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Abstract: A visual–inertial odometer is used to fuse the image information obtained by a vision sensor
with the data measured by an inertial sensor and recover the motion track online in a global frame.
However, in an indoor environment, geometric transformation, sparse features, illumination changes,
blurring, and noise will occur, which will either cause a reduction in or failure of the positioning
accuracy. To solve this problem, a map matching algorithm based on an indoor plane structure map is
proposed to improve the positioning accuracy of the system; this algorithm was implemented using
a conditional random field model. The output of the attitude information from the visual–inertial
odometer was used as the input of the conditional random field model. The feature function between
the attitude information and the expected value was established, and the maximum probabilistic
value of the attitude was estimated. Finally, the closed-loop feedback correction of the visual–inertial
system was carried out with the probabilistic attitude value. A number of experiments were designed
to verify the feasibility and reliability of the positioning method proposed in this paper.

Keywords: visual–inertial odometer; indoor positioning system; conditional random field;
map matching

1. Introduction

Mobile robots are widely used in industrial production, the service industry, and other fields.
Mobile robots need to realize autonomous navigation instead of being manipulated by human beings.
To achieve this purpose, positioning is one of the key technologies. The global positioning system
(GPS) can be used accurately in an outdoor environment; however, in an indoor environment, the
global navigation satellite system (GNSS) signal is weak; thus, it cannot complete the positioning
function [1]. At present, the commonly used indoor positioning technologies are laser, inertial
navigation system, infrared, and wireless local area network (WLAN), but these indoor navigation
technologies cannot be widely used because of problems such as allele accuracy and cost. With the rapid
development of machine vision and computer technology, the performance of small industrial cameras
and the microelectromechanical system (MEMS) inertial devices was continuously improved [2–4].
The technology of a visual–inertial odometer (VIO) was gradually realized in engineering applications
at the theoretical verification stage.

A monocular visual–inertial navigation algorithm was developed rapidly in recent years. In 2016,
Usenko, from the Munich University of Technology, proposed a binocular visual–inertial positioning
method based on tight coupling and direct methods. Using the photometric errors and residuals of
images, an objective function was established, and a semi-dense map was constructed to achieve a
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positional accuracy of less than 0.1% of the motion distance [5]. Mur-Artal, author of ORB-SLAM,
and others also proposed the addition of an inertial measurement unit (IMU) error model to the cost
function of tracking and the local bundle adjustment (BA) module to improve the positioning accuracy
in 2016 [6]. The VINS-MONO system proposed by Shaojie’s research group from the Hong Kong
University of Science and Technology in 2017 is a VIO system based on sliding window optimization.
It only optimizes the information in the sliding window and does not optimize the previous state or
measurement value. Its translation error based on loop detection is less than 0.3% of the accuracy of
the motion distance [7]. On one hand, all of these algorithms need rich features in the scene. On the
other hand, they do not optimize the previous state or measurement value. In an indoor environment,
corridors, white walls, and other weak-texture scenarios, as well as the influence of the illumination
intensity, make the existing fusion algorithms less robust, sharply decline the precision, or even cause
location failure.

The indoor environment has spatial constraints and can be used to eliminate some incorrect
positioning results. It is an additional data source to improve the accuracy and reliability of an indoor
positioning system. The process of utilizing map information in the positioning process is called
map matching. This method can establish a matching model through the corresponding relationship
between the attitude sequence obtained by the visual–inertial positioning system and the sequence of
the state points in the map; therefore, the positioning accuracy of the system can be improved without
adding any hardware [8].

