as per the number of iterations. In all three strategies, the number
of rules appears to reach a plateau after approximately 200–500 iterations depending on the
number of samples in the dataset. Overall, results seem to follow a logical pattern and clearly
suggest that smaller datasets require higher number of iterations to arrive at a robust set of
predictions and vice versa.

Fig 5. Associative rules (involving 3 or more genera) generated from the HMP datasets. A graphic
representation of associative rules (involving 3 or more genera) generated from the HMP datasets [4]. Parts A
and B depict association rules generated from samples corresponding to male and female subjects
respectively.

doi:10.1371/journal.pone.0154493.g005
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2. Strategy III is observed to results in fewer numbers of rules as compared to the other two
strategies. Being relatively more stringent in its approach, it is reasonable to adopt strategy
III for datasets with higher number of samples. In datasets with very few samples, it is rea-
sonable to expect that this strategy may not generate any association rules. For example, in
the prebiotics dataset, the number of rules generated was null (Table 2).

Discussion
The last decade has witnessed the development of several specialised tools/algorithms catering
to various stages of microbiome data analysis viz. host-sequence decontamination [11–13],
contig assembly [14–16], taxonomic binning [17–26], functional characterization [27–30], and

Table 2. Number of association rules generated from the prebiotics dataset with various run-time thresholds. Number of association rules generated
using the Apriori rule mining approach on the prebiotics dataset at various values of support count and confidence thresholds. Table also depicts variations in
number of rules due to adoption of various strategies that define the minimum abundance threshold for individual taxa to be considered for rule mining.

Strategy Support Count Confidence threshold

0.65 0.70 0.75 0.80

Strategy I 65 7 7 6 7

70 3 3 3 3

75 3 4 3 3

80 4 2 2 1

Strategy II 65 6 5 5 5

70 3 3 2 2

75 2 2 2 1

80 1 1 1 1

Strategy III 65 0 0 0 0

70 0 0 0 0

75 0 0 0 0

80 0 0 0 0

doi:10.1371/journal.pone.0154493.t002

Table 3. Number of association rules generated from the HMP (male) dataset with various run-time thresholds. Number of association rules gener-
ated using the Apriori rule mining approach on the HMP (male) dataset at various values of support count and confidence thresholds. Table also depicts varia-
tions in number of rules due to adoption of various strategies that define the minimum abundance threshold for individual taxa to be considered for rule
mining.

Strategy Support Count Confidence threshold

0.65 0.70 0.75 0.80

Strategy I 65 86 85 85 84

70 60 60 60 60

75 12 12 11 11

80 6 5 5 5

Strategy II 65 78 77 76 64

70 52 50 50 50

75 12 10 9 9

80 5 3 3 3

Strategy III 65 7 7 6 6

70 6 6 5 4

75 4 4 3 3

80 86 85 85 84

doi:10.1371/journal.pone.0154493.t003
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comparative analysis of microbial communities [31–33]. Beyond elucidating (and comparing)
microbial diversity in taxonomic and functional terms, it is important to obtain insights about
intra-community microbial interaction patterns and understand the dynamics of these interac-
tion patterns as a function of external environmental changes. The objective of tools/
approaches employed for studying microbial community dynamics is to find and characterize
microbes (or groups of microbes) that show statistically significant co-presence/co-exclusion
patterns. Such patterns find utility in indicating/interpreting (a) synergistic/antagonistic rela-
tionships (between various microbes) at a physiological/functional level, and (b) important
higher-order community properties such as niche overlap, niche preference, mutualism, com-
petition, amensalism, commensalism etc.

