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Personalized whole-body models integrate
metabolism, physiology, and the gut microbiome
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Abstract

Comprehensive molecular-level models of human metabolism have
been generated on a cellular level. However, models of whole-body
metabolism have not been established as they require new
methodological approaches to integrate molecular and physiologi-
cal data. We developed a new metabolic network reconstruction
approach that used organ-specific information from literature and
omics data to generate two sex-specific whole-body metabolic
(WBM) reconstructions. These reconstructions capture the meta-
bolism of 26 organs and six blood cell types. Each WBM reconstruc-
tion represents whole-body organ-resolved metabolism with over
80,000 biochemical reactions in an anatomically and physiologi-
cally consistent manner. We parameterized the WBM reconstruc-
tions with physiological, dietary, and metabolomic data. The
resulting WBM models could recapitulate known inter-organ
metabolic cycles and energy use. We also illustrate that the WBM
models can predict known biomarkers of inherited metabolic
diseases in different biofluids. Predictions of basal metabolic rates,
by WBM models personalized with physiological data, outper-
formed current phenomenological models. Finally, integrating
microbiome data allowed the exploration of host–microbiome co-
metabolism. Overall, the WBM reconstructions, and their derived
computational models, represent an important step toward virtual
physiological humans.
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Introduction

A key aim of precision medicine is the development of predictive,

personalizable, and computational models of the human body that

can be interrogated to predict potential therapeutic approaches

(Kell, 2007). Molecular biology has yielded great insights into the

molecular constituents of human cells, but there still remains

substantial progress to be made to integrate these parts into a virtual

whole human body. While the Virtual Physiological Human and the

Physiome projects have generated many anatomically and physio-

logically representative human body models (Hunter et al, 2013),

their integration with underlying networks of genes, proteins, and

biochemical reactions (Tan et al, 2017) is relatively less developed.

The constraint-based reconstruction and analysis approach

(Palsson, 2015) generates a detailed description of molecular-level

processes through the construction of comprehensive, genome-scale

metabolic reconstructions. A reconstruction is assembled based on

an organism’s genome annotation and current biochemical and

physiological knowledge. A metabolic reconstruction is amenable to

computational modeling by the imposition of condition-specific

constraints based on experimental data, such as transcriptomics

(Opdam et al, 2017), proteomics (Yizhak et al, 2010), and metabo-

lomics (Aurich et al, 2016). Importantly, a metabolic reconstruction

serves as a blueprint for many condition-specific metabolic models,

making it a versatile tool for diverse biomedical applications (Aurich

& Thiele, 2016; Nielsen, 2017).

A comprehensive in silico molecular-level description of human

metabolism is available (Brunk et al, 2018); however, the genera-

tion of accurate organ- and tissue-specific metabolic models remains

challenging using automated approaches and omics data (Opdam

et al, 2017). At the same time, a solely manual curation approach

based on extensive literature review is not tractable due to the large

number of organs and cell types in the human body as well as the

variable depths of literature on organ-specific metabolic functions.

Hence, a combined algorithmic and manual curation approach is
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needed, which has already been developed for microbial reconstruc-

tions (Magnusdottir et al, 2017).

To contribute toward the ambitious goal to develop a human

whole-body model (Kitano, 2010), current systems biology

approaches need to go beyond molecular networks to also represent

anatomical and physiological properties in the computational

modeling framework. For instance, Bordbar et al (2011a) created

the first multi-tissue metabolic model where three organ-specific

metabolic models were connected through a blood compartment.

However, this model does not accurately describe the mass flow

occurring in the human body, which starts with dietary intake

followed by transport, metabolism, and elimination of the nutrients

and its by-products. In the absence of such detailed representation,

the generic human metabolic reconstruction has been used as a

proxy for whole-body metabolism (Nilsson et al, 2017), but it does

not yet capture metabolic pathways that occur in parallel in multiple

organs to give rise to known physiology, such as the Cori cycle.

To address these challenges, we developed the first two molecu-

lar-level, organ-resolved, physiologically consistent, sex-specific,

genome-scale reconstruction of whole-body metabolism (WBM;

Fig 1A). We demonstrate that these WBM reconstructions can be

converted into personalized WBM models by integration with physi-

ological, quantitative metabolomics, and microbiome data, thereby

allowing, e.g., the assessment of microbial metabolism on host

metabolism in an organ-resolved, person-dependent manner.

Results

A novel approach yields curated whole-body
metabolic reconstructions

We developed a novel, iterative approach to assemble WBM recon-

structions by leveraging an existing generic human metabolic recon-

struction, Recon3D (Brunk et al, 2018), reconstruction algorithms

(Vlassis et al, 2014), omics data (Wishart et al, 2013; Kim et al,

2014; Uhlen et al, 2015), and manual curation of more than 600

scientific literature articles and books (Fig 1A). The female WBM,

termed Harvetta 1.0, was generated by starting with a meta-recon-

struction, composed of a set of 30 identical Recon3D models

connected through anatomically consistent biofluid compartments

(Fig 1B, Materials and Methods, Reconstruction details). Similarly,

the male WBM, termed Harvey 1.0, started from a meta-reconstruc-

tion with one copy of Recon3D for each of its 28 organs, tissues,

and cell types (Table 1). Note that we will refer in the following to

all cell types, tissues, and organs collectively as organs. We exten-

sively reviewed organ-specific literature for genes, reactions, and

pathways known to be present in the different organs (Materials

and Methods, Reconstruction details, Table EV1). This review effort

yielded 9,258 organ-specific reactions, which we added to a core

reaction set, defining reactions that had to be present in the WBM

reconstructions. We removed 912 organ-specific reactions reported

to be absent in the literature (Materials and Methods, Reconstruc-

tion details, Table EV1). Moreover, evidence for the presence of

organ-specific proteins for all organs except the small intestine was

obtained from the human proteome map (Kim et al, 2014) and the

human proteome atlas (Uhlen et al, 2015) (Materials and Methods,

Reconstruction details, Tables EV2 and EV3). For four organs,

metabolic reconstructions have been published, namely the red

blood cell (Bordbar et al, 2011b), adipocyte (Bordbar et al, 2011a),

small intestine (Sahoo & Thiele, 2013), and liver (Gille et al, 2010).

Thus, we added the respective organ-specific reactions to the core

reaction set, after mapping the reaction identifiers to the Virtual

Metabolic Human (VMH, www.vmh.life) reaction identifiers (Mate-

rials and Methods, Reconstruction details). The literature was also

reviewed for the absence of cellular organelles in the different

organs (Materials and Methods, Reconstruction details, Table EV4),

which were removed accordingly from the relevant organs in the

meta-reconstructions. As a next step, we added transport reactions

to the core reaction set, based on organ-specific transporter expres-

sion data collected from the literature (Materials and Methods,

Reconstruction details, Table EV5; Sahoo et al, 2014), and organ-

specific sink reactions for metabolites known to be stored in dif-

ferent organs (Materials and Methods, Reconstruction details,

Tables EV6 and EV7). We used metabolomics data from 16 different

resources to enforce the presence of metabolites detected in the dif-

ferent biofluid compartments (Fig 1, Materials and Methods, Recon-

struction details, Table EV8), and added the corresponding reactions

to the core reaction set. Furthermore, we used literature information

to define metabolites that are known to cross, or not, the blood–

brain barrier and either added them to the core reaction set or

removed them from the meta-reconstructions, respectively (Mate-

rials and Methods, Reconstruction details, Table EV9). Additionally,

we included the dietary uptake reactions to the core reaction set for

metabolites that have been identified in food (Materials and Meth-

ods, Reconstruction details, Table EV10). Finally, to enable the inte-

gration of the gut microbiome with the WBM reconstructions (see

below), we added sink reactions to the core reaction set for metabo-

lites known to be produced by human gut microbes (Table EV11).

Each organ contains a biomass maintenance reaction representing

the macromolecular precursors (e.g., amino acids) required for

organ maintenance (Materials and Methods, Reconstruction details).

To represent the energy required to maintain the body’s cellular

function and integrity, we added a whole-body maintenance reac-

tion to both meta-reconstructions, in which each organ biomass

maintenance reaction is weighted based on its respective organ

weight in the reference man or woman (Snyder et al, 1975) (Mate-

rials and Methods, Reconstruction details).

The collected information, in the form of the core reaction set,

and the tailored meta-reconstructions were used as inputs for a

model extraction algorithm (Vlassis et al, 2014) to generate sex-

specific draft WBM reconstructions (Fig 1A, Materials and Methods,

Reconstruction details). This network extraction algorithm returns a

compact subnetwork containing all core reactions and a minimal

number of additional reactions necessary to render the subnetwork

flux consistent, i.e., each network reaction can carry a non-zero flux

value. As the algorithm adds a minimal number of reactions to the

subnetwork, it should be evaluated whether such additions can be

supported or rejected based on biological evidence. A similar

approach has been suggested for gap filling (Rolfsson et al, 2011).

Consequently, we revisited the literature for evidence to support

reaction inclusion and either expanded the organ-specific core reac-

tion set or removed organ-specific reactions from the meta-recon-

structions as appropriate (Fig 1A). We then generated new draft

WBM reconstructions using the model extraction algorithm with

this updated input. This cycle was iterated over a hundred times,
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Figure 1. Overview of the reconstruction approach and key features of the organ-resolved, sex-specific, curated whole-body
metabolism (WBM) reconstructions.

A Overall approach to reconstruction and analysis of the WBM reconstructions and derived models. The generic genome-scale reconstruction of human metabolism,
Recon3D (Brunk et al, 2018), containing 13,543 metabolic reactions and 4,140 unique metabolites, was used to derive a stoichiometrically and flux-consistent
submodel, named Recon3*, to serve as a starting point for the construction of the WBM reconstructions. During the reconstruction process, we reviewed over 600
publications and included numerous omics data sets. myHarvey refers to the microbiome-associated WBM models. See Materials and Methods and Dataset EV2 for
more details.

B Schematic overview of the included organs and their anatomical connections in the male WBM reconstruction. The arrows indicate the organ exchange with the
biofluid compartments.

C Statistics of the content of the WBM reconstructions.
D Stoichiometric matrix of the male reconstruction is shown with all non-zero entries highlighted. The columns of the stoichiometric matrix represent the reactions,

while the rows correspond to the metabolites. If a metabolite (j) participates in a reaction (i), the stoichiometric coefficient is entered in the corresponding cell (i, j).
Each row represents the mass-balance equation for a given metabolite (dx/dt). In flux balance analysis (FBA) (Orth et al, 2010), the modeled system is assumed to be
at a steady state (i.e., dx/dt = 0). This mathematical problem can be efficiently solved at a large-scale (Materials and Methods, Conversion from reconstruction to
condition-specific models).
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focusing on different organs and metabolic pathways each time,

which was necessary due to the large size of the reconstructions

(Materials and Methods, Reconstruction details). Throughout the

reconstruction process, we followed an established quality control

and quality assurance protocol (Thiele & Palsson, 2010) and

performed core tests proposed by the systems biology community

(preprint: Lieven et al, 2018).

The final sex-specific WBM reconstructions account for 83,521

and 81,094 reactions for Harvetta and Harvey, respectively (Fig 1C,

Tables EV12 and EV13). Harvetta contained more reactions than

Harvey due to two more sex-specific organs (Fig 1C and D). In total,

73,215 reactions were shared between both sexes, while 7,879 were

unique to Harvey and 10,306 unique to Harvetta. Excluding sex

organs, < 4% of all WBM reactions were sex-specific, mostly

involving alternative transport reactions (Dataset EV2: 3.6). Overall,

these WBM reconstructions account for about 84% of the body

weight. The remaining 16% correspond mostly to bones and

connective tissue (Snyder et al, 1975; Fig 1C), both of which are as

yet insufficiently represented with corresponding reactions in

Recon3D. The resulting, sex-specific WBM reconstructions compre-

hensively capture human whole-body metabolism consistent with

current knowledge.

An organ compendium was derived from the
WBM reconstructions

A compendium of organ-specific reconstructions was extracted from

the WBM reconstructions (Figs 1B and 2, Tables 1 and EV14). All

organ-specific reconstructions can be obtained from the VMH at

www.vmh.life. The technical quality of each organ was assessed

using a comprehensive test suite, implemented in the COBRA Tool-

box (Heirendt et al, 2019), that checks for adherence to quality stan-

dards developed for metabolic reconstructions (Thiele & Palsson,

2010; Brunk et al, 2018; preprint: Lieven et al, 2018). These tests

included, e.g., testing for realistic ATP yields on various carbon

sources under aerobic and anaerobic conditions or the ability to

perform defined metabolic tasks (Dataset EV2: 3.7). A typical organ

contained 2,947 � 1,980 reactions, 2,076 � 1,081 metabolites, and

1,298 � 245 genes (average � SD, Fig 2A). As one would expect,

the organs with the most reactions were liver, kidney, and colon

(Fig 1D). On average, 72% of reactions in each organ were gene-

associated, when excluding transport and exchange reactions

(Fig 2A). About 10% of all metabolites were organ-specific metabo-

lites (Fig 2B), which may be used as biomarker metabolites for

organ dysfunction. Notably, an additional 330 metabolites could

only be found in two organs, potentially further expanding the set

of potential organ dysfunction markers. Only 176 (10%) of the

genes were core genes, which can be explained by the absence of

the mitochondrially localized gene products from the core set, as

the RBCs are lacking this organelle. When excluding the RBCs, an

additional 142 genes were present in all remaining organs. The

organ compendium represents a comprehensive set of manually

curated, self-consistent organ-specific reconstructions that may be

used for a range of biomedical applications (Aurich & Thiele, 2016;

Nielsen, 2017).