In an indoor map matching algorithm, points (doors), lines (grids), and surfaces (rooms) need to
be constrained. In Reference [9], the indoor structure model was constructed by using the indoor basic
vector information, and the wireless location results were constrained by fusing the sensor information
and the map information. However, the final location results were constrained by the map in this
document. The smoothing filtering problem of the location results was not considered in the constraints
process. At present, the common methods are based on a hidden Markov model (HMM) and a particle
filter (PF) [10–12], because of its non-parameterized characteristics. Here, the stochastic variables must
satisfy the Gaussian distribution when solving the problem of nonlinear filtering, which provides an
effective solution for the analysis of nonlinear dynamic systems. One of the major issues of the PF is
the computation time, as a large number of particles are typically required to ensure a good estimation
of the continuous probability distribution, particularly when dealing with noisy inertial data and
large maps. The MapCraft system proposed by Xiao is the first in which a map matching algorithm
based on a conditional random field is tightly coupled with the positioning system [13]. The system
obtains the original measurement value directly from the sensor as the input of the algorithm and
fuses it with the map information. When this system is used for real-time tracking, the delay caused
by the backward phase of the conditional random field will affect the efficiency of the algorithm and
reduce the positioning accuracy. Therefore, in this study, we developed a map matching algorithm
based on a conditional random field model, which used only the output of the position information
from a visual–inertial system as the input of the conditional random field model and constrained it
with the map information. The error in the position updating process was reduced by the feedback
correction method, and the positioning result of the visual–inertial system was continuously corrected
to make it more accurate. Finally, the algorithm was validated experimentally. The experimental
results showed that the algorithm yielded good results with respect to improving the positioning error
of the visual–inertial system.

2. System

Figure 1 shows the system structure diagram. The system consists of four subsystems. The first
part is the visual–inertial system, which is the main positioning system to generate the estimated
trajectory. In this study, the open-source VINS-MONO system introduced in 2017 was adopted by
the Shaojie Research Group. The second part involves map preprocessing, mainly in the form of the
original map, which generates the map types required by the map matching algorithm. The indoor



Sensors 2020, 20, 552 3 of 13

map needs to be discretized to evenly spread the discrete points over the reachable area and get the
matched state points. The third part is a map matching algorithm based on the conditional random
field. The estimated trajectory is fused with the data of the map processing system by the conditional
random field, and an accurate matching trajectory is obtained. The matching result is used as feedback
to correct the position of the VINS-MONO system at any moment. The fourth part is the output of the
final corrected position trajectory.
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Figure 1. Systematic structure diagram.

VINS-MONO System Overview

VINS-MONO is a real-time VI-SLAM system that integrates inertial sensor data and monocular
vision through tight coupling. The system diagram is shown in Figure 2. The system can be operated
in a small indoor environment or a wide range of outdoor environments with strong robustness and
stability. Firstly, a robust initialization scheme is proposed to provide a relatively accurate initial value
for monocular tightly coupled VIO, including the restoration of the visual structure scale, gyroscope
offset calibration, and velocity and gravity estimation, which can make the system from the unknown
begin to run stably. Secondly, with the combination of the pre-integrated IMU measurements and
visual feature observations, a tightly coupled nonlinear optimization method is used to obtain a
high-precision visual–inertial odometer. Lastly, the system also performs closed-loop detection and
global map optimization. In VIO, there is only cumulative drift on (x, y, z) and the yaw angle; therefore,
only these four degrees of freedom are optimized. VINS-MONO has good robustness and accuracy.
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Figure 2. VINS-MONO system framework.

3. Design of Map Matching Algorithms

3.1. Preprocessing of Indoor Maps

Indoor maps come in a variety of formats, such as image file formats, PDF files, or CAD files. These
formats cannot be directly used for map matching algorithms, and the map needs to be digitized to
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create mathematical models. The map in this article is in the label image file format (TIFF). We used the
mapinfo software to digitize the electronic version of the indoor map, using only the wall information of
the map. The digital information format features the coordinates of the end point of each line segment.

Map matching can be divided into two types: point-to-point matching and trajectory matching.
The point-to-point matching method matches the position point with the position of the indoor
space according to the floor plan. This method is simple and computationally efficient. Trajectory
matching is the matching of the motion trajectory obtained by the initial positioning system with the
geometric topology information of corners, corridors, and rooms. This method is highly accurate
but computationally intensive. In this study, the map matching of the conditional random field
model was adopted, and the point-to-point matching method was more suitable for the visual–inertial
positioning system. The method covered the entire indoor area with equally spaced points and stored
the coordinates of each state point [9]. At the same time, we removed the state point of the unreachable
area. In Figure 3, the red points indicate a state point, while the red lines indicate an indoor structure.
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Figure 3. State point map.