In silico identification/characterization of association patterns typically involves finding
'statistically significant' co-occurrence/ co-exclusion patterns from a given dataset [34–36].
From the perspective of a biologist, all 'statistically significant' recurrent patterns (i.e.
identified microbial associations) may not be 'interesting' from a biological standpoint.
On the other hand, several biologically relevant microbial associations may be lost due to
over-emphasis on evaluating the statistical significance of a mined association pattern. For
instance, consider the abundance profiles of the 4 genera depicted in Fig 6. The abundance
values indicated in part A of Fig 6 represent the actual abundances of these 4 genera in vari-
ous samples constituting the prebiotic datasets [2]. The abundances of genera Faecalibac-
terium and Blautia (Fig 6A) indicate an absence of a statistically significant correlation
(either Pearson or Spearman at a p-value< 0.05) (Fig 6B). However, employing the Apriori
rule mining approach on the abundance data (depicted in Fig 6C) results in generation of
'rules' that indicate an associative relationship between these genera (i.e. Faecalibacterium
and Blautia). Considering that genera Faecalibacterium and Blautia are known to share a
mutual symbiotic relationship [5, 6], ascertaining inter-microbial relationships only on
basis of statistical correlation may result in missing out on a few associations that are bio-
logically relevant. In this context, it is important to note that the ultimate objective of the
Apriori rule mining approach (like any other predictive approach) is to provide biologists a
set of possible interacting (candidate) taxa, the functions of which can be probed for associ-
ation with the respective phenotype.

Table 4. Number of association rules generated from the HMP (full) dataset with various run-time thresholds. Number of association rules generated
using the Apriori rule mining approach on the HMP (full) dataset at various values of support count and confidence thresholds. Table also depicts variations in
number of rules due to adoption of various strategies that define the minimum abundance threshold for individual taxa to be considered for rule mining.

Strategy Support Count Confidence threshold

0.65 0.70 0.75 0.80

Strategy I 65 15 14 14 14

70 13 12 12 11

75 10 9 9 8

80 5 4 3 3

Strategy II 65 12 12 12 12

70 10 9 9 9

75 9 9 8 8

80 4 4 3 3

Strategy III 65 10 10 9 9

70 9 9 8 8

75 8 8 8 7

80 6 5 5 5

doi:10.1371/journal.pone.0154493.t004
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Despite its utility in facilitating life sciences researchers to obtain a systems-level under-
standing of the structure, function and dynamics of microbial communities, employing the
Apriori approach for mining association rules from microbiome data has a few limitations.
The process of populating/building a 'candidate item set' (with frequent item sets) involves iter-
ative inclusion/extension of one additional item to a frequent subset followed by 'support-
count' validation. The iteration continues until no further successful extensions to the frequent
subset are found valid from a support count perspective. This procedure necessitates scanning
through the same data multiple times, thereby rendering the process computationally ineffi-
cient. However, it is important to note that the time taken for generating the candidate item set
is not a direct function of data size. The actual number of associations present in the data deter-
mines the execution time of the program. Values summarized in Table 1 highlights the latter
assertion. As evident from this table, in spite of having 2 times more samples as compared to
prebiotic datasets, the time required for processing the HMP datasets (with relatively lesser no.
of rules) is 5 times lower that than required for prebiotic datasets.

As described above, identifying groups of frequently co-occurring features (i.e. frequent
item set) constituting the candidate item set is challenging from an implementation perspec-
tive. In order to address the challenge associated with this computationally expensive step, an
alternative strategy (graphically depicted in Fig 7) for finding association rules was attempted.
The alternative strategy involved the following three steps -

Step 1: Identification of significant correlating feature pairs

Step 2: Use of graph theory for finding all possible independent 'cliques' (i.e. groups of features)
from such a network of significantly correlating feature pairs

Step 3: Reporting a clique as an 'association rule' if all possible combinations of features in that
clique satisfy the 'confidence value' threshold (i.e. conditional probability threshold)

The above strategy was based on the assumption that an ideal candidate set should contain
'only' those features that have a statistically significant correlation (Pearson or Spearman)
between their abundance profiles. From a computational perspective, steps 1 and 2 (indicated
above) are relatively inexpensive as compared to the process of generating a candidate item set.
Step 3 is common to both processes.