Combining metabolism with physiology enables physiologically
constrained, stoichiometric modeling

The conversion of a reconstruction into a model involves the impo-

sition of condition-specific constraints (Orth et al, 2010). Each

WBM reconstruction was constrained with 15 physiological parame-

ters (Fig 3A) and metabolomics data (Wishart et al, 2013; Materials

and Methods, Conversion from reconstruction to condition-specific

models, Dataset EV2: 3.2). For instance, metabolite transport across

the capillaries of well-perfused organs is bulk flow limited rather

than diffusion-limited (Feher, 2012). Using organ-specific blood flow

rates at rest (Price et al, 2003) and plasma metabolite concentra-

tions (Wishart et al, 2013), we placed upper bounds on the corre-

sponding organ-specific metabolite transport reactions. Hence, by

combining physiological and metabolomic constraints, we defined

how much of each metabolite can be maximally taken up by an

Table 1. List of organs present in the male (Harvey) and female
(Harvetta) WBM reconstructions.

Organ name
Organ
abbreviations

Present in WBM
reconstruction

Adipose tissue Adipocytes_ Harvey, Harvetta

Adrenal gland Agland_ Harvey, Harvetta

B-cells Bcells_ Harvey, Harvetta

Brain Brain_ Harvey, Harvetta

Breast Breast_ Harvetta

CD4+ T-cells CD4Tcells_ Harvey, Harvetta

Cervix Cervix_ Harvetta

Colon Colon_ Harvey, Harvetta

Gallbladder Gall_ Harvey, Harvetta

Heart Heart_ Harvey, Harvetta

Kidney Kidney_ Harvey, Harvetta

Liver Liver_ Harvey, Harvetta

Lung Lung_ Harvey, Harvetta

Monocytes Monocyte_ Harvey, Harvetta

Muscle Muscle_ Harvey, Harvetta

Natural killer cells Nkcells_ Harvey, Harvetta

Ovary Ovary_ Harvetta

Pancreas Pancreas_ Harvey, Harvetta

Platelet Platelet_ Harvey, Harvetta

Prostate Prostate_ Harvey

Parathyroid gland Pthyroidgland_ Harvey, Harvetta

Red blood cell RBC_ Harvey, Harvetta

Retina Retina_ Harvey, Harvetta

Spinal cord Scord_ Harvey, Harvetta

Small intestine sIEC_ Harvey, Harvetta

Skin Skin_ Harvey, Harvetta

Spleen Spleen_ Harvey, Harvetta

Stomach Stomach_ Harvey, Harvetta

Testis Testis_ Harvey

Thyroid gland Thyroidgland_ Harvey, Harvetta

Urinary bladder Urinarybladder_ Harvey, Harvetta

Uterus Uterus_ Harvetta
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organ in the WBM, thereby addressing the challenge of appropri-

ately constraining organ-specific models. Additionally, we assumed

that the kidney filters 20% of blood plasma along with all the

metabolites, irrespective of their nature (Martini & Bartholomew,

2006). Accordingly, multiplying the glomerular filtration rate by

healthy plasma metabolite concentration ranges (Wishart et al,

2013) allowed us to set lower and upper bounds for filtration of

each metabolite by the kidney. Similarly, we assumed that cere-

brospinal fluid (CSF) metabolites are unselectively returned into the

bloodstream, permitting us to use healthy CSF metabolite concentra-

tion (Wishart et al, 2013) as constraints on the rate at which CSF

metabolites enter the bloodstream. Using the daily urine excretion

rate and urine metabolite concentrations (Wishart et al, 2013), we

constrained the rate of urinary metabolite excretion (Fig 3A). We

also applied constraints corresponding to an average European diet

(Fig 3B; Elmadfa, 2012). All applied constraints are described in

detail in the Dataset EV2: 3.2.1. In total, 12.5% of the WBM model

reactions had a constraint placed on their bounds, leading to a

substantially reduced steady-state solution flux space (Appendix Fig

S1A, Table EV12). We will refer to this novel paradigm in

constraint-based modeling as physiologically and stoichiometrically

constrained modeling (PSCM) and provide a PSCM toolbox (openc

obra.github.io/cobratoolbox) as well as a MATLAB (Mathworks,

Inc.) Live Script (Dataset EV2, https://opencobra.github.io/cobra

toolbox/stable/) enabling the reproducibility of all presented simu-

lations.

The physiologically constrained whole-body metabolic models
can predict organ metabolic essentiality, known biomarkers of
inherited metabolic diseases, and inter-organ metabolic cycles

To assess the predictive potential of the WBM models against current

knowledge, we computed the metabolic essentiality of an organ by

maximizing a whole-body maintenance reaction, without the corre-

sponding organ biomass contribution, under the aforementioned

physiological and dietary constraints. We predicted an organ to be

metabolically non-essential if a non-zero whole-body maintenance

reaction flux was possible in a WBM model deficient in that organ

attevraHyevraH
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B Overall statistics of the organ compendium. Core reactions, genes, and metabolites refer to those that are shared between all organs in Harvetta or Harvey. The

category “other” refers to all reactions, genes, or metabolites that appear in more than two but < 30 (Harvetta) or 28 (Harvey) organs (Dataset EV2: 3.7).
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(Dataset EV2: 3.5). We defined an organ to be metabolically non-

essential in vivo if it can be surgically removed or replaced by an artifi-

cial organ (e.g., heart; Table EV15). Of the 32 organs, for 28 we could

find corresponding information and predicted the metabolic essential-

ity correctly in all but one case (Fig 4A). It is important to note that

the WBM models can only assess metabolic essentiality but do not

capture other essential organ functions (e.g., those of the brain).

To further assess the predictive capacity of the WBM models, we

simulated 57 inborn errors of metabolism (IEMs) by deleting the

corresponding reaction(s) in all organs having the known defective

gene(s) (Dataset EV2: 3.8, Materials and Methods, Statistical

analyses). We then predicted and compared for each IEM the known

biomarkers in either blood, urine, or CSF. Across the 57 IEMs, a

total of 215 out of 252 (85.3%) biofluid specific biomarkers were

qualitatively predicted correctly by Harvetta and 214 out of 252

(84.9%) by Harvey (Fig 4B, Table EV16). We compared this with

similar predictions using the Recon3D model, which has only one

extracellular compartment. As expected, the number of biomarkers

was smaller than could be predicted (205 metabolites). Notably, the

predictive potential of the Recon3D model was lower than that of

the WBM models, with only 103 biomarker metabolites predicted

correctly (50.2%, Fig 4B). Overall, the biomarker predictions with

Harvetta and Harvey showed higher agreement percentages,

increased Cohen’s kappa metrics, and significantly better agreement

percentages per disease (P = 0.0003 and P = 0.0001 for Harvetta

and Harvey, respectively; Fig 4B). The better prediction capabilities

of the WBM models were mainly caused by having fewer inconclu-

sive or unchanged predictions, meaning that those metabolites were

not predicted to be biomarkers. While for the Recon3D model,

45.3% (93 of 205) of the predictions failed to predict any changes,

only 7.1% (18 of 252) fell into this category for Harvetta and 8.7%

(22 of 252) for Harvey. Hence, the ability to account for physiologi-

cal and metabolic constraints as well as organ-level separation of

metabolic pathways enhanced the prediction capacity considerably

and presented a key advantage of using a WBM model over the

generic Recon3D model.

In the WBM models, we investigated the constraints sufficient

for the activity of two inter-organ metabolic cycles (Frayn, 2010),

when minimizing the Euclidean norm of the flux vector, with the

rate of the whole-body maintenance reaction set to one (Dataset

EV2: 3.3.2.2). In the Cori cycle, glucose is secreted by the liver and

taken up by the muscle, which produces lactate, which is then taken

up by the liver to produce glucose (Fig 4C). Elevated postprandial

blood glucose concentration, mediated by insulin levels, determines

the rate at which glucose is taken up in vivo (Wasserman et al,

2011), but the regulatory functions of insulin are beyond the scope

of the present WBM models. Consistently, only enforcing muscle

glucose uptake was sufficient to achieve activity of the Cori cycle in

the WBM models, at rest (Dataset EV2: 3.3.2.2). In the Cahill cycle,

glucose is secreted by the liver and taken up by the muscle, which

converts it to alanine, which is taken up by the liver to produce

glucose (Fig 4C). The Cahill cycle is increased during exercise,

when muscles degrade amino acids for energy needs, as a means to

remove ammonium from the body via urea production in the liver

(Frayn, 2010). Consistently, enforcing muscle glucose uptake, and

enforcing either liver alanine uptake or increasing urinary urea

excretion was sufficient to achieve activity of the Cahill cycle in the

WBM models (Dataset EV2: 3.3.2.2).

To demonstrate that the aforementioned results are a conse-

quence of including reactions and constraints based on organ-level

data, we then tested the degree of functional redundancy in the

WBM models. Therefore, we removed random subsets of reactions

and checking the feasibility of a unit flux through the whole-body

maintenance reaction. We found that there was an exponential drop

in the number of feasible models as the fraction of reactions

removed was increased (Appendix Fig S1B). Specifically, 60% of the

WBM models (600/1000) were feasible if 0.1% of reactions (81/

A Physiological parameters

Value/Range Unit
Weight M: 70, F: 58 kg
Height M: 170, F: 160 cm
Heart rate 67 beats/min
Stroke volume 80 ml/beat
Cardiac outputa 5,360 ml/min
Hematocrit 0.4 packed cell volume
CSF flow rate 0.35 ml/min
CSF to venous blood flow 
rate

0.52 ml/min 

Urine produc�on 2 l/day
Blood flow rate (at rest) 4.9 – 1,081 ml/min
Renal filtra�on frac�on 20 %
Glomerular filtra�on rateb 90 ml/min
Crea�nine concentra�on in 
urine

0.5–1.2 mg/dL

Oxygen uptake (VO2)c 19.080 mmol/day
Respiratory exchange ra�o 0.8

B Composi�on of the average 
European diet corresponding to 2,371.9 
kcal per day per person

a Heart rate*Stroke volume
b Blood flow frac�on (Kidney)*CardiacOutput*(1-Hematocrit)
c Based on a �dal volume: 500 ml/breath and breathing frequency 12 
�mes/min

42%

43%

12%3% Lipids (%)

CHO %

Protein %

Alcohol %

Figure 3. Combining metabolism with physiology enabled
physiologically constrained, stoichiometric modeling.

A List of physiological parameters used to constrain the reactions. The
physiological values were retrieved for a reference man and woman (Snyder
et al, 1975). A complete list of simulation constraints can be found in
Materials and Methods (Conversion from reconstruction to condition-
specific models) and Dataset EV2: 3.2.

B Nutritional composition of the average European diet.
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A – Metabolic essen�ality of 32 organs in the WBM models

Organ Essen�al Non-essen�al

Metabolically 
essen�ala

5 0

Metabolically 
non-essen�al

1 22

Not reportedb 1 3

a Essen�ality was based on whether a surgical 
procedure removing the en�re organ could be 
found.
b Complete removal of organ is not feasible.

In silico
In

 v
iv

o

Harve�a 
(Harvey)

up unchanged down

up 195 (193) 15 (17) 5 (5)

down 14 (11) 3 (5) 20 (21)in
-v

iv
o

in-silico
B – Blood, CSF, and urine biomarker predic�ons for inborn errors of metabolism

Recon3D* up unchanged down

up 85 84 7

down 2 9 18in
-v

iv
o

in-silico

Model Agreement
between in-silico
and in-vivo in %

Cohen’s Kappa
(95%-CI)

p-val1

(from mul�nomial
logis�c regression)

p-val2

(sign-test against
RECON3D*)

RECON3D* 50.24% 0.20(0.14;0.25) 1.333e-13 -
Harve�a 85.32% 0.47(0.37;0.57) 4.056e-15 0.0003
Harvey 84.92% 0.49(0.39;0.58) 3.892e-17 0.0001

D-glucose

L-lactate

L-lactate 
dehydrogenase
855.06

L-lactate
pyruvate

D-glucose D-glucose

L-lactate 
dehydrogenase
321.39

L-lactate

pyruvate

Hexokinase
49.79

e.g., Pyruvate 
kinase   
14.08

glucose-6-
phosphate

glucose-6-
phosphate

e.g., Glucose-
6-phosphate 

isomerase
755.24

D-glucosyl-N-
acylsphingosine

L-alanine

L-alanine 
transaminase
130.33

L-alanineL-alanine L-alanine exchange 
144.23

L-alanine exchange
144.23

L-alanine 
transaminase

112.43

Liver MuscleBlood

C - Cori and Cahill cycle fluxes in Harve�a

Glucose exchange
967.69

Lactate exchange 
1144.3

Glucose exchange 
10.00

Lactate exchange 
531.65

glucose-1-phosphate
Phospho-

glucomutase
40.28

Glucosyl-
ceramidase

88.05

Single reac�on Pathway, only one reac�on shown

Figure 4. Assessment of the predictive potential of the WBM model.