3.2. Conditional Random Field Model

The conditional random field model was proposed by Lafferty et al. in 2001 [14]. Conditional
random fields (CRFs) are a type of discriminative undirected probabilistic graphical model. They are
used to encode known relationships between observations and construct consistent interpretations, and
they are often used for the labeling or parsing of sequential data, such as natural language processing
or biological sequences, and in computer vision [15–19].

A conditional random field can be viewed as an undirected graphical model or a Markov random
field. Ideally, if the description of the sequence of states has conditional independence, the structure of
the graph can be arbitrary. However, when building the model, we usually choose the linear-chain
undirected graph structure, which is the most commonly used, as shown in Figure 4.Sensors 2019, 19, x FOR PEER REVIEW 5 of 14 
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In this study, we defined o = o1, o2, · · · , on for a given sequence of observations (a sequence of
n observation points). y = y1, y2, · · · , yn is the output state point sequence, which is the predicted
robot motion trajectory. Then, the output sequence conditional probability can be defined as shown in
Equation (1).

P(y|o) =
1

Z(o)
exp

∑
j

λ jt j(yk−1, yk, o, k) +
∑

i

µisi(yk, o, k)

. (1)

Z(o) =
∑

Y

exp

∑
j

λ jt j(yk−1, yk, o, k) +
∑

i

µisi(yk, o, k)

. (2)

Equation (1) denotes that, under the o condition, the joint distribution form of sequences y can be
evaluated. Z(o) is a normalizing factor, which can be calculated using Equation (2). λ j and µi are the
feature weights that can be determined by training the model. In this study, we set both weights to one.
In general, the value of the feature function is zero or one; that is, the dissatisfaction feature condition is
zero; otherwise, it is one. As summarized in the review, the value of the linear-chain condition random
field depends mainly on the characteristic coefficient and the feature function.

In Equation (1), both t j(yk−1, yk, o, i) and si(yk, o, i) are feature functions; further details follow in
Sections 3.3 and 3.4, but the meanings are different. A function corresponds to the corresponding
meaning at each position. The same function can be added at different positions to convert the
original local features functions into global feature functions. The conditional random field expression
can then be rewritten as a vector form, also known as a conditional random field simplification.
The previous local feature function can be uniformly written as a global feature function. Assuming
that the conditional random field contains N1 transfer functions and N2 observation functions, then
the conditional random field contains N = N1 + N2 global eigenfunctions.

fn(yk−1, yk, o, i) =
{

t j(yk−1, yk, o, k), n = 1, 2, . . . , N1

si(yk, o, k), n = N1 + i; i = 1, 2, . . . , N2
. (3)

Then, the sum of the global feature functions at various locations k can be calculated as follows:

fn(y, o) =
k∑

k=1

fn(yk−1, yk, o, k), n = 1, 2, . . . , N. (4)

Similarly, the weight of the local function can be replaced with the global weight as follows:

wn =

λ j, j = 1, 2, . . . , N1

µi, i = N1 + i, i = 1, 2, . . . , N2
. (5)

Then, Equations (1) and (2) can be expressed as follows:

P(y|o) =
1

Z(o)
exp

n∑
n=1

wn fn(y, o), (6)

Z(o) =
∑

y
exp

n∑
n=1

wn fn(y, o). (7)
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We can denote weight wn in the vector form w = (w1, w2, w3, . . . , wn)
T; thus, the global feature

function can be composed into a vector; then, F(y, o) = ( f1(y, o), f2(y, o), . . . , fn(y, o))T. Therefore,
Equations (6) and (7) can be rewritten in vector form as follows:

Pw(y|o) =
exp(w · F(y, o))

