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Abstract: Point-of-care ultrasound (POCUS), realized by recent developments in portable ultrasound
imaging systems for prompt diagnosis and treatment, has become a major tool in accidents or
emergencies. Concomitantly, the number of untrained/unskilled staff not familiar with the operation
of the ultrasound system for diagnosis is increasing. By providing an imaging guide to assist
clinical decisions and support diagnosis, the risk brought by inexperienced users can be managed.
Recently, deep learning has been employed to guide users in ultrasound scanning and diagnosis.
However, in a cloud-based ultrasonic artificial intelligence system, the use of POCUS is limited
due to information security, network integrity, and significant energy consumption. To address
this, we propose (1) a structure that simultaneously provides ultrasound imaging and a mobile
device-based ultrasound image guide using deep learning, and (2) a reverse scan conversion (RSC)
method for building an ultrasound training dataset to increase the accuracy of the deep learning
model. Experimental results show that the proposed structure can achieve ultrasound imaging and
deep learning simultaneously at a maximum rate of 42.9 frames per second, and that the RSC method
improves the image classification accuracy by more than 3%.

Keywords: point-of-care; on-device AI; portable ultrasound; mobile system; classification

1. Introduction

Point-of-care ultrasound (POCUS) is an efficient tool for providing diagnostic imaging
at the time and place of patient care [1]. Recently, POCUS has become more convenient
to use with mobile device-based ultrasound scanners such as Healcerion, Butterfly iQ
(Butterfly Network Inc.), and Clarius (Clarius Mobile Health Corp.). These devices have
contributed to the expansion of POCUS applications to deliver novel clinical benefits to
patients [2].

With the development of this new trend, the use of ultrasound devices by unskilled
and non-medical staff has become widespread [3]. As ultrasound imaging is generally
performed to obtain diagnostic information in real time, POCUS users must be properly
trained or technically supported at the time of ultrasound scanning. This is achievable
using computer-aided diagnosis tools.

The most in-demand technical support for unskilled POCUS users might be imaging
guidance, providing information on what organs are shown in each image frame [4] and
whether or not the target organs are observed in the correct scan plane [5]. Automatic organ
classification is essential for realizing such an imaging guidance function. Notably, object
classification is also required for other advanced functions, such as automatic diagnosis or
measurement of important diagnostic metrics.

Convolutional neural networks (CNNs), which made major progress in recent complex
machine vision problems, have been reported to surpass human accuracy [6] in applications
such as classification [7], segmentation, and object detection [8,9]. Thus, CNNs have been
widely used for the classification of abdominal ultrasound images [10] and for landmark
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detection of organs [11]. Thus, CNN might be the most suitable method for developing the
technology for imaging guidance in POCUS.

There are two ways to implement deep learning network (DLN) inference for object
classification using mobile device-based ultrasound scanners. In cloud-based inference,
ultrasound images are sent to a cloud web server to compute the labels, and the results are
transferred back to the mobile device. In contrast, in on-device artificial intelligence (AI), DLN
inference is fully performed on a mobile device without network access [12]. Until recently,
some studies have recommended the cloud computing approach using Amazon Web Services
(AWS) or Azure for fast real-time implementation of CNN-based object classification, and
large datasets to be easily ingested and managed to train algorithms [13,14].

However, cloud computing is not adequate for POCUS with mobile device-based ul-
trasound scanners, particularly when and where fast internet and wireless communication
networks are not available, such as in remote areas and underdeveloped countries with
poor communication infrastructure [15]. Moreover, cloud computing is vulnerable as it
may attempt to violate the protection of personal information [16].

Therefore, it is advisable to implement deep learning on mobile devices without
accessing the Internet. Recently, owing to rapid advances in high-performance parallel
computing architecture, mobile devices are already capable of real-time software imple-
mentation of DLN using a mobile graphics processing unit (GPU). Accordingly, numerous
efforts have been made to implement on-device inference using edge computing [17]. Hith-
erto, some efficient networks that reduce the calculation quantity and amount of memory
for real-time DLN inference on a mobile device have likewise been developed [18,19].