A Comparison of predicted and in vivo organ metabolic essentiality (Table EV15).
B Statistical agreement between in silico and in vivo predictions for reported biomarkers of 57 inborn errors of metabolism using the WBM models and a Recon3D

model (Table EV16).
C Cori and Cahill cycle fluxes involving liver and muscles (in mmol/day/person). Key reactions from a single flux distribution for the female WBM model, obtained by

minimizing the Euclidian norm, subject to mass-balance and physiological constraints. Only a subset of the active intra-organ pathways is shown; hence, the values
of influx and efflux to a metabolite are not equal in the figure. Please refer to Dataset EV2: 3.3.2.2 or vmh.life for reaction details.
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81,094) were randomly removed and none of the models was feasi-

ble when 1% of the reactions were randomly removed.

This reliable prediction of organ and gene essentiality, as well as

the feasibility of inter-organ metabolic cycles, and the infeasibility

of whole-body maintenance upon random reaction removal, demon-

strates that the topology of the WBM models is a specific and sensi-

tive representation of whole-body metabolism but that constraints

are required to enforce condition-dependent metabolic activity.

The whole-body metabolic models predict basal metabolic flux
and activity-induced energy expenditure

The basal metabolic rate (BMR) varies between individuals, depend-

ing on their age, sex, weight, height, and body composition.

Phenomenological methods (Harris & Benedict, 1918; Mifflin et al,

1990) have been developed for estimating BMRs, but they do not

account for differences in metabolism. Here, we investigated

whether the WBM models, which incorporate metabolism and phys-

iological constraints (Fig 3), could be used to predict BMRs with

higher accuracy than the phenomenological methods. To this end,

we assumed that BMR is equal to the energy yield from ATP hydrol-

ysis (64 kJ; Wackerhage et al, 1998) times the resting rate of steady-

state ATP consumption. The latter was predicted by setting the

whole-body maintenance reaction flux to one, minimizing the Eucli-

dean norm to obtain a unique steady-state basal metabolic flux

vector (Heirendt et al, 2019) and summing the rate of ATP

consumption of all reactions in all organs (Dataset EV2: 3.3). The

whole-body maintenance reaction represents the material and

energy (ATP) required to maintain the non-metabolic cellular func-

tions of the body and was constructed based on the fractional

weight contribution for each organ for a reference man or woman

(Snyder et al, 1975) (Dataset EV2: 3.2). In the basal metabolic flux

vector, ATP consumption by the whole-body maintenance reaction

is < 2% of the total ATP consumption. Without any fitting, or

accounting for age, we predicted overall energy consumption rates

of 1,344 kcal for Harvetta and 1,455 kcal for Harvey, which were

consistent with the expected values for a reference man and

woman, respectively.

Age, weight, and height from 13 healthy women with normal

body mass index (BMI < 22.1 � 2.4) (Prentice et al, 1986) (Fig 5A,

Dataset EV2: 3.9, Table EV17) were used, together with established

polynomial functions (Dataset EV2: 3.10.1.5; Young et al, 2009), to

fix the physiological parameters (organ weights, blood flow rate,

and cardiac output) of a set of personalized Harvetta models. We

then tuned Harvetta to fit corresponding personalized BMR

measurements by performing a sensitivity analysis (Dataset EV2:

3.9.1) thereby identifying parameters in Harvetta that could be

adjusted to fit the BMR data better. As the fat-free body mass was

provided for each individual, we adjusted the muscle and adipocyte

coefficients in the whole-body maintenance reactions, instead of

solely relying on the estimated values based on age, weight, and

height (Young et al, 2009). We also increased the ATP coefficient in

the muscle biomass maintenance reaction, starting from a previ-

ously estimated coefficient (Bordbar et al, 2011a), to better reflect

the energetic requirements associated with protein turnover in the

muscle. After optimizing the ATP coefficient, the WBM model was

able to predict the measured BMR with high accuracy (explained

variance = 79.7%, F(1, 11) = 43.14, P = 4.04e-05, Fig 5B) and

better than the Mifflin-St Jeor equations (Fig 5C). However, as

parameter tuning was involved, potentially leading to overfitting,

we validated the WBM BMR prediction models with an independent

data set not utilized in parameter estimation.

An independent, external data set, composed of age, weight,

height, fat-free body mass, and BMR data from six female and 16

male athletes (Loureiro et al, 2015) (Fig 5D) was used to assess the

ability of the previously tuned WBM models to predict BMR

(Dataset EV2: 3.9.2, Table EV17). Good correlation was obtained

between predicted and measured BMR (explained variance

= 61.3%, F(2, 19) = 15.06, P = 1.10e-4) (Fig 5E). In comparison,

the Mifflin-St Jeor equations, a standard phenomenological method

of estimating the BMR from age, sex, height, and weight (Mifflin

et al, 1990), gave a lower correlation (R2 = 0.49, P = 0.002)

(Fig 5F). Furthermore, given the WBM models, the Mifflin-St Jeor

equations were not informative for the true BMR (linear regression

b = 0.01, 95%-CI:(�0.99, 1.00), P = 0.90). In contrast, the WBM

prediction added predictive value to the Mifflin-St Jeor equation (lin-

ear regression b = 2.24, 95%-CI: (0.32; 4.16), P = 0.025). The last

result implies that the WBM models are significantly superior to the

Mifflin-St Jeor equations in terms of prediction accuracy. Taken

together, the results demonstrate that the WBM models provide

good and replicable estimations of BMRs that improve on standard

phenomenological methods. However, the analyses also highlight

the need for personalized parameterization of the WBM models for

a given simulation and that the use of further parameters is likely to

improve the prediction fit. Equally, confounding factors, beyond age

and sex, should be considered and validation in a larger cohort will

be required.

Beyond the basal metabolic rate, activity-induced energy expen-

diture consumes the remaining energy and nutrient resources

provided by the diet (Biesalski & Grimm, 2005). With the afore-

mentioned basal metabolic flux distribution (Dataset EV2: 3.3.2.3),

the resting brain energy consumption rate was initially predicted

to be 10.5 mole ATP/female/day (Dataset EV2: 3.3.2.3). Assuming

a conversion of 1 mole of glucose into 31 moles of ATP, this value

is lower than a total brain consumption rate of 20.65 mole ATP/

day/person, based on the reported consumption rate of 120 g of

glucose per day (Berg et al, 2002). To achieve a 20 mole ATP/

female/day total brain consumption rate, we had to set a require-

ment for the brain to hydrolyze 3.5 mole ATP/female/day for elec-

trophysiological processes (VMH ID: Brain_DM_atp_c_). Note that

this demand for hydrolysis of ATP requires further hydrolysis of

ATP by supporting metabolic pathways elsewhere in the brain.

Similarly, the pumping of blood through the body by the heart

requires the hydrolysis of ATP. However, literature reports differ

in their estimated energy requirements with one source reporting

6,000 g ATP/day/person to be consumed (https://heartmdinsti

tute.com/heart-health/metabolic-cardiology-basics/), which corre-

sponds to 11.8 mole ATP/day/person with the molecular weight

of ATP being 507.18 g/mole (Dataset EV2: 3.2.2.7). A lower

bound on a heart demand for hydrolysis of ATP (VMH ID: Heart_

DM_atp_c_) was set to 6 mole ATP/day/person to account for the

energy required for pumping blood through the body while allow-

ing the remained to be consumed by supporting heart metabolic

reactions. Despite the lack of comparable measurements of activ-

ity-induced ATP consumption rates, we set these parameters on

brain and heart ATP hydrolysis because each organ contributes to
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Mean (Standard devia�on)

Females (n=13)

Age (years) 29 (±5)

Height (cm) 161 (±8)

Weight (kg) 57.5 (±6.3)

BMI 22.1 (±2.4)

Fat-free body mass (kg) 41.3 (±23.9)

Measured BMR (kcal) 1,350.4 (±31.1)

Mean (Standard devia�on)

Females (n = 6) Males (n = 16)

Age (years) 14.7 (±2.7) 14.8 (±1.7)

Height (cm) 159.3 (±9.9) 169.3 (±8.5)

Weight (kg) 50.5 (±8.9) 57.3 (±8.6)

BMI 19.7 (±1.5) 19.9 (±1.5)

Fat-free body mass (kg) 39.15 (±9.6) 48.6 (±7.8)

Measured BMR (kcal) 1,353.7 (±143.3) 1,564.2 (±208.3)

Training data

WBM based predic�on of BMRs

Phenomenological method based 
es�ma�on of BMRs

Independent, external tes�ng data

WBM based predic�on of BMRs

Phenomenological method based 
es�ma�on of BMRs

Overview of the data set Overview of the data setA D

B E

C F

Figure 5. Application of the WBM models to predict basal metabolic rates (BMRs).

A-C A training data set (Prentice et al, 1986) was used to identify parameters to improve the prediction of the BMRs (A). Therefore, the WBM models were first
constrained based on age, height, and weight (Dataset EV2: 3.9, Table EV17). We then adjusted fat-free mass and the ATP requirements in the muscle, to obtain a
better fit of the predicted and measured BMRs (B). For comparison, we estimated the BMRs using a phenomenological method, being the Mifflin-St. Jeor equations,
and compared the estimates with the measurements (C).

D–F Subsequently, we validated the identified tuning parameters, being adjusted fat-free mass and the ATP requirements in the muscle, using an independent, external
data set (D) (Loureiro et al, 2015). The WBM model based predicted BMRs for the independent data set (E) outperformed the phenomenological method (F).
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the overall energy consumption in a whole-body model. After

accounting for whole-body maintenance and energy demand due

to brain and heart activity, the basal metabolic flux distribution

predicted that the remaining energy that the WBM models could

extract from the dietary input was 515.7 kcal for Harvetta and

502.5 kcal for Harvey. These values correspond to approximately

20% of the average European dietary input (2,372 kcal) used for

the WBM simulations. This result is consistent with a 15–30%

allocation of dietary input toward physical activity (Biesalski &

Grimm, 2005).

Overall, we demonstrated that WBM model predictions of basal

metabolism and energy requirements are overall consistent with the

literature and they provide an opportunity for integration of both

physiological and molecular biological data to enable enhanced

predictions when compared with purely phenomenological

methods.

Personalized microbiome-associated WBM models to simulate
gut–organ co-metabolism

The human gut microbiota influences host organ metabolism,

including the brain (“gut-brain axis”), the liver (“gut-liver-axis”),

and the colon (Clarke et al, 2014). However, our understanding of

host–microbiome co-metabolism remains limited. The WBM models

can be used to predict how the microbiome may modulate human

metabolism, thereby complementing existing in vitro and in vivo

analysis approaches.

To constrain Harvetta and Harvey in a gut microbial context, we

used published shotgun metagenomics and clinical data on 149

healthy individuals provided by the Human Microbiome Project

(HMP) Consortium (Consortium, 2012a; Peterson et al, 2009)

(Dataset EV2: 3.10, Fig 6A). First, we generated personalized germ-

free WBM models using clinical data on sex, weight, height, and

heart rate of each individual. Second, we mapped the reported

strain-level abundances for each individual onto a resource of 773

gut microbial metabolic reconstructions (Magnusdottir et al, 2017;

Dataset EV2: 3.10.1). The resulting 149 personalized microbial

community models captured 131 � 19 microbes per HMP individ-

ual, accounting for 91 � 7% of the reported relative abundance

(Appendix Fig S2). Third, the microbial community models were

added to the large-intestinal lumen of the corresponding personal-

ized WBM models, resulting in personalized microbiome-associated

(my) WBM models. In the large-intestinal lumen of these personal-

ized myWBM models, gut microbes can take up dietary metabolites

after they transit from the small intestinal lumen where small

intestinal enterocytes may also absorb them. Metabolites produced

by gut microbes can be taken up by colonocytes or excreted via the

feces.