Fig 6. Comparison of results generated using correlation approach and the Apriori approach. A
comparison of results generated using (i) correlation approach and (ii) the Apriori approach. The abundance
values indicated in part A represent the actual abundances of 4 genera in various samples constituting the
prebiotic datasets [2]. Table shown in Part B indicates Spearman correlation values computed between
various taxa pairs. The taxon pair that generated a significant correlation is indicated in green font. Part C
depicts association rules generated using the Apriori approach.

doi:10.1371/journal.pone.0154493.g006
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Although the alternative strategy showed improved performance in terms of computational
efficiency, results summarized in Table 1 indicate poor performance as compared to the associ-
ation rule mining approach. Several rules identified by the latter approach were observed to be
missed by the alternative strategy. In summary, it may again be inferred that following a proce-
dure that initially evaluates the statistical significance of the abundance patterns observed
between feature pairs has a high likely-hood of missing several biologically relevant microbial
associations that can be identified using association rule mining approaches.

Conclusions
This study explores and demonstrates the applicability of the 'Apriori algorithm' for deriving
'association rules' from the taxonomic abundance profiles of various samples constituting a
given microbiome dataset. The derived rules indicate the pattern of interactions between 'sub-
sets/subgroups' of microbes/taxa constituting these samples. Various customisations per-
formed for adapting the Apriori approach for microbiome data have been described. Results of
the validation experiments highlight the efficiency of this 'customised' Apriori approach in
deciphering biologically relevant association rules.

Supporting Information
S1 File. Datasets used for evaluating the customized version of Apriori algorithm. A zip
archive containing microbial abundance tables which were employed for deciphering associa-
tion rules using the customised version of the Apriori algorithm.
(ZIP)

Acknowledgments
We would like to acknowledge Mr. Deepak Yadav for providing us with relevant scripts.

Author Contributions
Conceived and designed the experiments: DT MMH SSM. Performed the experiments: DT
MMH. Analyzed the data: DT MMH SSM. Wrote the paper: DT MMH SSM. Implemented the
algorithms: DT.

Fig 7. Steps followed in the correlation-based (alternative) rule mining approach. A graphical
representation of various steps followed in the correlation-based (alternative) rule mining approach.

doi:10.1371/journal.pone.0154493.g007

Deciphering Microbial Interaction Patterns fromMetagenomic Datasets Using Associative Rule Mining

PLOS ONE | DOI:10.1371/journal.pone.0154493 April 28, 2016 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154493.s001


References
1. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C: Microbial Co-

occurrence Relationships in the Human Microbiome. PLoS Comput Biol 2012, 8:e1002606. doi: 10.
1371/journal.pcbi.1002606 PMID: 22807668

2. Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, Zhang M, Zhang X, Zhang C, Li M, Sun L, Xue Z,
Wang J, Feng J, Yan F, Zhao N, Liu J, LongW, Zhao L: A gut microbiota-targeted dietary intervention
for amelioration of chronic inflammation underlying metabolic syndrome. FEMSMicrobiol Ecol 2014,
87:357–367. doi: 10.1111/1574-6941.12228 PMID: 24117923

3. Kato T, Fukuda S, Fujiwara A, SudaW, Hattori M, Kikuchi J, Ohno H: Multiple Omics Uncovers Host–
Gut Microbial Mutualism During Prebiotic Fructooligosaccharide Supplementation. DNA Res 2014:
dsu013.

4. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI: The human microbiome
project: exploring the microbial part of ourselves in a changing world. Nature 2007, 449:804–810.
PMID: 17943116

5. Bernalier A, Willems A, Leclerc M, Rochet V, Collins MD: Ruminococcus hydrogenotrophicus sp. nov.,
a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch Microbiol 1996,
166:176–183. PMID: 8703194

6. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ: The microbiology of butyrate formation in the
human colon. FEMSMicrobiol Lett 2002, 217:133–139. PMID: 12480096

7. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A: Potential beneficial effects of buty-
rate in intestinal and extraintestinal diseases. World J Gastroenterol WJG 2011, 17:1519–1528. doi:
10.3748/wjg.v17.i12 PMID: 21472114