However, in mobile device-based ultrasound scanners, entire back-end signal/image
processing tasks to reconstruct images at a typical speed of 20–40 frame per second (fps)
must be carried out with the same GPU. This is a major limiting factor for high-speed DLN
inference in a mobile device, and to the best of our knowledge, only a few companies have
developed simultaneous implementation of ultrasound back-end signal/image processing
and DLN for real-time ultrasound medical imaging [20].

Notably, in ultrasound imaging, the accuracy of the DLN inference is affected by the
shape of the field of view (FOV) [21]. Figure 1a shows the three most widely used types of
ultrasound array transducers, namely, linear, curved linear (or convex), and sector phased
arrays, where the solid arrow lines (S1 ∼ SN) represent the scan lines forming a single
image frame [22]. Echo signals along all scan lines, which are obtained after transmission,
reception, and beamforming operations along each scan direction, are stored in the echo
memory in the same format as shown in Figure 1b. Image formation is achieved by
organizing the lines of echo memory and processing them through a digital scan converter
(DSC) that transforms them into a raster scan format for display on a video or personal
computer (PC) monitor (see Figure 1c) [23].

Figure 1. Cont.
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Figure 1. (a) N scanlines made of three transducers (left panel: linear array, center panel: convex
array, right panel: sector phased array.) (b) Echo memory is stored to #scanlines by #samples, re-
gardless of type of transducers. (c) IUSI, digital scan-converted is reconstructed as an image with
spatial information.

The resulting ultrasound images are displayed on the ultrasound image region (UIR),
in a fixed rectangular area (yellow box in Figure 2) on a monitor screen. When the entire UIR
is used as training data, not only echo information, but the FOV shape can be recognized
as a feature, thus lowering the classification accuracy [21]. To avoid this, a selected region
(red box in Figure 2) can be cropped within each FOV as training data. In this case,
however, some objects can be partially cut off, which is another factor that lowers the
classification accuracy.

Figure 2. Digital scan-converted ultrasound image (kidney) shown on display. This ultrasound
image (USI) region includes not only the field of view (FOV) region (blue box), but also the black
region according to FOV and various information. To train ultrasound images, they are generally
cropped to an USI region (yellow dotted rectangle) or selected region (red dotted rectangle).

We propose an ultrasound AI edge-computing method for mobile device-based ul-
trasound scanners that perform ultrasound image reconstruction and DLN inference for
object classification at a high frame rate required for practical ultrasound diagnosis. We
propose to use a pre-DSC image, such that the entire uncropped image is used for training.
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In this case, all objects in the pre-DSC image are geometrically distorted. In this approach,
the DLN was trained to accurately classify the target objects in distorted images. How-
ever, no commercial ultrasound scanners provide such pre-DSC images. We refer to this
procedure of obtaining pre-DSC images from DSC images as the reverse scan conversion
(RSC). Figure 3a illustrates the proposed method for building pre-DSC images. We collect
back-end processed IUSI and subsequently generate IRSC using reverse-scan conversion to
train the DLN.

Figure 3. (a) Ultrasound image formation processing structure and reverse scan conversion training data building procedure
using IUSI, echo memory data (red box). (b) For real-time ultrasound imaging and inference, we propose a blue box structure
that can effectively compute back-end processing and the deep learning network simultaneously.

In contrast, in inference (see Figure 3b), echo memory data are down-sampled and
used as input to the DLN. If the DLN is implemented after back-end processing on a mobile
device, it has a low ultrasonic imaging frame rate. To overcome this limitation, we propose
a structure where the DLN is divided to implement ultrasound image reconstruction and
DLN inference in real time. The proposed method is evaluated on a mobile device with
a portable ultrasound system [3,24], and DLN models are implemented by transferring
network coefficients trained in a PC workstation to a mobile device.
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2. Methods
2.1. Reverse Scan Conversion

In diagnostic ultrasound imaging, it is customary to use a specific array transducer
for a particular examination, such as a phased array for echocardiography, a convex array
for the abdomen, and a linear array for the thyroid [25]. Therefore, if such conventional
images are used as a training dataset, the CNN can learn the geometry of the FOV as a
feature. This would negatively affect the accuracy of inference when the trained CNN is
used to classify a particular organ with an input image obtained by using array transducers
other than the one specific to it. This can also occur in POCUS using a mobile device-based
ultrasound scanner that is usually equipped with only a one-array transducer and provides
a fixed FOV shape.