The human gut microbiome is a source of amino acids and

neuroactive compounds (Clarke et al, 2014; Lin et al, 2017). Hence,

we investigated whether the presence of the gut microbiota in

personalized myWBM models could increase the maximal possible

production rate of eight prominent neurotransmitters. We first maxi-

mized the neurotransmitter production in the brain in the personal-

ized germ-free WBM models and observed substantial inter-

individual variation (Fig 6B). This variation could be attributed to

the changed bounds on the organ uptake reactions due to the person-

alization of the physiological parameters. We then used the

personalized myWBM and observed substantial increase in the

brain neurotransmitter production capability. No clear correlations

between brain neurotransmitter synthesis potential and individual

microbial species were observed (Fig 6C). The high inter-individual

variation in these metabolic objectives could neither be explained

by the presence of a single species or genus (Fig 6B and C) nor by

the provided meta-data. Consequently, we hypothesized that the

simulation results were the direct consequence of the host–gut

microbial co-metabolism and could not be derived from the metage-

nomic data alone. Using the 149 personalized microbiome models

without the WBM, we calculated the neurotransmitters and neuro-

transmitter precursors predicted to be secreted by each strain

(Appendix Fig S3). For instance, GABA was predicted to be

produced by Akkermansia muciniphila and strains of the Bacter-

oides, Escherichia, and Shigella genera. Consistently, GABA-produ-

cing capability has been shown for Bacteroides, Parabacteroides,

and Escherichia species (Strandwitz et al, 2019). Glutamate, the

precursor of GABA and itself a neurotransmitter, was predicted to

be mainly produced by Eubacterium rectale, Faecalibacterium, Rose-

buria, and Bacteroides. Histamine was predicted to be produced

mainly by Gammaproteobacteria species and Streptococcus sp., in

agreement with reports that members of these taxa synthesize hista-

mine (Clarke et al, 2014). Histidine, the precursor of histamine, was

predicted to be produced mainly by commensals of the Bifidobac-

terium genus and of the Clostridiales order (e.g., Faecalibacterium,

Roseburia). Alistipes and Bacteroides sp. were predicted to produce

the majority of L-tryptophan, a precursor of serotonin. Finally, L-

tyrosine, a precursor of dopamine, was predicted to be produced by

a variety of species belonging to the Actinobacteria, Firmicutes, and

Proteobacteria phyla. Taken together, the modeling results predicted

that gut microbes have the molecular mechanisms that may influ-

ence host brain metabolism directly by synthesizing neurotransmit-

ters and indirectly by providing the amino acid precursors to be

further metabolized by human enzymes. The predicted maximum

secretion potential, as well as the contributing strains, depended on

each individual’s microbiome composition. Thus, the WBM models

can be used to generate novel mechanistic hypothesis as to how the

gut microbiota might influence brain metabolism (Clarke et al,

2014; Lin et al, 2017).

Ethanol causes liver toxicity as its product, acetaldehyde, is cyto-

toxic and carcinogenic (Neuman et al, 2017). When maximizing the

flux through the liver alcohol dehydrogenase (VMH ID: ALCD2if),

the myWBM models predict an 11.4 � 8.5 fold increase in maximal

potential flux compared with corresponding personalized germ-free

WBM models (Fig 6E). This fold change in flux strongly correlated

with species belonging to the Clostridia class and negatively corre-

lated with representatives of the Bacteroidia class (Fig 6E). Conse-

quently, the Bacteroidia/Clostridia ratio determined 92.1% of the

variation in the predicted maximum alcohol dehydrogenase flux

(F(2, 144) = 852.21, P = 1.56e-80, see Table EV18). Species that

affected the most the alcohol dehydrogenase flux included Clostrid-

ium scindens, Blautia hydrogenotrophica, and the well-known

pathobiont Clostridium difficile (Fig 6C). Endogenous ethanol

production by the microbiota has been shown in non-alcoholic

steatohepatitis (NASH) patients (Zhu et al, 2013). Further support

that microbial endogenous ethanol production can perturb liver

function and cause non-alcoholic fatty liver disease has been

recently published (Yuan et al, 2019).
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Microbially produced butyrate serves as the main energy source

for the colonocyte (Donohoe et al, 2011). We computed the maxi-

mum flux through the butyrate-CoA ligase in the colonocytes in the

personalized myWBM models. The predicted maximum butyrate-

CoA ligase flux was on average 78.7 � 64.7-fold increased in the

presence of the microbiome (Fig 6F) and strongly correlated with

the abundance of known butyrate producers, such as Faecalibac-

terium prausnitzii, Butyrivibrio crossotus, and Subdoligranulum vari-

abile (Louis & Flint, 2009). The Bacteroidia/Clostridia ratio

determined 92.9% of the variance in the predicted maximum buty-

rate-CoA ligase flux (F(2, 144) = 953.32, P = 8.8e-84, Table EV18).

Consistently, it is known that butyrate is mainly produced by

microbes belonging to the Clostridia class (Louis & Flint, 2009).

The human gut microbiota can also influence drug metabolism

(Spanogiannopoulos et al, 2016). Flux balance analysis was used to

predict the maximal possible flux through the liver sulphotrans-

ferase reaction (VMH ID: PCSF) in each myWBM model (Fig 6D).

myWBM models with low Clostridioides genus abundance were

predicted to have lower maximum liver sulfonation flux (Fig 6D).

The potential for liver sulfonation was inversely correlated with the

abundance of the Bacteroidia class (Fig 6D), such that the Bacter-

oidia/Clostridia ratio contributed 53.6% of variance to maximal

A Characteris�cs of the microbiome-
associated WBM models

Feature Male (n=83) Female (n=66)

Weight (kg) 80.3 11.3 65.5 13.1

Height (cm) 178.6 7.1 163.1 6.6

Age (years) 27.0 5.0 25.9 5.0

Heart rate (beats/min) 71.6 11.6 75.3 11.1

Number of mapped microbes 133.6 19.5 132.5 18.8

Personalized 
microbiota-
associated WBM 
models

Reac�ons 226,886
20,993

229,164
20,705

Metabolites 188,173±
18,851

190,079±
18,358

E Liver alcohol 
dehydrogenase

C Species abundance correla�on

D Liver 
sulphotransferase

F Colon carboxylic 
acid:CoA ligase

B Microbiome contribu�on 
to neurotransmi�er 
produc�on

all p<0.001

R2=0.54, p<0.001

R2=0.92, p<0.001 R2=0.93, p<0.001

Figure 6. Application of the 149 personalized microbiome-associated (my) WBM models to predict host–microbiome co-metabolism.

A Characteristics of the myWBM models.
B Average brain biosynthesis potential for eight neurotransmitters in the personalized WBM models displayed as the difference between with and without

microbiome (germ-free). P-values from paired t-tests.
C Spearman correlations between species-level abundances and fold changes in fluxes (microbiome-associated vs. germ-free) for flux through 11 objective functions.

Each data point is the Spearman correlation between 149 changes in fluxes for one reaction and 149 abundances for one species.
D–F Bacteroidia/Clostridia ratio against maximal flux (mmol/day/person) against (relative abundance) through the different reactions. Regression line from fractional

polynomial regression and p-values from likelihood ratio tests. Inlet: Average maximal reaction flux in microbiome-associated and germ-free WBM models.
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liver sulfonation rates (F(2, 144) = 85.37, P = 3.547e-25,

Table EV18). Note that, at higher Clostridioides genus abundances,

substrate availability was limiting for p-cresol production and subse-

quent sulfonation (Appendix Fig S4). Overall, consistent with our

results, it is known that the production of p-cresol, e.g., by Clostrid-

ium difficile, competes with drugs, such as acetaminophen, for

sulfonation in the liver and interferes with drug detoxification

(Spanogiannopoulos et al, 2016).

Taken together, using the personalized myWBM models, we

demonstrate that this modeling framework can generate predictions

of how microbial metabolism may modulate host metabolism.

Importantly, some of these predictions have already been shown

experimentally to be consistent with known host–microbe co-meta-

bolism. Thus, the myWBMs are suitable for the generation of novel,

experimentally testable hypotheses on host-microbe co-metabolism,

the development of microbe-modulated biomarkers, and for the

identification of individuals with increased risk of toxicity.

Discussion

We presented two sex-specific, organ-resolved, molecular-level,

anatomically and physiologically consistent reconstructions of

human whole-body metabolism. The underlying reconstruction of

human metabolic pathways (Brunk et al, 2018) has been devel-

oped over the past decade based on over 2,000 literature articles

and books, and provided an indispensable foundation for the

WBM reconstructions. Organ-specific metabolism (Figs 1 and 2)

was based on more than 600 published studies and books, and

accounts for comprehensive proteomic and metabolomics data.

Known inter-organ metabolic interactions, as illustrated with the

classical examples of the Cori and the Cahill cycles, as well as

organ-essentiality and inborn errors of metabolism (Fig 4) were

captured with the WBM reconstructions, as were whole-body func-

tions, such as BMR and the energy use (Fig 5). Using the micro-

biome-associated WBM models, we could show that individual

microbes, or microbial communities, may be used to explore their

potential influences on the metabolism of different host organs

(Fig 6). Importantly, for some of these predictions, we could find

supporting evidence in the literature that such host–microbe co-

metabolism does indeed occur. Finally, the personalized WBM

models reflected inter-individual variability in metabolism due to

varied physiological parameters, which were broadly consistent

with phenomenological observations. Taken together, the WBM

reconstructions represent a molecular-level description of organ-

specific processes built on current knowledge and underpinned by

basic physicochemical principles.

The creation of organ-specific metabolic reconstructions is chal-

lenging despite the myriad of omics data and sophisticated algo-

rithms (Opdam et al, 2017). We tackled this challenge with an

iterative approach combining extensive literature review, omics

data, and high-performance computing (Fig 1). Moreover, the inclu-

sion of biofluid compartments in the WBM reconstructions enabled

the integration of quantitative metabolomics data, while the use of

microbiome information and dietary information increased the

comprehensiveness of the WBM reconstructions. The interlinked

metabolic complexity captured in the WBM reconstructions could

not have been achieved by using an organ-by-organ reconstruction

approach, as such an approach would not consider the inherent

cooperation between the body’s organs. Importantly, this novel

whole-body reconstruction paradigm may present a blueprint for

other multi-cellular model organisms, such as the virtual physiologi-

cal rat (Beard et al, 2012).

In addition to our genome and diet, our (gut) microbiome contri-

butes to inter-individual variation in disease development and

progression (Sonnenburg & Backhed, 2016). Computational models

aimed at accounting for these factors have been, in part, hampered

by the lack of a molecular-level, organ-resolved description of

human metabolism. While the gut microbiota can modulate human

metabolism on an organ level (Zhu et al, 2013; Yuan et al, 2019),

the underlying pathways are typically elucidated using animal

models (Claus et al, 2008; Sampson et al, 2016; Virtue et al, 2019).

The WBM models, when associated with microbiomes, enable such

analysis in silico and a comparison with their germ-free counterpart.

This capability facilitates the formulation of novel, mechanistic

hypotheses on how gut microbes, individually and collectively, may

modulate human metabolism, and vice versa. While these hypothe-

ses require experimental validation, the WBM models permit priori-

tization of experimental studies, thus accelerating knowledge

creation through a systems biology approach.

One may question whether it is enough to use the germ-free

WBM models, considering the impact of the microbiome on human

metabolism, as also illustrated with our examples (Fig 6). We

argue that using the germ-free WBM models without the gut micro-

biome is valuable and valid, as we applied measured blood

metabolite concentration ranges as constraints for each organ.

These metabolite concentration ranges have been obtained from,

e.g., the Human Metabolome Database (Wishart et al, 2013). These

ranges are assumed to represent the concerted metabolic activity

of host and microbial metabolism. Nonetheless, we believe that

the inclusion of the microbiome adds another dimension to the

possible applications of the WBM models. While, in this study, we

only demonstrated the inclusion of the human gut microbiome,

microbiomes from other body sites (Costello et al, 2009; Consor-

tium THMP, 2012a; Pasolli et al, 2019), such as the small intestine,

the vagina, the skin, or the oral cavities, should eventually be also

considered.

The WBM reconstructions represent anatomically consistent

topological connections between organs. Current approaches have

either assumed a whole-body human metabolic network without

organ boundaries (Aurich & Thiele, 2016; Nilsson et al, 2017) or

simplified it (Bordbar et al, 2011a), which ultimately limits its

general usability and predictive capacity. Here, in contrast, we

considered individual-level physiological, nutritional, and microbial

parameters for personalization of the WBM models and provide a

novel tool to study inter-individual variability in physiological

processes as well as drug metabolism (Thiele et al, 2017). Multi-

omic data for healthy and diseased individuals are becoming

increasingly available (Price et al, 2017), requiring novel tools for

the integrative analysis of such diverse data. The omics data also

provide a unique opportunity to further constrain and personalize

the WBM models. Such personalization of computational human

models is also a requirement for enabling in silico clinical trials

(Viceconti et al, 2016).