8. Crost EH, Tailford LE, Le Gall G, Fons M, Henrissat B, Juge N: Utilisation of Mucin Glycans by the
Human Gut Symbiont Ruminococcus gnavus Is Strain-Dependent. PLoS ONE 2013, 8:e76341. doi:
10.1371/journal.pone.0076341 PMID: 24204617

9. Pokusaeva K, Fitzgerald GF, van Sinderen D: Carbohydrate metabolism in Bifidobacteria. Genes Nutr
2011, 6:285–306. doi: 10.1007/s12263-010-0206-6 PMID: 21484167

10. Miller TL: The pathway of formation of acetate and succinate from pyruvate by Bacteroides succino-
genes. Arch Microbiol 1978, 117:145–152. PMID: 678020

11. Mohammed MH, Chadaram S, Komanduri D, Ghosh TS, Mande SS: Eu-Detect: an algorithm for detect-
ing eukaryotic sequences in metagenomic data sets. J Biosci 2011, 36:709–717. PMID: 21857117

12. Schmieder R, Edwards R: Fast Identification and Removal of Sequence Contamination from Genomic
and Metagenomic Datasets. PLoS ONE 2011, 6:e17288. doi: 10.1371/journal.pone.0017288 PMID:
21408061

13. Haque MM, Bose T, Dutta A, Reddy CVSK, Mande SS: CS-SCORE: Rapid identification and removal
of human genome contaminants frommetagenomic datasets. Genomics 2015, 106:116–121. doi: 10.
1016/j.ygeno.2015.04.005 PMID: 25944184

14. Peng Y, Leung HCM, Yiu SM, Chin FYL: Meta-IDBA: a de Novo assembler for metagenomic data.
Bioinforma Oxf Engl 2011, 27:i94–101.

15. Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, Darling AE, Phillippy AM, Pop M:
MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol
2013, 14:R2. doi: 10.1186/gb-2013-14-1-r2 PMID: 23320958

16. Reddy RM, Mohammed MH, Mande SS: MetaCAA: A clustering-aided methodology for efficient
assembly of metagenomic datasets. Genomics 2014, 103:161–168. doi: 10.1016/j.ygeno.2014.02.007
PMID: 24607570

17. Huson DH, Auch AF, Qi J, Schuster SC: MEGAN analysis of metagenomic data. Genome Res 2007,
17:377–386. PMID: 17255551

18. Mohammed MH, Ghosh TS, Reddy RM, Reddy CVSK, Singh NK, Mande SS: INDUS—a composition-
based approach for rapid and accurate taxonomic classification of metagenomic sequences. BMC
Genomics 2011, 12 Suppl 3:S4. doi: 10.1186/1471-2164-12-S3-S4 PMID: 22369237

19. Mohammed MH, Ghosh TS, Singh NK, Mande SS: SPHINX—an algorithm for taxonomic binning of
metagenomic sequences. Bioinforma Oxf Engl 2011, 27:22–30.

20. Monzoorul Haque M, Ghosh TS, Komanduri D, Mande SS: SOrt-ITEMS: Sequence orthology based
approach for improved taxonomic estimation of metagenomic sequences. Bioinforma Oxf Engl 2009,
25:1722–1730.

21. Ghosh TS, M MH, Mande SS: DiScRIBinATE: a rapid method for accurate taxonomic classification of
metagenomic sequences. BMC Bioinformatics 2010, 11(Suppl 7):S14. doi: 10.1186/1471-2105-11-
S7-S14 PMID: 21106121

Deciphering Microbial Interaction Patterns fromMetagenomic Datasets Using Associative Rule Mining