Another problem with DLN inference in a mobile device-based ultrasound scanner is
that high frame rate imaging may be hindered if DLN inference is followed by ultrasound
back-end signal/image processing. To solve this problem, DLN inference must be possible
without compromising the imaging frame rate by performing both procedures with all
GPU resources. As described in the previous section, this problem can be easily solved by
using the pre-DSC image data as a training dataset.

In this study, we propose an RSC method to restore the pre-DSC data from conven-
tionally acquired and labeled images (IUSI) that have been used in previous DLN studies.
Figure 4 shows the processing steps used to obtain pre-DSC data.

Figure 4. (a) Pre-processing procedure for the training data in the ultrasound dataset. rc and θc are extracted from lines
s1 and sN. (b) Coordinate transforming a scan-converted image (IUSI) to RSC image (IRSC). Left boundary, first scanline,
between FOV and black region, is called s1, whereas the right boundary, last scanline, is referred to as sN. i and j are
coordinate axes in IRSC. IUSI has x and y coordinate axes.

In the first step, all the scanning and patient information (see Figure 2) are removed,
and the UIR is converted into a binary image. Then, by detecting boundaries in the
binarized UIR, the left and right FOV edges are found in the binary image to separate the
FOV and black regions. Subsequently, N scanlines (s1~sN) are allocated over the FOV with
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a uniform angle distribution: s1 represents the first scanline (i.e., left boundary) and sN the
Nth scanline (right boundary), as illustrated in Figure 4b for the convex array case.

In the second step of Figure 4a, the parameters to express the polar coordinates of
the FOV in Figure 4b were extracted using the Hough transformation [26]. The extracted
parameters include the transducer radius (rc), FOV angle (θc), xoffset, and yoffset.

Finally, for the pre-DSC image, IRSC(i, j) is obtained in polar coordinates by applying
RSC to IUSI(x, y) in Cartesian coordinates as follows:

IRSC(i, j) = B(T (IUSI(x, y))), (1)

where T and B represent the coordinate transformation and bilinear interpolation, respec-
tively. Here, the coordinate transform, T , is determined according to the following rela-
tionship:

x = (rc + i∆r)× cos(−θc/ 2 + j∆θ) + xo f f set,y = (rc + i∆r)× sin(−θc/ 2 + j∆θ) + yo f f set,
(2)

where ∆r = dc/ H and ∆θ = θc/ W, where W and H denote the width and height of the
IRSC, respectively. Equation (2) for i and j is expressed as follows:

i =
1

∆θ

(
arctan

(
y− yo f f set

x− xo f f set

)
+

θc

2

)
,j =

√(
x− xo f f set

)2
+
(

y− yo f f set

)2
− rc

∆r
(3)

There are pixels (i.e., holes) that are not assigned to appropriate pixel values. No-
tably, the bilinear interpolation, B, is employed, such that those holes must be assigned
appropriate values at IRSC(i, j).

2.2. Structure on a Mobile Device–Frame Asynchronous Classification (FAC)

The ultrasonic signals transferred from a portable ultrasound scanner to a mobile
device are in-phase/quadrature (IQ) signals. First, echo processing is applied to the IQ
signals, which generates the echo memory data. Echo processing is a chain of signal
processing functions, such as envelope detection and log compression. Then, the echo
memory data is fed to the back-end processing block that includes the DSC. Finally, the
DSC output (IUSI) is displayed on the mobile device. As shown in Figure 5a, the time
period to form each image frame (timage) is not determined by the processing time of the
IRP (tIRP). This is because the portable ultrasound device takes time to transfer ultrasonic
signals to the mobile device, and tIRP is very short compared to the data transfer time.
Therefore, the (n + 1)th frame cannot be reconstructed immediately after the nth frame is
reconstructed—there is an idle time during which the IQ signals of the (n + 1)th frame are
being transferred.