The presented WBM reconstructions describe the metabolism of

a large number of organs in the human body but are not yet
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resolved to the tissue or cellular level. For instance, the kidney and

the liver are anatomically complex organs, consisting of many

different cell types with distinct metabolic functions. The WBM

reconstructions will need to be expanded to include cell-specific

metabolism within the individual organs, which will be enabled

through advances in single-cell omics technologies (Han et al,

2018). Another limitation is that our WBM reconstructions capture

only metabolism, ignoring important processes, such as signal trans-

duction and regulation, immune response, and the action of

hormones. For some of these processes, computational models have

been already constructed (Chelliah et al, 2015). Using metabolic

models as a framework for integration of other types of models has

been already demonstrated, most notably in a model of Mycoplasma

genitalium (Karr et al, 2012).

This new physiologically and stoichiometrically constrained

modeling (PSCM) approach allows the integration of physiological

parameters and quantitative metabolomics data to restrict organ

uptake rates to physiologically relevant values and thereby limit the

achievable intra-organ metabolic flux states. Our computational

approach is tractable, as it relies either on solutions to linear or

quadratic optimization problems. In contrast, hybrid modeling

approaches, such as the ones integrating physiology-based pharma-

cokinetic modeling with genome-scale models (Eissing et al, 2011;

Krauss et al, 2012; Guebila & Thiele, 2016), require a flux solution

for a metabolic submodel at each time step. All processes in the

human body are intrinsically dynamic, but many whole-body meta-

bolic questions can be addressed while assuming a steady state. In

those cases, WBM modeling is a valuable, time-efficient alternative

to hybrid modeling as it represents human metabolism at a more

comprehensive level, and yet it is computationally tractable.

Taken together, the WBM reconstructions and personalizable,

versatile models of Harvetta and Harvey represent a significant step

toward the “virtual human” envisioned in the Tokyo declaration

(Kitano, 2010).

Materials and Methods

Reconstruction details

In this part, we describe the reconstruction approach and the infor-

mation used to generate the WBM reconstructions, Harvey and

Harvetta. The conversion of the reconstructions into condition-

specific WBM metabolic models is then described Statistical

analyses details can be found at the end of the Materials and

Methods section. Simulation-relevant information and methods can

be found in the Dataset EV2 (or here: https://opencobra.github.io/

cobratoolbox/stable/).

The human metabolic reconstruction served as a starting point for
the WBM reconstructions
As a starting point for the WBM reconstructions, we used the global

human metabolic reconstruction, Recon3D (Brunk et al, 2018),

which accounts comprehensively for transport and biochemical

transformation reactions, known to occur in at least one cell type.

Recon3D was assembled based on more than 2,000 literature

sources. Recon3D was obtained from the Virtual Metabolic Human

database (https://www.vmh.life/#downloadview, version 3.01). In

Recon3D, many of the enzyme-catalyzed reactions or transport reac-

tions are associated with the corresponding gene(s) that encode

the protein(s). These so-called gene-protein-reaction associations

Table 2. Biofluid compartments and the connected organs present in
the WBM reconstructions.

Biofluid
compartment Abbreviation Connected organs

Diet [d] –

Lumen [lu] –

Lumen, small intestine [luSI] Small intestinal cells

Lumen, large intestine [luLI] Colonocytes

Feces [fe] –

Blood, circulation [bc] All except brain and
spinal cord

Blood, portal vein [bp] Liver, colonocytes, small
intestinal cells, pancreas,
spleen

Bile duct [bd] Liver, gallbladder

Cerebrospinal fluid [csf] Brain, spinal cord

Urine [u] Kidney

Sweat [sw] Skin

Breast milk
(female only)

[mi] Breast

Air [a] Lung

Figure 7. Biofluid compartment definitions for the individual organs in
the WBM reconstructions.
Refer to Table 2 for the abbreviations of the biofluid compartments.
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(GPRs) are represented through Boolean rules (“AND”, “OR”) for

isozymes or protein complexes, respectively. The reconstruction of

Recon3D consists of 13,543 reactions, 4,140 unique metabolites,

and 3,288 genes. The Recon3D publication also contained a flux and

stoichiometrically consistent global metabolic model (Recon3D

model) accounting for 10,600 reactions, 5,835 non-unique metabo-

lites (2,797 unique metabolites), and 1,882 unique genes. Hence, we

used the Recon3D model, rather than Recon3D as starting point, as

we wished the WBM reconstructions, and their derived models to

be also flux and stoichiometrically consistent. From the Recon3D

model, we removed from all reactions, and metabolites, involved in

protein and drug metabolism, as these pathways were beyond the

anticipated scope of the first version of the WBM reconstructions.

We then removed flux inconsistent reactions (i.e., those reactions

that did not admit non-zero net flux) using the COBRA toolbox

(Heirendt et al, 2019). The resulting metabolic flux and stoichiomet-

rically consistent model, named Recon3D*, contained 8,418 reac-

tions, 4,489 (non-unique) metabolites, 2,053 transcripts, and 1,709

genes, and was used in the following to assemble the WBM recon-

structions.

Setup of the multi-organ, sex-specific meta-reconstructions
The central idea of the novel reconstruction paradigm was to gener-

ate sex-specific, organ-resolved WBM reconstructions that were not

built by connecting the separate organ-specific metabolic recon-

structions but which would emerge as one functional, self-consistent

whole-body metabolic system from the metabolic capabilities and

known interactions between the organs.

Preparation of the organ-specific metabolic reconstructions to be

included in the meta-reconstructions

We considered 20 organs, six sex-specific organs, and six blood

cells (Table 1). For simplicity, we refer to all of these as organs in

the following. We defined 13 biofluid compartments to be consid-

ered in the WBM reconstructions (Fig 1B, Table 2). For each

organ, transport reactions from the extracellular compartment ([e])

to the blood compartment ([bc]) were added to Recon3D*. An

example of such transport reactions is the transport of metabolite

A from and to the blood compartment into the extra-organ space

of the heart: Heart_EX_A[bc]_[e]: 1 A[bc] <=> 1 Heart_A[e]. Addi-

tional transport reactions were added to those organs that are

connected to a third, or forth, biofluid (e.g., liver, Fig 7, Table 2).

For organs, which can only take up from or secrete into a particu-

lar biofluid (see arrows in Figs 1B and 7), the reaction directional-

ity was set accordingly. The corresponding transport mechanism

was always set to occur through facilitated transport, which

assumes that the metabolites can be transported from the biofluid

to the interstitial fluid surrounding the organ cells and that the

transport is driven either by concentration difference (diffusion) or

pressure difference (bulk flow). Each reaction in Recon3D* and the

newly added transport reactions received a suffix corresponding to

one organ (Table 1). Numerous organs are known to store metabo-

lites, e.g., the liver. We included sink reactions for stored metabo-

lites in the corresponding organs (Table EV6).

The male meta-reconstruction was constructed such that it

contained 28 times Recon3D* in an anatomically correct manner as

described in the next section (Fig 1B). The female meta-reconstruc-

tion was constructed such that it contained 30 times Recon3D* in

an anatomically correct manner. Each draft meta-reconstruction

contained more than 300,000 reactions.

Anatomically accurate organ connectivity

The dietary input compartment represents the exchange medium

consisting of all the dietary ingredients that the human body can

consume. We added diet uptake reactions for all metabolites with

defined exchange reactions in Recon3D*, as well as transport

reactions along the gastrointestinal tract (Fig 1B, Table 2) to the

draft meta-reconstructions. The dietary inputs from the [d] enter

the gastrointestinal lumen represented by [lu] in the WBM recon-

structions (Table 2). The lumen compartment setup in the model

represents the gastrointestinal lumen, which is unidirectional and

exits into the fecal excretion compartment [fe]. The fecal excretion

compartment represents the excretory end-products comprising

the undigested and unabsorbed part of the dietary input. In the

WBM reconstructions, the gastrointestinal lumen compartment is

further divided into the small intestinal lumen [luSI] and the

large-intestinal lumen [luLI]. While the gastrointestinal lumen

receives the diet input [d], the small intestinal lumen receives

metabolite drainage from the gallbladder (via the bile duct [bd]),

pancreas, and the small intestine. The large intestinal lumen is

specific for the large intestine receiving metabolites only from the

colonocytes and from the small intestinal lumen. Both small

intestinal epithelial cells (sIEC) and colonocytes were allowed to

take up metabolites from their corresponding luminal compart-

ment and could secrete some metabolites into the lumen (Tables

EV12A and EV13A). Gut microbes are known to produce in the

gastrointestinal tract valuable metabolic precursors to the human

host. To enable the uptake of such metabolites by the small

intestinal cells and the colonocytes, we added corresponding sink

reactions into the corresponding luminal compartments of the

meta-reconstructions (Table EV11).

The portal venous blood [bp] receives metabolites from the

colon, small intestine, spleen, pancreas, and gallbladder, which

drains into the liver for further metabolism and for exposure to the

systemic blood circulation [bc]. The bile duct [bd] is a special

compartment, which is specific for liver and gallbladder. Bile is

synthesized in the liver and stored in the gallbladder (Murray et al,

2000). From the liver, bile flows into the bile duct. The flow of bile

into the small intestinal lumen via the bile duct depends on the

Sphincter of Oddi that closes during the inter-digestive period,

increasing the pressure in the bile duct, and resulting in backflow of

bile into the gallbladder, where it is further concentrated. During the

digestive phase, the Sphincter of Oddi opens causing the concen-

trated bile flow into the small intestinal lumen to aid in digestion

(Gropper et al, 2009).

The systemic blood circulation [bc] is represented by the circula-

tory blood in the WBM reconstruction, which provides nutrients to

all organs. Since the brain and the spinal cord are specific in its

metabolite exchange, we introduced the blood–brain barrier and

cerebrospinal fluid [csf] as an additional compartment. The blood–

brain barrier selectively allows the exchange of metabolites, to and

from the brain (explained below), and the cerebrospinal fluid

receives metabolites from the brain, finally draining into the circula-

tory blood compartment (Fig 1). The lung takes up oxygen from the

environment and gives out carbon dioxide, which is captured as [a]

in the WBM reconstructions. Finally, the urine compartment [u]
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contains filtered metabolites from the kidney for final excretion.

These biofluid compartments signify precise anatomical barriers of

the organs of the human body.

To ensure that metabolites found in different biofluids based on

metabolomics data (see below) would also be present in the WBM

reconstructions, we added demand reactions for all those metabo-

lites to the corresponding biofluid compartments of the draft meta-

reconstructions. By doing so, we enforced that at least one organ

could produce a given metabolite, or that it would be taken up from

the diet (and the lumen).

Manual curation of the WBM reconstruction content
We defined a core reaction set containing all reactions, which

should be present in the WBM reconstructions based on literature

and omics data evidence. For each organ, the core reaction set was

expanded to include organ-specific (i) protein information from the

human proteome map (HPM) (Kim et al, 2014) and the human

protein atlas (HPA) (Uhlen et al, 2015), (ii) extensive manual cura-

tion of more than 600 literature sources for the presence or absence

of metabolic and transport reactions, genes, or pathways in all

organs, and (iii) reactions presence in four published tissue-specific

organs, i.e., red blood cell (Bordbar et al, 2011b), adipocyte (Bord-

bar et al, 2011a), small intestine (Sahoo & Thiele, 2013), and liver

(Gille et al, 2010). Note that these input data were not sex-specific,

due to the absence of corresponding data on an organ-specific scale.

This manual curation yielded a comprehensive core reaction

set, which served as input for the extraction algorithm (see section

1.3). For reactions that were found to be absent in an organ, we

set the corresponding lower and upper bounds to 0 in the draft

meta-reconstructions, which corresponds to removing them from

the meta-reconstructions. These absent reactions were then

removed from the meta-reconstructions by the algorithm as they

were not flux-consistent.

Proteomic data

The HPM resource (Kim et al, 2014) provides protein information

for 17,294 genes that accounted for 84% of the protein-encoded part

of the human genome. These proteins were obtained from normal

histological tissue samples, accounting for 17 adult tissue types and

6 primary hematopoietic cells, from three deceased individuals. We

queried the database (10/12/2015) for all genes present in

Recon3D*. For 1601/1709 Recon3D* genes/proteins (94% cover-

age) to obtain their distributions in the 23 tissue/cell types. The

protein expression data were scaled to range from 0 to 1. Only those

proteins with an expression level of greater or equal to 0.2 were

assumed to be expressed in an organ (Table EV2).

Moreover, to complement the HPM resource, we used HPA

(Uhlen et al, 2015). The protein expression data for the normal

tissues were downloaded and sorted according to the tissue type.

The proteins in the human protein atlas have been analyzed with a

single antibody, and the expression levels have been reported based

on the antibody staining (Uhlen et al, 2010). The expression levels

depend on the quality of the antibody used (Uhlen et al, 2010).