Zw(o)
, (8)

Zw(o) =
∑

y
exp (w · F(y, o)). (9)

3.3. Observation Probability

A motion trajectory p can be defined as a set of interconnected trajectory segments between two
position points. The VINS-MONO system outputs a position point coordinate at every ∆t time point.
In order to reduce the number of candidate state points in Section 3.4 we used the method of the
robot’s fixed length distance to extract the observation points. When the distance between the current
time and the previous time is equal to a certain threshold, the visual–inertial system output is used as
the observation point o(t) in the mathematical model, and the time of the sampling point is recorded
simultaneously. As shown in Table 1, the record of one observation point o(t) includes the position
coordinate (ξ,ψ) at time t.

Table 1. VINS-MONO.

VINS-MONO Observation (ξ,ψ) Time

o(t1) (ξ1,ψ1) t1
o(t2) (ξ2,ψ2) t2
· · · · · · · · ·

o(tn) (ξn,ψn) tn

Newson and Krumm proposed a map matching algorithm to find the optimal moving trajectory
sequence based on the location of the anchor point and the error radius [17]. In general, map matching
associates each anchor point with all the candidate road segments located within a preset error radius,
as shown in Figure 5. In the method based on the conditional random field model, the position
coordinate point is regarded as an observation state. Each candidate path represents a hidden state; that
is, a hidden state represents a candidate state point. In this study, each candidate path represented the
point closest to the observation point on the candidate path. The probability of observation depends on
the distance between itself and the anchor point. It is intuitively assumed that candidate state points
closer to the anchor point have higher observation probability. In the real state, there is a measurement
error in the distance between the anchor point and the candidate state point, generally assuming a
zero-mean Gaussian distribution. For a given observation point o(t) and candidate state point yk(t),
the observation probability is p(o(t)

∣∣∣yk(t)) and can be expressed as follows:

p(o(t)|yk(t)) = I(yk, yk+1) ×
1

σ1
√

2π
exp(−

(d(o(t), yk(t)) − µ1)
2

2σ1
2 ), (10)

where d(o(t), yk(t)) is the Euclidean distance between the observation point and the candidate status
point, σ1 is the standard deviation of the measured data, and I(yk, yk+1) is only obtained when yk
is connected to yk+1. Furthermore, the state can be transferred, and the potential energy is one and
blocked by the obstacle. Alternatively, if the map is far away, the state transition is not performed, and
all of the transfer potentials are zero.
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3.4. State Transition Probability

In the map, the status point may be a free space or may be occupied by a wall or an obstacle.
To perform a state transition, it is necessary to know the state points adjacent to each state point, and
those adjacent to the other state points [20]. In this study, the area that defined the search from the
current location to the next location was called the buffer [9]. The maximum conversion distance
allowed in each direction was called the buffer size. Furthermore, we set the buffer size to the distance
ds between two state points. In the absence of any obstacles, the state transitioned between adjacent
state points. In the case of obstacles, there was a conversion in the position of two buffers. Figure 6a
shows the state transition when an obstacle is not present, and Figure 6b shows the state transition
when an obstacle exists. The next state is shown by pink-shaded diamonds.
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Figure 6. State transition diagram: (a) state transition when there is no obstacle; (b) state transition in
the presence of obstacles.

The transition probability refers to the transition probability between the candidate state point
from time t to the candidate state point at time t + 1. The robot at the candidate state point yk at
time t is transferred to the candidate state point yk+1 through ∆t, and the shortest path passed via the
Dijkstra algorithm or the Floyd algorithm is obtained, which is taken as the candidate path. The set of
candidate paths between the marked observation point o(t) and the next observation point o(t + 1)
is P(t) = (pk,k+1(t)), where pk,k+1(t) denotes a candidate path of one candidate state point yk of the
observation point o(t) to another candidate state point yk+1 of the observation point o(t). For two
adjacent candidate state points, the transition probability can be defined as follows:

η(pk,k+1(t)) = I(yk, yk+1) ×
d(o(t), o(t + 1))

l(pk,k+1(t))
, (11)

where d(o(t), o(t + 1)) is the Euclidean distance between two observation points, l(pk,k+1(t)) is the
length of the shortest path of the two candidate state points yk and yk+1, and I(yk, yk+1) has the same
meaning as above. Considering the shortest path between candidate state points, it is possible to avoid
the occurrence of detours and trajectories in the matching result.
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3.5. Best Path Matching

The Viterbi algorithm was proposed by Viterbi in 1976 as one of the basic algorithms of the hidden
Markov model [21,22]. The main problem solved by the Viterbi algorithm is to find the optimal state
sequence in the sequence of state values corresponding to the sequence of observations in the case of a
given model; thus, it is an optimal dynamic programming algorithm and can trace back the entire path.
Suppose that t time needs to pass from S to E, there are k states (y11, y12, y13 . . . , ykn) at each moment;
then, we only need to record the shortest path corresponding to each state. At any time, it is only
necessary to consider a very limited number of the shortest paths (depending on the number of states
corresponding to the moment), and there is no need to consider the previous moments upward; thus,
so there is no multidimensional condition problem. As shown in Figure 7, we set t = 3 and k = 4 as an
example to illustrate the algorithm, and the red path in the figure is the shortest path finally obtained.
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In this study, it was applied to solve indoor positioning and used to find the optimal path. In the
above, we used Equation (10) to get the observation probability and Equation (11) to get the state
transition probability. We combined these two formulas into Equation (12) to find the most likely
hidden sequence (the most likely trajectory). Finally, we used the Viterbi algorithm to solve the
problem. Thus, the hidden sequence looking for the maximum probability was transformed into the
path selection problem with the highest normalized probability as follows:

Y∗ = argmaxP(y|o) = argmax
y

exp(w·F(y,o))
Zw(o)

= argmax
y

exp(w · F(y, o)) = argmax
y

(w · F(y, o))
. (12)

Here, in order to considerably reduce the computational complexity and solve the problem more
conveniently, there was no need to normalize the probability, and the problem could be converted into
the following formula:

max
y

(
N∑

k=1

w · Fk(yk−1, yk, o)), (13)

where Fk(yk−1, yk, o) = ( f1(yk−1, yk, o, k), f2(yk−1, yk, o, k), . . . , fN(yk−1, yk, o, k))T is the local
feature vector.

Equation (13) was solved using the Viterbi algorithm. Initialization was performed to find the
non-normalized state at the most beginning position in the conditional random field as follows:

δ1( j) = w · F1(y0 = start, y1 = j, o), j = 1, 2, . . . , m. (14)
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Then, we recursively computed the other nodes in the conditional random field, sought the
maximum conditional probability at each node, and saved the maximum path.

δk( j) = max
1≤ j≤m

{
δk−1( j) + w · Fk(yk−1 = j, yk = j, o)

}
, j = 1, 2, . . . , m. (15)

Ψk( j) = argmax
1≤ j≤m

{
δk−1( j) + w · Fk(yk−1 = j, yk = j, o)

}
, j = 1, 2, . . . , m. (16)

When we recursively computed the end node, the maximum conditional probability was max
y

(w ·

F(y, o)) = max
1≤ j≤m

δk( j), the optimal path was Yk
∗ = argmax

1≤ j≤m
δk( j), and the Viterbi algorithm obtained the

optimal path as Y∗ = (Y1
∗, Y2

∗, . . . , Yk
∗)T.

4. Experimental Results and Analysis

4.1. Implementation Details

The experiments were carried out on the 10th floor of the Science Building of Beijing University of
Technology with an area of 80 m × 25 m. Based on the VINS-MONO system, the preliminary trajectory
was estimated using Intel Realsense d435i. In Figure 8a, the Intel Realsense D435i is a depth camera
that includes a Bosch BMI055 six-axis inertial sensor, in addition to the depth camera that measures
linear accelerations and angular velocities. Each IMU data packet is time-stamped using the depth
sensor hardware clock to allow temporal synchronization between the gyro, accel, and depth frames.
The frame rate of the RGB camera is 30 fps, and the sampling frequency of IMU is 650 Hz. Figure 8b
shows the area of the experiments. We implemented all of the software in the C++/Matlab language.
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Figure 8. Sensors and test sites: (a) Intel Realsense D435i; (b) area of the experiments.