To add a classification network in this structure, we can add a classification pipeline (CP)
that implements a classification network after IRP, as shown in Figure 5b. In this structure, to
implement the ultrasound image reconstruction and the classification network in real time,
the entire CP must be completed within the idle time. However, the CP processing time is
significantly longer than the idle time. In Figure 5b, because the entire CP is processed after
the IRP, the time period to form each image frame (see orange line) is increased as much as
the CP processing time (see blue line), which eventually takes longer than the data transfer
time. Therefore, the ultrasound image reconstruction for the next frame is delayed. We call
this the frame synchronous classification (FSC) structure [27], which has the disadvantage of
delaying timage as much as the classification processing time (tCP).
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Figure 5. (a) Ultrasound image reconstruction. After image rendering pipeline (IRP) for imaging, the system must wait to
receive subsequent signals due to the data transfer time. After each IRP, the ultrasound image is displayed on a mobile
phone. The time period to form each ultrasound image frame is denoted by the orange bidirectional arrow. (b) frame
synchronous classification (FSC) structure of a classification through deep learning with ultrasound image reconstruction
in a mobile device. Classification time is denoted by the blue bidirectional arrow. (c) For real-time processing, a frame
asynchronous classification (FAC) structure is made of IRP and sub-classification pipelines (sCPs).

To overcome this disadvantage of the FSC structure, we propose a structure that can
implement ultrasound image reconstruction and a classification network in real time on a
mobile device, as shown in Figure 5c. The key purpose of the proposed structure is to split
the CP into several sub-pipelines to obtain sub-classification pipelines (sCPs) for an idle
time that does not exceed the data transfer time. This structure is called frame asynchronous
classification (FAC), as multiple frames are displayed during one classification result. The
tCP of the FAC structure is slightly longer than that of the FSC structure due to the IRPs
between the sCPs. However, in real time, because the frame rate is more important than
the classification rate, it does not matter whether tCP is slightly longer.

Further, when the CP takes a long time to process, it can be split into a large number
of sCPs. This is because tIRP is very short compared to the processing time of sCPs (tsCP),
as shown in Figure 5b. Therefore, even if the CP is divided into several sCPs to process
ultrasound image reconstruction and DLN inference, the classification rate ( fCP) has little
loss. Let M denote the number of times the CP is divided into idle time, then

fimage ≈ M× fCP (4)

where fimage = 1/(tIRP + tsCP). Figure 5c shows an FAC structure in which the CP in
Figure 5b is divided into three sCPs (i.e., M = 3).
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3. Experiments
3.1. Data

In this study, the dataset used to train the DLN comprised 38,065 frames of ultra-
sound images obtained from 25 volunteers, including normal and abnormal cases. Most
volunteers present normal ultrasound images: there are two persons with abnormal livers,
one with gallbladder problems, and one with kidney disease. Since this is not a study
for diagnosing diseases, detailed abnormal cases will not be described. The abdomen
is imaged, and the dataset classified into three categories: liver, kidney, and gallbladder,
labeled by expert sonographers according to the guidelines specified in Reference [28].
Approximately 400 frames per organ were obtained in cine mode from various viewing
angles and locations. The abdomen images of three volunteers were used as validation and
test sets. A dataset comprising 3432 frames is formed by randomly dividing the cine mode
of three volunteers into frames. Half of these frames were used for validation and the other
half for testing. Our study and protocol were approved by the Institutional Review Board
(IRB) of the Korea Centers for Disease Control and Prevention (KCDC).

3.2. Embedded System

We evaluated our method and structure in a portable ultrasound imaging system-
enabled smartphone (developed by our laboratory with Hansono), which consists of a
smartphone (Galaxy S7, Samsung, Korea, Android 8.0) and a 32-channel system. The
portable system contains analog and digital front-ends, a mid-processor, and a USB 2.0
interface, as shown in Figure 6. Further, it has a linear array and a convex array transducer
attached to the system. The mobile device contains the ultrasound image reconstruction and
real-time image display on a graphical user interface with the deep learning architecture.
The Galaxy S7 smartphone integrates ARM Mali-T880 GPU, which has 693.6 giga floating
operations per second (GFLOPS) and 4 GB memory. In the system, we used the OpenGL
ES programming model [29] to harness the computing power of the mobile GPU. We
used shader storage buffer objects (SSBOs) to store the DLN parameters in OpenGL. The
data in SSBOs are stored in the GPU memory until the buffer is removed. In OpenGL
rendering, after one IRP is finished and initialized, the following IRP must be started.
However, because SSBOs are used, there is no need to upload the DLN parameters again
after initialization. The calculation results are stored in the SSBOs before starting the next
IRP. After rendering the next pipeline, the calculation results stored in the SSBOs can be
recalled by continuing the DLN inference.