Hence, we considered only those proteins, which had a high and

medium expression level for a given tissue/organ. For the brain, we

combined the protein information of cerebellum, cerebral cortex,

hippocampus, and lateral ventricle. The Ensembl gene IDs were

converted to their corresponding EntrezGene IDs using the BioMart

tool from Ensembl (Flicek et al, 2014). Overall, HPA provided

protein expression information for 1504/1709 (88%) of the

Recon3D* genes (Table EV3). Together, these two proteomic

resources provided expression information for 1690/1709 (99%) of

the Recon3D* genes.

We used the GPR associations given in Recon3D* to identify

reactions to be present in the core reaction set. Note that in the case

of protein complexes, the presence of one of the proteins from the

complex was deemed sufficient to require the presence of at least

one reaction in the WBM reconstruction.

Literature-based curation of WBM reconstruction content

Organ-specific metabolic information We performed manual cura-

tion of reactions, genes, and pathways based on literature for all

included organs (Table EV1) but focused in particular depth on the

metabolism occurring in eight organs (skeletal muscle, skin, spleen,

kidney, lung, retina, heart, and brain), which contribute substan-

tially to inter-organ metabolism (Murray et al, 2009). We followed

the bottom-up, manual reconstruction approach established for

metabolic reconstructions (Thiele & Palsson, 2010).

To facilitate this large-scale, manual literature curation effort, we

defined “metabolic units” that not only accounted for the Recon3D*

sub-systems but were also metabolite specific. We categorized indi-

vidual metabolic and transport reactions in Recon3D* as metabolic

units. Each metabolic unit represented the first and last reaction step

of a particular pathway and contained three components: (i) major

metabolic pathway, (ii) product formed, and (iii) cellular location.

The reaction content of Recon3D* was classified into 427 metabolic

units when only the major metabolic pathway was considered, and

the cellular compartments ignored. When the whole metabolic unit,

along with all its components, was taken into account, 5,637 meta-

bolic units resulted. Usage of the metabolic units greatly accelerated

the reconstruction process as they account for individual metabo-

lite-specific pathways as well as key enzymes of the biochemical

pathways, in the same way that they are frequently reported and

referred to in the biochemical literature. This literature information

was translated into the occurrence and non-occurrence of metabolic

units. Additionally, we noted tasks that an organ can carry out (e.g.,

storage of glycogen) or the inability to carry out a particular task

(e.g., storage of vitamins occurs only in a limited number of

organs), leading to the formulation of organ-specific metabolic

objectives.

We also collected information on the pathways/reactions that

are absent across organs (Table EV1). Primary literature articles,

review articles, and books on organ-specific metabolism were thor-

oughly studied to derive the pathway information. In the case of

reported absence in an organ, the corresponding organ-specific reac-

tions were set to have a lower and upper bound of 0 in the meta-

reconstruction(s), thus effectively removing these reactions from the

organ.

Brief descriptions of the organ-specific metabolism for those

organs that we curated extensively for their metabolic content can

be found at the Virtual Metabolic Human database (www.vmh.life).

Presence of cellular organelles in organs Within the blood tissues,

differences in the presence of cellular organelles exist between fully

matured red blood cells and others. For instance, fully matured red
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blood cells are devoid of a nucleus and any other organelles (Berg

et al, 2001). The other hematopoietic cells, such as the B-lympho-

cytes, T-lymphocytes, natural killer cells, and monocytes, contain

all the cellular organelles (Takahashi et al, 1986; Kaneda et al,

1991; Delva et al, 2006). Therefore, we performed a thorough

manual search and obtained a definitive occurrence of cellular orga-

nelles for 19/32 organs from the literature (Table EV4). This search

was important to accurately represent the organs’ metabolic capabil-

ities in the WBM reconstructions. For the remaining organs, no

information could be found in the literature and the presence of all

organelles was assumed.

Nutrient storage within organs Maintenance of certain metabolite

pools and metabolite storage as a reserve for energy demands

within the cells is crucial for maintaining organ-specific functions.

For instance, glycogen is stored in liver and in the skeletal muscle

(Murray et al, 2000), and fatty acids are stored in the adipocytes

(Summers et al, 2000). During periods of fasting, liver glycogen

serves to maintain the blood glucose levels. Additionally, triglyc-

eride stores in the adipocytes are broken down to supply fatty acids

to skeletal muscle and heart to serve as an energy resource (Lan-

ham-New et al, 2013). A thorough manual search of the storage

capacity for metabolites and dietary nutrients by various organs was

performed. Known storage capacities were represented by adding

specific demand/sink reactions (Table EV6) to the corresponding

organs, which were then added to the core reaction set. The demand

reactions serve as cellular demand, or usage, of the metabolites in

the feeding stage and can be opened or closed when setting up the

simulation conditions (Dataset EV2). Similarly, the sink reactions

can release stored metabolites from the respective organs during

nutrient deprivation or overnight fasting state.

Metabolic objectives for organs As a result of the literature search

for the organ-specific metabolic pathways, we described each organ

by its chief metabolic functions, e.g., arginine synthesis by the

kidney, citrulline synthesis by the small intestine, cholesterol

synthesis by the spleen, vitamin D synthesis by the skin, and the

Cori cycle between liver and skeletal muscle. Glucose from liver

enters skeletal muscle, where it is converted to lactate via anaerobic

glycolysis. The muscle then releases lactate back into the circulation

to be utilized for gluconeogenesis by the liver, contributing to the

muscle-liver-Cori cycle (Murray et al, 2000). The kidney is the

major organ for the synthesis of arginine from citrulline (van de Poll

et al, 2004). Citrulline synthesized in the small intestine reaches

kidney for further metabolism by urea cycle reactions, thereby

contributing to inter-organ amino acid metabolism. The spleen is an

important hematopoietic organ, and synthesis of dolichol and

cholesterol from acetate are important indicators of this process

(Potter et al, 1981). The human skin is mainly responsible for the

synthesis of vitamin D from 7-dehydrocholesterol in multiple reac-

tion steps (Chen et al, 2007). These physiological functions and

their representative biochemical reactions were set as metabolic

tasks for each organ (Table EV1).

Bile composition Bile salts aid in the digestion and absorption of fat

constituents through their micellar properties (Murray et al, 2009).

Recon3D describes the human metabolism of bile acids comprehen-

sively (Brunk et al, 2018). On an organ level, bile is synthesized in

the liver and drained into the gallbladder, via the bile duct. The gall-

bladder stores the bile constituents and releases it into the intestinal

lumen, i.e., into the duodenum (first part of small intestine) for effi-

cient digestion and absorption of food. To capture the bile composi-

tion, we used a large-scale proteomic analysis of human bile, which

also measured metabolites in the human bile (Fuda et al, 2006;

Farina et al, 2009). Conclusive evidence concerning their presence

in bile was available for 84 exchanged metabolites in the Recon3D*

model; and for 459 exchanged metabolites, absence in the bile was

concluded (Table EV7). The remaining transport reactions into the

bile duct, without evidence of presence or absence, were uncon-

strained and algorithmically added when extracting the subnetworks

depending on their secretion from the gallbladder and its internal

metabolism. The storage (aka demand) reactions for 26 bile salts

were added to the gallbladder.

Recon3D* exchange metabolites present/absent in diet Comprehen-

sive information for the presence in the diet was found for 300

metabolites, and for 50 metabolites the absence in the diet was

reported. For the remaining exchange metabolites, no information

could be found in the literature. Hence, these were left uncon-

strained in the meta-reconstruction (Table EV10).

Metabolomic data The WBM reconstructions account for 13 biofluid

compartments (Table 2). The core reaction set accounted for

biofluid-specificity of 1,105 metabolites such that they were incorpo-

rated into the respective biofluid compartments (i.e., in the blood

circulation, portal blood, cerebrospinal fluid, feces, and urine). This

was represented by adding the corresponding demand reactions to

the biofluids in the meta-reconstructions (see above). This informa-

tion was extracted from various literature references as well as data-

bases, including the Human Metabolome database (Wishart et al,

2013) (Table EV8). Many of these metabolites have been reported to

be changed in pathological states, and highlight the potential of the

WBM reconstructions in capturing the known biomarkers and

prediction of new ones.

Transport reaction information Our previous work on human

membrane transporters (Sahoo et al, 2014) served as a compendium

of transport proteins. These transport proteins were noted with their

organ distribution from the relevant scientific literature (Table EV5).

Again, the GPR associations within Recon3D* model were used, and

the corresponding transport reactions were extracted and incorpo-

rated into the core reaction set of the specific organ.

Conclusive evidence for the presence of 166 transport proteins

distributed across 26 organs formed the transport protein part of the

core reaction set. For the remaining organs, the presence of trans-

port proteins was derived from HPA and HPM. While the presence

of the transport protein and its associated reaction was included in

the core reaction set, the non-occurrence was ignored. This is

because the absence of a transport protein across an organ or tissue

is difficult to establish. Interestingly, amino acids transport proteins,

ABC transporters, and lipid transporters were found to be more

ubiquitously expressed across organs. Most transport protein infor-

mation was found for kidney, brain, liver, heart, and skeletal

muscle, while for hematopoietic cells (e.g., red blood cells and

platelets), the least information could be found. We enabled the

secretion of mucin degradative products, glycans, and ethanolamine
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into the large-intestinal lumen from the colon (Chang et al, 2004;

Fabich et al, 2008).

Defining the blood–brain barrier We represented the blood–brain

barrier in the WBM reconstructions. The brain is separated from

the blood/extracellular compartment by the blood–brain barrier

(Redzic, 2011). This barrier formed by the brain endothelial cells

and exhibits restricted entry of small molecules. Molecules with a

molecular mass below 500 Da and possessing high lipid solubility

can enter the brain (Pardridge, 2005). This information was used to

add the blood–brain barrier transport reactions to the core reaction

set (Table EV9). 240 metabolites have been reported not to pass the

blood–brain barrier, which includes lecithin, triglycerides, lysole-

cithin, and cholesterol (Pardridge & Mietus, 1980; Redzic, 2011).

Thus, the corresponding blood–brain barrier transport reactions

were constrained to zero in the meta-reconstructions, thereby elimi-

nating them from the WBM reconstructions. The remaining trans-

port reactions were unconstrained enabling their addition during

the subnetwork generation process. Their addition, therefore,

depended on the internal metabolic architecture of the brain (and

spinal cord).

Biomass reactions The WBM reconstructions contain three different

versions of the biomass reaction. These are (i) biomass_reaction,

(ii) biomass_maintenance, and (iii) biomass_maintenance_noTrTr.

The biomass_reaction is the general biomass reaction as in

Recon3D* model, biomass_ maintenance is same as biomass_reac-

tion except for the nuclear deoxynucleotides, and biomass_mainte-

nance_noTrTr, where _noTrTr stands for no transcription and

translation, is devoid of amino acids, nuclear deoxynucleotides, and

cellular deoxynucleotides except for adenosine-triphosphate.

The biomass reaction was retained only for tissues/organs

known to possess regenerative capacity, i.e., liver (Malhi et al,

2002), heart (Senyo et al, 2013), and kidney (Li & Wingert, 2013).

For the remaining organs, only the biomass_maintenance reaction

was added, requiring the maintenance of cellular metabolic pro-

files, i.e., the organs capability to synthesize all the biomass

components except the nuclear deoxynucleotides. The biomass_-

maintenance_noTrTr reaction may be used to model fasting condi-

tions, as amino acids if stored intracellularly, increase the osmotic

pressure, necessitating their rapid catabolism (Lanham-New et al,

2013).

In particular, the biomass reactions were formulated as follows:

“biomass_maintenance: 20.6508 h2o[c] + 20.7045 atp[c] + 0.385

87 glu_L[c] + 0.35261 asp_L[c] + 0.036117 gtp[c] + 0.50563 ala_L

[c] + 0.27942 asn_L[c] + 0.046571 cys_L[c] + 0.326 gln_L[c] + 0.5

3889 gly[c] + 0.39253 ser_L[c] + 0.31269 thr_L[c] + 0.59211 lys_L

[c] + 0.35926 arg_L[c] + 0.15302 met_L[c] + 0.023315 pail_hs[c] +

0.039036 ctp[c] + 0.15446 pchol_hs[c] + 0.055374 pe_hs[c] + 0.

020401 chsterol[c] + 0.002914 pglyc_hs[c] + 0.011658 clpn_hs[c] +

0.053446 utp[c] + 0.27519 g6p[c] + 0.12641 his_L[c] + 0.15967

tyr_L[c] + 0.28608 ile_L[c] + 0.54554 leu_L[c] + 0.013306 trp_L

[c] + 0.25947 phe_L[c] + 0.41248 pro_L[c] + 0.005829 ps_hs

[c] + 0.017486 sphmyln_hs[c] + 0.35261 val_L[c] -> 20.6508 h

[c] + 20.6508 adp[c] + 20.6508 pi[c] + lipid_membrane[c] + pro-

teome[c] + transcriptome[c] + biomass_maintenance_dummy_

objective”

where the lipid_membrane[c] is degraded via the reaction

“LIPID_DEGRx: lipid_membrane[c] -> 0.023315 pail_hs[c] +

0.154463 pchol_hs[c] + 0.055374 pe_hs[c] + 0.020401 chsterol[c] +

0.002914 pglyc_hs[c] + 0.011658 clpn_hs[c] + 0.005829 ps_hs

[c] + 0.017486 sphmyln_hs[c]”

the proteome[c] is degraded via the reaction

“PROTEOME_DEGRx: proteome[c] -> 0.385872 glu_L[c] + 0.