PLOS ONE | DOI:10.1371/journal.pone.0154493 April 28, 2016 15 / 16

http://dx.doi.org/10.1371/journal.pcbi.1002606
http://dx.doi.org/10.1371/journal.pcbi.1002606
http://www.ncbi.nlm.nih.gov/pubmed/22807668
http://dx.doi.org/10.1111/1574-6941.12228
http://www.ncbi.nlm.nih.gov/pubmed/24117923
http://www.ncbi.nlm.nih.gov/pubmed/17943116
http://www.ncbi.nlm.nih.gov/pubmed/8703194
http://www.ncbi.nlm.nih.gov/pubmed/12480096
http://dx.doi.org/10.3748/wjg.v17.i12
http://www.ncbi.nlm.nih.gov/pubmed/21472114
http://dx.doi.org/10.1371/journal.pone.0076341
http://www.ncbi.nlm.nih.gov/pubmed/24204617
http://dx.doi.org/10.1007/s12263-010-0206-6
http://www.ncbi.nlm.nih.gov/pubmed/21484167
http://www.ncbi.nlm.nih.gov/pubmed/678020
http://www.ncbi.nlm.nih.gov/pubmed/21857117
http://dx.doi.org/10.1371/journal.pone.0017288
http://www.ncbi.nlm.nih.gov/pubmed/21408061
http://dx.doi.org/10.1016/j.ygeno.2015.04.005
http://dx.doi.org/10.1016/j.ygeno.2015.04.005
http://www.ncbi.nlm.nih.gov/pubmed/25944184
http://dx.doi.org/10.1186/gb-2013-14-1-r2
http://www.ncbi.nlm.nih.gov/pubmed/23320958
http://dx.doi.org/10.1016/j.ygeno.2014.02.007
http://www.ncbi.nlm.nih.gov/pubmed/24607570
http://www.ncbi.nlm.nih.gov/pubmed/17255551
http://dx.doi.org/10.1186/1471-2164-12-S3-S4
http://www.ncbi.nlm.nih.gov/pubmed/22369237
http://dx.doi.org/10.1186/1471-2105-11-S7-S14
http://dx.doi.org/10.1186/1471-2105-11-S7-S14
http://www.ncbi.nlm.nih.gov/pubmed/21106121


22. Brady A, Salzberg SL: Phymm and PhymmBL: metagenomic phylogenetic classification with interpo-
lated Markov models. Nat Methods 2009, 6:673–676. doi: 10.1038/nmeth.1358 PMID: 19648916

23. Ghosh TS, Gajjalla P, MohammedMH, Mande SS: C16S—a Hidden Markov Model based algorithm
for taxonomic classification of 16S rRNA gene sequences. Genomics 2012, 99:195–201. doi: 10.1016/
j.ygeno.2012.01.008 PMID: 22326741

24. Reddy RM, Mohammed MH, Mande SS: TWARIT: an extremely rapid and efficient approach for phylo-
genetic classification of metagenomic sequences. Gene 2012, 505:259–265. doi: 10.1016/j.gene.
2012.06.014 PMID: 22710135

25. Ghosh TS, Mohammed MH, Komanduri D, Mande SS: ProViDE: A software tool for accurate estimation
of viral diversity in metagenomic samples. Bioinformation 2011, 6:91–94. PMID: 21544173

26. Dutta A, Tandon D, Mh M, Bose T, Mande SS: Binpairs: Utilization of Illumina Paired-End Information
for Improving Efficiency of Taxonomic Binning of Metagenomic Sequences. PLoS ONE 2014, 9:
e114814. doi: 10.1371/journal.pone.0114814 PMID: 25551450

27. Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, Sinelnikov I, Budwill K, Nesbø CL, Wishart DS: META-
GENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res 2012, 40
(Web Server issue):W88–95. doi: 10.1093/nar/gks497 PMID: 22645318

28. Sanli K, Karlsson FH, Nookaew I, Nielsen J: FANTOM: Functional and taxonomic analysis of metagen-
omes. BMC Bioinformatics 2013, 14:38. doi: 10.1186/1471-2105-14-38 PMID: 23375020

29. Bose T, Haque MM, Reddy C, Mande SS: COGNIZER: A Framework for Functional Annotation of
Metagenomic Datasets. PLoS One 2015, 10(11):e0142102. doi: 10.1371/journal.pone.0142102 PMID:
26561344