3.3. Network

The deep learning model is a class of machines that learns a hierarchy of features
by building high-level features from low-level ones. The CNN is a popular type of deep
learning model, where trainable filters and local neighborhood pooling operations are
applied in an alternating sequence, starting with raw input images. CNNs can achieve
superior performance in visual object recognition and image classification tasks. CNNs
have also rapidly become a methodology of choice for analyzing medical images [30],
including ultrasound images. To test the method and structure proposed in this study, we
explored four CNN architectures, namely, AlexNet [7], ShallowNet, MobileNet [18], and
Xception [31].

AlexNet exhibits high accuracy; however, the network presented in Reference [7]
is difficult to use in mobile devices due to its high computational complexity. In this
work, AlexNet was used as a reference in terms of accuracy and was modified to reduce
the number of nodes on the fully connected layers, from 4096 to 1024. For fast real-time
computing on a mobile device, three light-weight networks (ShallowNet, MobileNet, and
Xception) were chosen and evaluated. ShallowNet is a customized shallow neural network
composed of two feature layers consisting of a convolution filter, max pooling, and two
fully connected layers for classification. MobileNet, which is operated by a depth-wise
separable convolution layer, and Xception, which uses an inception module [32], are widely
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adopted light-weight networks designed to reduce computational costs while maintaining
high accuracy for on-device AI.

Figure 6. Overall block diagram of the mobile device-based portable ultrasound system for simultaneous ultrasound signal
processing and deep learning network (DLN) inference.

In the convolution layer, batch normalization and Rectified Linear Unit (ReLU) activa-
tion were applied after the convolution operation. In contrast, in the fully connected layer,
we applied a 0.2 factor dropout and ReLU activation after the weighted sum. All CNNs
used for evaluation are trained using stochastic gradient descent, which is commonly used
for minimizing this cost function, where the cost over the entire training set is approxi-
mated with a cost of over 128 mini-batches of data. A learning rate of 10−6 ensured proper
convergence for all four networks. A smaller learning rate slowed down the convergence,
and a larger learning rate often caused convergence failures. The RSC and USI datasets
were trained and evaluated for each network. The datasets are stored in 800 × 600 DSC
format, and pre-processing must be performed to reduce their size to 64 × 64, which is
used as input to the CNN. To verify the accuracy of the RSC method, the dataset of the
USI region was trained separately and compared. We confirmed the performance of the
proposed structure through DLN inference on a mobile device.

The parameters and calculations of the CNNs used in this study are presented in
Table 1. The training process was performed in Keras with the TensorFlow framework [33]
using an NVIDIA GeForce GTX 1080Ti (11 GB on-board memory) on Windows 10 for
200 optimization epochs with unit Gaussian random parameter initializations [34].

Table 1. Number of parameters and calculations in each network.

Parameters Calculations

AlexNet 7.1 M 305.3 M

ShallowNet 2.1 M 22.2 M

MobileNet 3.2 M 44.3 M

Xception 16.0 M 25.7 M
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4. Results

We evaluate the effectiveness of building an ultrasound image training dataset using
the RSC method, as well as the performance of the FAC structure that executes ultrasound
image reconstruction in real-time with DLN inference. Because the FAC structure can
divide the CP to operate without delay between IRPs, reconstruction processing with
classification is possible on the mobile device in real time.

When calculating the network, the system calculates two-dimensional (2D) convo-
lution in the convolution layers and a weighted sum in the fully connected layers. For
minimal memory input/output (I/O) access, the area for the convolution calculation is
stored in the local (shared) memory. The convolution operation is calculated in the form
of a weighted sum, and the calculation of fully connected layers is processed through the
reduction process using local memory.