352607 asp_L[c] + 0.505626 ala_L[c] + 0.279425 asn_L[c] + 0.046

571 cys_L[c] + 0.325996 gln_L[c] + 0.538891 gly[c] + 0.392525

ser_L[c] + 0.31269 thr_L[c] + 0.592114 lys_L[c] + 0.35926 arg_L

[c] + 0.153018 met_L[c] + 0.126406 his_L[c] + 0.159671 tyr_L

[c] + 0.286078 ile_L[c] + 0.545544 leu_L[c] + 0.013306 trp_L

[c] + 0.259466 phe_L[c] + 0.412484 pro_L[c] + 0.352607 val_L[c]”

and the transcriptome[c] is degraded via the reaction

“TRANSCRIPTOME_DEGRx: transcriptome[c] -> 0.053446 amp

[c] + 0.039036 cmp[c] + 0.036117 gmp[c] + 0.053446 ump[c]”.

Finally, the biomass_maintenance_dummy_objective is part of

the whole-body biomass reaction, which is defined as:

“Whole_body_objective_rxn: 21.4286 Adipocytes_biomass_mainte-

nance_dummy_objective + 0.02 Agland_biomass_maintenance_-

dummy_objective + 2 Brain_biomass_maintenance_dummy_objective +

0.428571 Colon_biomass_maintenance_dummy_objective + 0.472857

Heart_biomass_maintenance_dummy_objective + 0.442857 Kidney_

biomass_maintenance_dummy_objective + 2.57143 Liver_biomass_

maintenance_dummy_objective + 0.765714 Lung_biomass_mainte-

nance_dummy_objective + 40 Muscle_biomass_maintenance_dummy_

objective + 0.142857 Pancreas_biomass_maintenance_dummy_

objective + 0.0228571 Prostate_biomass_maintenance_dummy_

objective + 0.000171429 Pthyroidgland_biomass_maintenance_dummy_

objective + 0.000465714 Retina_biomass_maintenance_dummy_

objective + 0.0428571 Scord_biomass_maintenance_dummy_objective +

0.914286 sIEC_biomass_reactionIEC01b_dummy_objective + 3.71429

Skin_biomass_maintenance_dummy_objective + 0.257143 Spleen_

biomass_maintenance_dummy_objective + 0.214286 Stomach_biomass_

maintenance_dummy_objective + 0.05 Testis_biomass_maintenance_

dummy_objective + 0.0285714 Thyroidgland_biomass_maintenance_

dummy_objective + 0.0642857 Urinarybladder_biomass_mainte-

nance_dummy_objective + 0.00212143 Bcells_biomass_maintenance_

dummy_objective + 0.0117857 CD4Tcells_biomass_maintenance_

dummy_objective + 0.00353571 Nkcells_biomass_maintenance_

dummy_objective + 0.00392857 Monocyte_biomass_maintenance_

dummy_objective + 0.0285714 Platelet_biomass_maintenance_

noTrTr_dummy_objective + 3.53571 RBC_biomass_maintenance_

noTrTr_dummy_objective + 0.0142857 Gall_biomass_maintenance_

dummy_objective ->”
Please note that the stoichiometric coefficients in the “Whole_

body_objective_rxn” can vary between sex and individuals, depending

on their organ fractions, which are either derived from experimental

data (e.g., whole-body scans), or calculated using phenomenological

methods (see Dataset EV2: 3.2 for more details) (Young et al, 2009).

Published metabolic reconstructions

For the red blood cell (Bordbar et al, 2011b), the adipocytes (Bord-

bar et al, 2011a), the small intestine (Sahoo & Thiele, 2013), and

the liver (Gille et al, 2010), genome-scale metabolic reconstructions

have been published; hence, their reactions were also used for
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defining present reactions in the corresponding organs of the WBM

reconstructions. Note that these reconstructions have been assem-

bled based on Recon 1 (Duarte et al, 2007).

The published red blood cell reconstruction has been assembled

using multiple proteomic data sets (Bordbar et al, 2011b). The

published adipocyte reconstruction was generated by tailoring Recon

1 based on genome annotation data, physiological, and biochemical

data from online databases (e.g., KEGG (Okuda et al, 2008), NCBI,

UniProt (Consortium, 2012b), and BRENDA (Scheer et al, 2011), and

literature (Bordbar et al, 2011a). The liver/hepatocyte reconstruction

has been built through manual curation of the relevant scientific litera-

ture, using Recon 1 and KEGG as starting points (Gille et al, 2010).

Additionally, gene expression data sets of normal human liver

samples have served as a secondary line of evidence (Gille et al,

2010). The small intestinal epithelial cell reconstruction (Sahoo &

Thiele, 2013) has been assembled using primary literature, organ-

specific books, and databases. Since the small intestinal epithelial cell

model maintained different extracellular compartments representing

the apical and basolateral polarity of the cell, the reactions were added

as such to the core set. However, the GPR association was updated

with those used in the Recon3D* model.

Mapping of the reaction content in these published reconstruc-

tions onto Recon3D* was done manually using the reaction abbre-

viation, reaction description, and reaction formula. In the case of

the adipocyte, the blood compartment was replaced with the extra-

cellular compartment to find the correct matches with the

Recon3D* reactions. Additionally, the published adipocyte model

(Bordbar et al, 2011a) contained a lumped version of the fatty acid

oxidation reactions; hence, the corresponding un-lumped versions

were mapped onto Recon3D*. The mapped reactions of all four

reconstructions were added to the core reaction set, after adding the

corresponding organ-specific prefix to the reaction abbreviations.

Algorithmic generation of draft sex-specific WBM reconstructions
from the tailored meta-reconstructions
To achieve the algorithmic generation of draft sex-specific WBM

reconstructions from the tailored draft meta-reconstructions, we

used the fastCore algorithm (Vlassis et al, 2014). Briefly, fastCore

takes as input a (meta-)metabolic reconstruction and the set of core

reactions, known to be active in the network, to identify a flux-

consistent subnetwork containing all core reactions (as long as they

are flux consistent) and a minimal number of additional, flux-

consistent reactions.

We considered for each sex two different scenarios and defined

constraints on the meta-reconstructions accordingly. In the end, we

obtained four meta-reconstructions.

First, a feeding condition was defined, in which all dietary

exchange reactions were open (i.e., the lower bound was set to –

inf and the upper bound was set to zero) and the storage of

metabolites in the various organs was enabled (lower bound on

the sink reactions were set to be zero and the upper bound was

set to be 1,000,000 mmol/day/person).

Second, a fasting condition was defined, in which all dietary

uptake reactions were closed (lower and upper bound were set to

zero) but access to stored metabolites from the different organs

was enabled (sink reactions had a lower bound of

�1,000,000 mmol/day/person and an upper bound of zero).

Using these four differently setup meta-reconstructions along with

the corresponding (i.e., sex-specific) core reaction sets and the

fastCore algorithm, we generated four flux-consistent subnetworks.

We then removed the demand reactions for the biofluid metabolites,

defined all reactions present in each subnetwork to be the core reac-

tion set for the given setup, and repeated the extraction of flux-consis-

tent subsets from the meta-reconstructions. By doing so, we also

enforced that at least one reaction could either transport or excrete a

given biofluid metabolite or that it is catabolized in at least one organ.

Finally, we joined the fasting and the feeding subnetworks for

each sex. The rationale for having the feeding and the fasting condi-

tion is that the human body can fast overnight, and thus the WBM

reconstructions should capture this capability regarding catabolic as

well as anabolic metabolic reactions. Note that the WBM reconstruc-

tions are not able to starve, as this would require the degradation of

muscle proteins, which we did not explicitly capture in Recon3D*,

and thus in the WBM reconstructions.

The fastCore adds a minimal number of additional reactions to the

core reaction sets to form the flux consistent, compact subnetwork.

Hence, the added reactions represent hypotheses of which reactions

and pathways would be needed to make the subnetworks flux consis-

tent, given a set of core reactions. It does not mean that the proposed

solution is biologically relevant. Consequently, after the generation of

the male and female draft WBM reconstructions, we manually

inspected that the added reactions were consistent with the current

knowledge about organ-specific metabolism. The core reactions and

the absence of organ-specific reactions were updated based on litera-

ture evidence, and the subnetwork generation was repeated.

As one example, we encountered genes/proteins that were

present in an organ-specific manner as per the human proteome

data set (Kim et al, 2014), but, which were not added to the respec-

tive organs in the draft WBM reconstructions by fastCore, due to

missing transport reactions. These reactions were subsequently

added to the human metabolic reconstruction, which ultimately

yielded Recon3D, and thus Recon3D* model. This is because the

development of Recon3D and the WBM reconstructions occurred in

parallel. In brief, for each of these instances where core reactions

were not added to the subnetwork, we analyzed them manually. A

typical example is the addition of the reactions SALMCOM and

SALMCOM2 to the core reaction set for colon, rectum, adrenal

gland, platelet, lung, heart, brain, retina, B cells, CD4 cells, CD8

cells, NK cells, testis, and prostate. While SALMCOM was correctly

added by fastCore to the liver, gallbladder, pancreas, and kidney, it

was missing in the remaining organs, despite proteomic expression

evidence. Hence, we added transport reactions for the participating

metabolites of SALMCOM and SALMCOM2, i.e., normetanephrine

(VMH ID: normete_L) and metanephrine (VMH ID: mepi) as well as

their demand reactions in the blood circulation, as both compounds

have been detected in blood and urine (HMDB00819, HMDB04063).

The addition of these transport reactions allowed the metabolites to

be transported across the whole body and excreted in the urine by

the kidney. Similar to the discussed case, many transport reactions

were added during the debugging process that enabled the whole-

body routing of phospholipids, cholesterol ester species, and acyl-

carnitines. These examples show that the WBM reconstructions can

be effectively used to investigate inter-organ metabolite cross-talk.

Overall, due to the complexity of the WBM reconstructions and

the large number of reactions (more than 80 k, Fig 1B), we iterated
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this process more than 100 times, each time focusing on different

organs or pathways (spanning one or multiple organs).

At the end of the reconstruction part that relied on fastCore, we

removed all artificial reactions from the WBM reconstructions, such

as sink/demand reactions for biofluid metabolites and the sinks for

metabolites of microbial origin in the lumen.

Refinement and curation of the WBM reconstructions
We then proceeded to further manually curate the reconstructions by

adding reactions that have not been included using fastCore but for

which biological evidence could be found in the literature (e.g.,

certain amino acid transport reactions). We also added transport

reactions for all metabolites present in the extracellular space of the

organs to the corresponding biofluids. For instance, certain metabo-

lites were present in the CSF compartment due to brain and spinal

cord metabolism but no corresponding transport reactions from CSF

[csf] to blood circulation [bc] were included by fastCore. Hence, we

added those reactions as the entire CSF drains into the blood circula-

tion. Again, the reason that such reactions were not included into the

reconstructions by fastCore as it returns a most compact subnetwork.

Moreover, WBM model predictions were compared with organ-

specific data and known whole-body metabolic functions (e.g.,

multi-organ metabolism of glucose (Cori cycle), amino acid cycle

(Cahill cycle)). In this step, we added missing reactions to the sex-

specific draft WBM reconstructions. During the entire reconstruction

process, we performed the same quality control and assurance tests

as defined for genome-scale metabolic reconstructions (Thiele &

Palsson, 2010).

Conversion from reconstruction to condition-specific models

To ensure reproducibility of the presented work, and also to reduce

the number of supplemental tables, we provide a MATLAB (Math-

works, Inc) live script along with a PSCM toolbox, which is an

extension to the COBRA Toolbox (Heirendt et al, 2019) (to be

obtained from https://github.com/opencobra/cobratoolbox).

Unit of WBM models

The unit of all WBM model reactions is in mmol/day/person

(Harvey, 70 kg; Harvetta: 58 kg), if not stated differently.

Flux balance analysis

The conversion of a metabolic reconstruction into a condition-

specific model includes the transformation of the biochemical reac-

tion list into a computable, mathematical matrix format (S matrix),

where the columns correspond to reactions (variables) and the rows

correspond to the metabolites. If a metabolite (j) participates in a

reaction (i), the stoichiometric coefficient is entered in the corre-

sponding cell (j, i). Consequently, each row represents the mass-

balance equation for a given metabolite (dx/dt).