Generally, to build a complete mobile robot software test platform, it needs to write a series of
visual codes to display the status of the robot at all times. To realize such a complex system, it needs
a lot of time and a huge amount of code work, which greatly increases the cost of building the test
software system. Therefore, for the sake of time, the open-source robot operating system (ROS) was
used in the test system of this paper. Finally, the algorithm was implemented in Dell G3 (the processor
was an Intel Core i5 8th Gen). The experiment of this paper focused on the accuracy of location and the
matching rate of the map.

Figure 9 shows the preset ideal trajectory. The black box in the lower left corner is the starting
point and the end point of the trajectory, which follows the arrow in the figure. The preset ideal
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trajectory was constructed as the ground truth, with different unmatched trajectories, then created
randomly as the input of the map matching algorithm. The map matching system was applied to refine
the estimated trajectory by avoiding the crossing of obstacles. After matching the input trajectory to
the map by using the CRF algorithm, we compared the matched (corrected) trajectory to the ground
truth in order to measure the precision, using the errors obtained by calculating the Euclidean distance
between the actual position in the ground truth and the corresponding corrected position.
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Figure 9. Preset ideal trajectory.

4.2. Real Environment Experiment

In Figure 10, the moving speed of the robot was 1.5 m/s, which was very slow. The initial trajectory
of the VINS-MONO system output had high robustness at the initial stage, but slight wall-crossing
occurred after two turns (average cumulative error of 0.91 m). As shown in Figure 11, as a consequence
of matching the trajectory with the map, the accuracy was also improved; even though the accuracy of
the VINS-MONO trajectory was already good, the map matching using CRF further improved the
accuracy and the cumulative error decreased. Because of the small noise and matching error of the
initial positioning system, the mismatch rate was only 0.28%.
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In the experiment illustrated in Figure 12, complex movements such as 180◦ turns and 360◦ turns
were carried out several times, which enriched the scene transformation. In addition, some lamps in
the corridor were damaged, and the light and the shade of the corridor were obviously changed, while
the positioning error increased gradually with an increase in time; furthermore, the phenomenon of
passing through the wall was serious (average cumulative error = 3.43 m). At this time, the moving
speed of the robot was 2.5 m/s, which was relatively fast. Although the primary estimated trajectory
crossed a number of walls, this was corrected successfully by using the map matching algorithm, and
zero obstacles were crossed by the map matched trajectory, as shown in Figure 13. The mismatch rate
was 2.94% when the initial positioning system was noisy and the error was large. As we can see, there
were still some unreasonable matching points in the corner, compared with the actual trajectory of the
robot; the algorithm proposed in this paper could estimate the trajectory of the robot well and meet the
requirements of room-level positioning accuracy.
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5. Conclusions

Aimed at solving the problem of the positioning accuracy of a visual–inertial system (VIS)
decreasing in some indoor areas, in this study, we applied the output position of VIS to the conditional
random field model by extracting the observation points and the corresponding possible state points
at a fixed distance. Moreover, we made full use of the indoor structure information. In the proposed
model, the Viterbi algorithm was used to find the best matching state points of the observation points
in the window, finally finding the maximum probability trajectory. It fully embodied the advantages of
the map matching algorithm and the probability algorithm. This algorithm was not only applicable
to the VINS-MONO system; it might also be equally applicable to other visual–inertial systems. In
this paper, the positioning accuracy was required to be high, but the positioning time was a little
insufficient, which will be improved in the future research. For the actual scenarios, many experiments
were carried out to obtain relatively good map matching results.
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