4.1. RSC without FOV Dependency

The performance of the four networks was evaluated according to how ultrasonic
images were built into a training dataset. Each of the four different networks were trained
on the USI and RSC datasets and trained to predict three different organs. Table 2 shows
the accuracy of each network that classifies abdominal ultrasound images, including the
liver, gallbladder, and kidney. AC, SE and SP of USI and those of RSC were compared and
the higher values were marked in bold. To quantitatively evaluate the RSC method, the
accuracy, sensitivity, and specificity were used as performance measurements, which are
defined as follows.

accuracy = (TP + TN)/(TP + FN + TN + FP),
sensitivity = TP/(TP + FN),
speci f icity = TN/(TN + FP),

(5)

where TP, FN, TN, and FP represent the true positive, false negative, true negative, and false
positive, respectively. For example, let the ground truth be liver, if the model prediction
is liver, then it is judged as positive; otherwise, it is judged as negative. The results of
networks trained with the RSC training dataset used in the experiment were more accurate
than those in the network trained using USI data. The USI training dataset contains
less information than the RSC training dataset at the same resolution. Furthermore, the
networks trained by the USI training dataset can learn the FOV of ultrasound images as a
feature, and thus they are less accurate.

Figure 7 shows the results classified for each trained network. The rows correspond-
ing to each class are presented as pairs of RSC and USI datasets made from the same
DSC images.

Table 2. Comparison of classification accuracies according to methods of building training data.

USI RSC

AC SE SP AC SE SP

AlexNet 93.90 94.29 96.99 98.55 95.94 97.90

MobileNet 62.72 51.99 76.54 68.73 55.56 78.72

ShallowNet 84.00 50.65 76.42 94.17 73.62 87.47

Xception 88.96 67.42 84.34 93.69 74.33 84.32

Average 85.53 66.09 83.57 88.79 74.86 87.10
AC, accuracy; SE, sensitivity; SP, specificity.
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Figure 7. Image pairs categorized from abdomen to gallbladder, liver, and kidney. The upper row in each organ is the
result obtained by the network trained by the RSC method, and the lower row is obtained by the network trained by the
USI training dataset with down-sampled DSC images. Each column depicts the result of (a) AlexNet, (b) MobileNet, (c)
ShallowNet, and (d) Xception. Red boxes denote errors in the results of USI training dataset, and a misclassified organ is
specified below the image.

Figure 8 shows samples of images that are trained in each network by the RSC and
USI datasets, which are classified correctly and incorrectly. Of these, Figure 7 shows a
pair of images that were correctly classified when training with an RSC dataset but were
misclassified when training with a USI dataset.

When a feature is not clearly revealed in the image, the network trained with the
USI dataset is misclassified, whereas the network trained with the RSC dataset can be
classified accurately. The most common misclassified characteristic is the recognition of
the liver or kidney as the gallbladder when trained with the USI dataset. The gallbladder
is a pear-shaped sac, resting on the underside of the right portion of the liver [35]. In
addition, the gallbladder appears anechoic, showing nothing inside the thin walls in the
case of a healthy person. If a peer-shaped and anechoic structure is observed in the liver or
kidney, the network trained from the USI dataset may mistake the liver or kidney as the
gallbladder. This is because the amount of information varies with axial depth. Generally,
there is less information at the near than at the far depth. In Figure 8, the anechoic part of
the misclassified image is located under the liver. The fact that the RSC dataset has a larger
FOV region than the USI dataset also affects how accurately the organs can be classified in
the abdomen.
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Figure 8. Image pairs correctly classified in the network trained by the RSC method, and misclassified in the network trained
by the without cropping (WOC) method. Red arrows indicate anechoic region at deep depth, which causes misclassification.
(a) AlexNet, (b) MobileNet, (c) ShallowNet, and (d) Xception.

4.2. Structure for Real-Time Processing

To verify the proposed structure on the smartphone, after training various CNNs with
the RSC dataset in a PC workstation, trained coefficients were transferred to a smartphone
and used for DLN inference.

Table 3 shows how long it takes to operate DLN inference in each network when
processed in the FSC structure in Figure 5b and the number of sCPs required for real-time
processing in the FAC structure in Figure 5c. AlexNet has the longest processing time and
the most sub-pipelines, because it has the largest number of calculations used in this study.
Compared to Xception, MobileNet has a higher number of calculations, but the processing
time is shorter, because the number of layers in Xception is significantly higher than that
of MobileNet.