The conversion into a model also requires the imposition of

physicochemical constraints (e.g., mass conservation) and systems

boundaries, in the form of so-called exchange reactions (Palsson,

2015). The constraint-based modeling and reconstruction (COBRA)

approach assumes that the modeled system is in a steady state

(S.v = dc/dt = 0), where v is a flux vector for n reactions and dx/dt

the change in metabolite concentration (dx) over time (dt). The S

matrix gives rise to an underdetermined system of linear equations;

i.e., there are fewer equations (mass-balances) than variables (reac-

tion fluxes). Consequently, a polyhedral convex steady-state solu-

tion space contains all feasible steady-state solutions. By adding

further constraints (e.g., nutrient uptake rates, enzyme reaction

rates) to the model, one restricts the solution space to solutions that

are biologically relevant under this condition. Despite incomplete

knowledge about many reaction rates, kinetic parameters, metabo-

lite and enzyme concentrations, the COBRA approach permits the

computation of possible phenotypic properties of a metabolic

model, derived from a reconstruction.

In flux balance analysis (Orth et al, 2010), the modeled system is

assumed to be at a steady state (i.e., dx/dt = 0). Consequently, the

underlying mathematical problem is a linear programming problem

that can be efficiently solved and at a large scale, as only one global

optimal solution exists. The linear programming problem is formu-

lated as:

Optimize z ¼ cT:v

Such that S.v ¼ 0

lbi � vi �ubi

where c is a vector (n,1), lb the lower bound, and ub the upper

bound of reaction i. For irreversible reactions, lb was set to

0 mmol/day/person and ub was > 0 mmol/day/person. In the case

of reversible reactions, lb was set to < 0 mmol/day/person. In

absence of specific simulation constraints, ub was set to the

arbitrary value 1,000,000 mmol/day/person, and lb to

-1,000,000 mmol/day/person. Uptake reactions (e.g., dietary

uptake reactions) were defined to have a negative flux value, while

excretion reaction (e.g., urine excretion, fecal excretion) was

defined to have a positive flux value.

Coupling constraints

Coupling constraints were implemented in the WBM reconstructions

as described previously (Thiele et al, 2010; Heinken et al, 2013).

Briefly, coupling constraints enforce that the flux through a set of

coupled reactions is proportional to a specified reaction (e.g.,

biomass reaction). The metabolic and transport reactions in every

organ were coupled to the respective organ’s biomass objective func-

tion (BOF). The coupling constraints prevent biologically implausi-

ble solutions where the reactions in an organs carry flux even

though the flux through the organ’s BOF is zero. They were realized

by implementing a coupling factor of 20,000 for each reaction. This

allowed each forward and reverse reaction to carry a flux of up to

20,000 and �20,000 times the flux through the BOF, respectively.

Flux variability analysis of the unconstrained and constrained

WBM models

We performed flux variability analysis (Gudmundsson & Thiele,

2010) on the unconstrained and physiologically constrained male

WBM model using a Julia implementation (Heirendt et al, 2017) of

flux balance analysis (Orth et al, 2010) by minimizing and maximiz-

ing each model reaction. The flux span of a reaction is defined as

maximal possible flux value (vmax,i) minus maximal possible flux

value for a reaction i (vmin,i): fluxSpani = (vmax,i � vmin,i).
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“Sanity checks” on the WBM and organ-specific reconstructions

Quality control and quality assurance tests, or sanity checks have

been compiled, expended, and implemented by the systems biol-

ogy research community (Thiele & Palsson, 2010; Agren et al,

2013; Fleming et al, 2016; Swainston et al, 2016; Brunk et al,

2018), e.g., in MEMOTE (preprint: Lieven et al, 2018) and in the

COBRA Toolbox (Heirendt et al, 2019). We ensured that the

whole-body metabolic reconstructions, and the organ-specific

reconstructions, passed the quality control and quality assurance

tests implemented in the COBRA Toolbox (Heirendt et al, 2019).

Additionally, we ensured that the organ-specific reconstructions

passed further quality control and quality assurance tests

(Tables 3 and EV19).

We converted the WBM reconstructions into computational

models (see also, Simulation details). First, we tested for secretion

or production of metabolites when all the exchanges and sinks were

closed (see Simulation details). We shall refer to this test as leak

test. Thereafter, the models were tested for carrying non-zero fluxes

for reactions known to be required for important metabolic func-

tions. We refer to these latter tests as metabolic function tests (see

Simulation details).

Leak tests The WBM reconstructions were tested for thermodynami-

cally infeasible loops that could generate metabolites or compounds

when no mass enters the model. Such a test was done in two steps.

Firstly, all the exchange, sink, and demand reactions were

constrained to zero for the lower bound. Then, all the exchange

reactions were optimized to check whether the model was carrying

any non-zero flux. After that, the biomass was optimized to check

whether the model was carrying any zero flux. Secondly, a demand

reaction for each compartment-specific metabolite in the model was

created and optimized. The basic purpose of running such a leak

test was to check whether the model can generate anything from

nothing. In case any of the demand or exchange reactions carry a

non-zero flux, the respective reaction was optimized while minimiz-

ing the Euclidian norm (Heirendt et al, 2019). Note that both

Recon3D model and also Recon3D* model passed the leak test, as

did the WBM reconstruction derived organ-specific models (see

Dataset EV2: 3.7).

Metabolic function tests Each organ-specific reconstruction in the

organ compendium has been tested for being able to have a non-

zero optimal flux value for up to 460 metabolic functions

(Table EV19). Please note that not all organs were required to carry

a non-zero optimal flux value for all 460 metabolic functions, as

each organ has its own primary metabolic functions.

ATP yield We also tested each organ model for the ATP yield and

flux through the ATP synthetase for 15 carbon sources under aero-

bic and anaerobic conditions in accordance with the tests introduced

by (Swainston et al, 2016; Table EV20).

Computing considerations when working with the WBM models

In order to run a flux variability analysis on such large-scale models

efficiently, dedicated high-performance was required. Most high-

performance computers have computing nodes with a relatively

high base frequency per core, but with a low memory per node

ratio. However, in order to perform large-scale biological simula-

tions efficiently, a high-memory computing node is recommended

with memory around 768 GB. The entire model must be able to be

loaded into memory together with the result files, which may

occupy more than 10–20 times the original model size. Memory

access speed was critical to load the model and perform mathemati-

cal operations quickly. It is recommended that the computing node

has a state-of-the-art dual processor with 18 cores (2 threads per

core) or more. In order to perform efficient flux variability analysis

on the WBM models with acceptable solution times, it is recom-

mended to run the optimization problems on all cores, each spawn-

ing 2 threads.

In addition to appropriate hardware, appropriately tuned soft-

ware was important. For large-scale models, poorly performing code

and an untuned solver are bottlenecks. As the optimization solver

accounts for most of the simulation time, parameter tuning together

with an appropriate interface are critical. The Tomlab interface is

recommended when interfacing the industrial-quality CPLEX solver

from MATLAB. Some analyses that were computing intensive, such

as flux variability analysis, were run from MATLAB, but the solver

is interfaced directly through a compiled MEX interface written in C.

The newly developed Julia language has proven itself to be a valu-

able alternative in launching a multi core flux variability analysis

(Heirendt et al, 2017), in particular for launching the analysis across

multiple nodes.

Simulation details

Please refer to the accompanying Matlab LiveScript and its html

version. Dataset EV2. The PSCM Toolbox contains all information,

Table 3. Lists of tests performed for all organ models derived from
the WBM reconstructions.

Number Quality assurance and quality control tests

1 “fastLeakTest”

2 “Exchanges, sinks, and demands have lb = 0, except h2o”

3 “Exchanges, sinks, and demands have lb = 0, except h2o
and o2”

4 “Exchanges, sinks, and demands have lb = 0, allow DM_
atp_c_ to be reversible”

5 “Exchanges, sinks, and demands have lb = 0, test flux through
DM_h[m] (max)”

6 “Exchanges, sinks, and demands have lb = 0, test flux through
DM_h[c] (max)”

7 “Exchanges, sinks, and demands have lb = 0, ub of EX_h[e]
= 0, test flux through DM_h[c] (min)”

8 “Test metabolic objective functions with open sinks”

9 “Test metabolic objective functions with closed sinks (lb)”

10 “Compute ATP yield”

11 “Check duplicate reactions”

12 “Check empty columns in rxnGeneMat”

13 “Check that demand reactions have a lb >= 0”

14 “Check consistency of model.rev with model.lb”

15 “Check whether singleGeneDeletion runs smoothly”

16 “Check for flux consistency”
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data, scripts, and functions to repeat the simulations in this paper

Dataset EV1.

Statistical analyses

Inherited metabolic diseases
To analyze the prediction accuracies and compare them across

models and IEMs, the predictions for each metabolite were catego-

rized (increased, inconclusive, and decreased) according to the

simulation results (Table EV16). Then, the agreement in percentage

with the in vivo measurements was calculated for Recon3D*,

Harvey, and Harvetta separately. Moreover, to deliver a metric

taking agreement by chance into account, Cohen’s kappa and corre-

sponding confidence intervals were calculated. For deriving p-

values on prediction accuracies, multinomial logistic regressions

were utilized with in vivo observations as response variable (three

categories: increased/inconclusive/decreased) and in silico predic-

tion (three categories: increased/inconclusive/decreased) as the

predictor. Finally, respecting potential dependencies of predictions

coming from the same IEM, the agreement percentages per IEM was

calculated. For example, if four of five biomarkers in a certain IEM

were correctly predicted, the agreement percentage would be 80%.

The models (Harvey/Harvetta vs Recon3D*) were then tested

against each other using a non-parametric sign test with agreement

percentages per IEM as the response variable. This test effectively

provided statistical inference on the question of whether Harvey/

Harvetta showed higher accuracy in predicting biomarkers per IEM

in comparison to Recon3D* in a majority of IEMs. All statistical

calculations were performed in STATA 14/MP.

BMR predictions
To validate the WBM-based BMR predictions, we calculated the

Pearson correlations and corresponding R-squared values of the

WBM predictions when regressing them on the empirically

measured BMRs from (Prentice et al, 1986) in 13 women by stan-

dard linear ordinary least squares (OLS) regression. The provided

fat-free body mass was utilized to adjust the muscle and adipocyte

coefficients in the whole-body maintenance reaction. To optimize

the prediction, we variegated systematically the ATP coefficient of

the muscle biomass maintenance. Then, the parametrization of the

WBM predictions was validated in an independent data set (Lour-

eiro et al, 2015), which consisted of six female and 16 male

athletes. The measured BMRs were the response variable, while

the WBM predictions were the predictor of interest. We also

allowed for sex-specific intercepts by including sex as a covariate

into the standard linear OLS regression equation. Once again, the

correlations and R-squared values regarding the empirically

measured BMR were calculated. The prediction accuracies opera-

tionalized by the Pearson correlations were then compared with

the accuracies of estimations based on sex, height, and weight,

such as the Mifflin-St Jeor equations. Further, for statistical infer-

ence, we fitted in the larger data set (Loureiro et al, 2015) a multi-

variable regression using the measured BMR as the response

variable and the WBM predictions as well as the Mifflin-St Jeor

predictions as the predictor variables. We investigated whether

adding the Mifflin-St Jeor predictions to the WBM predictions or

vice versa increased the overall model-fit via likelihood ratio tests.

This procedure derived inference on the question of whether the

WBM predictions contain information not represented in the Mif-

flin-St Jeor equation and vice versa. The calculations were

performed in STATA 14/MP.

Microbiome host interactions
To analyze the relation between microbiome traits and fluxes in the

organ-specific reactions, we calculated the maximal fluxes through

the liver sulphotransferase, the liver alcohol dehydrogenase, and the

colonic carboxylic acid:CoA ligase. Then, we performed OLS regres-

sions with the fluxes as the dependent variable and the Bacteroide-

tes/Clostridia ratio as the predictor, allowing for non-linear

transformations of the predictor using multivariable fractional poly-

nomials. Besides the classical parametric test on the fit of the regres-

sion models, we used two non-parametrical methods to assess the

significance of the regression models in sensitivity analyses. First,

we used bootstrapping using 4,000 replications to determine p-

values. Second, we used quantile regression as an outlier robust

method. The full results can be found in Table EV18.

Data availability

Modeling computer scripts:

• Physiological and stoichiometrically constrained modeling

(PSCM) toolbox: GitHub (https://opencobra.github.io/cobratoolb

ox/stable/).

• Constraint-based reconstruction and analysis (COBRA) toolbox:

GitHub (https://opencobra.github.io/cobratoolbox/stable/).

• Microbiome modeling toolbox: GitHub (https://opencobra.github.

io/cobratoolbox/stable/).

Computational models:

• Whole-body metabolic reconstructions: Virtual Metabolic Human

database (https://www.vmh.life/#downloadview).

• Microbial metabolic reconstructions: Virtual Metabolic Human

database (https://www.vmh.life/#downloadview).

• Preecomputed results: https://github.com/ThieleLab

Expanded View for this article is available online.
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