30. Nagpal S, Haque MM, Mande SS: Vikodak—AModular Framework for Inferring Functional Potential of
Microbial Communities from 16SMetagenomic Datasets. PLoS ONE 2016, 11(2): e0148347. doi: 10.
1371/journal.pone.0148347 PMID: 26848568

31. Ghosh TS, Mohammed MH, Rajasingh H, Chadaram S, Mande SS: HabiSign: a novel approach for
comparison of metagenomes and rapid identification of habitat-specific sequences. BMC Bioinformat-
ics 2011, 12(Suppl 13):S9. doi: 10.1186/1471-2105-12-S13-S9 PMID: 22373355

32. Huson DH, Weber N: Microbial community analysis using MEGAN. Methods Enzymol 2013, 531:465–
485. doi: 10.1016/B978-0-12-407863-5.00021-6 PMID: 24060133

33. Kuntal BK, Ghosh TS, Mande SS: Community-Analyzer: A platform for visualizing and comparing
microbial community structure across microbiomes. Genomics 2013, 102:409–418. doi: 10.1016/j.
ygeno.2013.08.004 PMID: 23978768

34. Agrawal R, Srikant R (1997) Fast algorithms for mining association rules. Proceedings of the 20th
VLDB Conference: 487–499.

35. Chengqi Z, Shichao Z (2002) Association rules mining: models and algorithms. Springer-Verlag Berlin
Heidelberg. pp. 25–46.

36. Naulaerts S, Meysman P, Bittremieux W, Vu TN, Vanden BergheW, Goethals B, et al. A primer to fre-
quent itemset mining for bioinformatics. Brief Bioinform. 2015; 16: 216–231. doi: 10.1093/bib/bbt074
PMID: 24162173

Deciphering Microbial Interaction Patterns fromMetagenomic Datasets Using Associative Rule Mining

PLOS ONE | DOI:10.1371/journal.pone.0154493 April 28, 2016 16 / 16

http://dx.doi.org/10.1038/nmeth.1358
http://www.ncbi.nlm.nih.gov/pubmed/19648916
http://dx.doi.org/10.1016/j.ygeno.2012.01.008
http://dx.doi.org/10.1016/j.ygeno.2012.01.008
http://www.ncbi.nlm.nih.gov/pubmed/22326741
http://dx.doi.org/10.1016/j.gene.2012.06.014
http://dx.doi.org/10.1016/j.gene.2012.06.014
http://www.ncbi.nlm.nih.gov/pubmed/22710135
http://www.ncbi.nlm.nih.gov/pubmed/21544173
http://dx.doi.org/10.1371/journal.pone.0114814
http://www.ncbi.nlm.nih.gov/pubmed/25551450
http://dx.doi.org/10.1093/nar/gks497
http://www.ncbi.nlm.nih.gov/pubmed/22645318
http://dx.doi.org/10.1186/1471-2105-14-38
http://www.ncbi.nlm.nih.gov/pubmed/23375020
http://dx.doi.org/10.1371/journal.pone.0142102
http://www.ncbi.nlm.nih.gov/pubmed/26561344
http://dx.doi.org/10.1371/journal.pone.0148347
http://dx.doi.org/10.1371/journal.pone.0148347
http://www.ncbi.nlm.nih.gov/pubmed/26848568
http://dx.doi.org/10.1186/1471-2105-12-S13-S9
http://www.ncbi.nlm.nih.gov/pubmed/22373355
http://dx.doi.org/10.1016/B978-0-12-407863-5.00021-6
http://www.ncbi.nlm.nih.gov/pubmed/24060133
http://dx.doi.org/10.1016/j.ygeno.2013.08.004
http://dx.doi.org/10.1016/j.ygeno.2013.08.004
http://www.ncbi.nlm.nih.gov/pubmed/23978768
http://dx.doi.org/10.1093/bib/bbt074
http://www.ncbi.nlm.nih.gov/pubmed/24162173