Table 3. Processing time with ultrasound back-end process in each network and the number of
dividing for real-time processing.

Processing Time (ms) #Dividing

CP

AlexNet 447 22

MobileNet 43 2

ShallowNet 49 2

Xception 61 3

IRP 4 (not divided)

Figure 9 shows the results of frame and classification rates by DLN inference for
classification in a mobile device with ultrasound image reconstruction. With little reduction,
we can increase the frame rate for real-time ultrasound image reconstruction with DLN
inference in the FAC structure rather than FSC. The larger the quantity of calculations in
the CNN, the more sub-pipelines we must divide, such that the growth rate of the frame
rate also increases. It is effective to increase the frame rate even when the classification rate
decreases. This is because ultrasound image reconstruction must be processed in real time,
rather than DLN inference.
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Figure 9. Result of ultrasound image frame rate (fps) and classification rate (cps, classification per second) during ultrasound
image reconstruction with DLN inference. Frame and classification rates are represented as bar graphs with average value
and variance according to frame synchronization in (a) AlexNet, (b) MobileNet, (c) ShallowNet, and (d) XceptionNet.

In Figure 9, the variance of the result of the FAC structure is usually larger than that
of the FSC structure. This is because we did not divide all networks equally. When there
are N sCPs, the sum of the calculation times at each sub-pipeline is not exactly the same
as the entire CP operating time. After the first sCP operation of the N sCP, the network
is terminated at an appropriate point in the spare time. Even if a time limit offered by
users is given, it is impossible to quit the running task and run other tasks when calling the
OpenGL Shader. Although the following rendering must be called during the operation, it
may not be immediately run, and a delay may occur.

To reduce the variance of the operation time, the most obvious method is to analyze
the performance time for each shader and divide the network accurately. It is necessary
to run only the task that ends before the subsequent rendering operation. However, if
the runtime is strictly limited to ensure the following rendering task, the network will
have to be divided into smaller pipelines, and the idle interval of the GPU will increase.
This process is not effective for executing ultrasound image reconstruction using DLN
inference. Each Shader operation was also designed to maximize the occupancy, such as
loading the adjacent area of the image to the GPU shared memory for memory access order
and efficiency of operation. Therefore, the variance of the result is inevitable, because it is
intended to ensure the efficiency of the DLN inference and ultrasonic image reconstruction.

5. Discussions and Conclusions

We proposed an RSC method to build a training dataset for accurate training of the
CNN with ultrasound images and a structure to perform ultrasound image reconstruction
with DLN inference in real time on a mobile device. To evaluate the proposed RSC method,
we compared the accuracy of the CNNs trained with the RSC and USI training datasets.
The average accuracy of the CNNs trained with the training dataset generated by the RSC
method was approximately 3% higher than that of the training dataset of the USI region.
Furthermore, the proposed structure was evaluated on a portable ultrasound device and
smartphone, and the frame rate was improved by 77%.

However, we think the proposed method has some limitations. First, the proposed
method was validated using a mobile device-based ultrasound scanner that is equipped
with only a one-array transducer and provides a fixed FOV shape. RSC is not required for
devices that support multi-FOVs with one array, such as Butterfly IQ. Second, although
both the RSC process for training and the down-sampling process for DLN inference
employ bilinear interpolation, the pre-DSC image obtained by down-sampling the IQ
signal data for the DLN inference and the IRSC used in the training process are different.
This is because the geometry of the IRSC is changed during the DSC and RSC processes.
Therefore, further work is necessary to investigate the effect of such differences on the
inference accuracy and how to improve the performance. Finally, we designed networks
that classify the three major organs of the abdomen, but we have not included a category
for ‘unsure’ or ‘nothing’ images, in which three organs are not included nor accurately
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classified. For practical applications, the proposed method should be improved to deal
with these two categories.

The RSC method of building a training dataset may improve the accuracy of various
applications in training using ultrasound images. Further, the real-time structure has
the advantage that ultrasound image reconstruction with DLN inference can be made
without reducing the frame rate of ultrasound imaging. Using the proposed method and
structure in this study, a guide for unskilled people not familiar with ultrasound imaging
is effectively provided through improved POCUS.
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