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Cell type discrimination based 
on image features of molecular 
component distribution
Arno Germond1, Taro Ichimura   1, Liang-da Chiu   2, Katsumasa Fujita3, 
Tomonobu M. Watanabe1 & Hideaki Fujita   1,4

Machine learning-based cell classifiers use cell images to automate cell-type discrimination, which 
is increasingly becoming beneficial in biological studies and biomedical applications. Brightfield or 
fluorescence images are generally employed as the classifier input variables. We propose to use Raman 
spectral images and a method to extract features from these spatial patterns and explore the value of 
this information for cell discrimination. Raman images provide information regarding distribution of 
chemical compounds of the considered biological entity. Since each spectral wavelength can be used 
to reconstruct the distribution of a given compound, spectral images provide multiple channels of 
information, each representing a different pattern, in contrast to brightfield and fluorescence images. 
Using a dataset of single living cells, we demonstrate that the spatial information can be ranked by 
a Fisher discriminant score, and that the top-ranked features can accurately classify cell types. This 
method is compared with the conventional Raman spectral analysis. We also propose to combine the 
information from whole spectral analyses and selected spatial features and show that this yields higher 
classification accuracy. This method provides the basis for a novel and systematic analysis of cell-
type investigation using Raman spectral imaging, which may benefit several studies and biomedical 
applications.

Fundamental research and applications in biological and biomedical fields increasingly rely on automated lab-
oratory systems to perform cytological profiling. Automated systems provide the opportunity for systematic, 
accurate, and cost-reduced procedures for disease diagnosis, profiling of drug responses, and the production of 
cell lines such as stem cells1,2. Computer-assisted cytological profiling relies on extracting morphological features 
from cell images for use in classification3,4. Previous studies have primarily used brightfield (transmission) images 
or fluorescence images of subcellular structures to extract mathematical features5,6. Regardless of the chosen algo-
rithms, high accuracy (70% or more) in discriminating cells or cell structures has been reported5–7.

In contrast to the brightfield and fluorescence, vibrational spectroscopy gives image-contrast and information 
on many chemical structures and the composition of targeted samples in a single-exposure. In particular, Raman 
spectral imaging can achieve single-cell resolution without the need of labelling agents, which is especially rele-
vant for the study of living cells, and medical and therapeutic applications8. A Raman hyperspectral image of an 
individual cell can be obtained by scanning the sample with a focused laser beam. The hyperspectral image is a 
x-y two-dimensional map where each pixel is associated with a spectrum of approximately one thousand wave-
numbers (Fig. 1). A spectrum reflects various biomolecular compounds (e.g., lipids, protein, DNA, cytochrome 
c, nucleic acids, etc.). The average spectrum of a cell can be obtained by determining the cell’s area (Fig. 1I). In 
previous studies, our group and other groups demonstrated that the average spectrum from single cells do pro-
vide a reliable chemical fingerprint for the cells, and that variations in the peaks intensities of this spectrum allow 
to identify and classify the cell-types or cell-states in a reproducible manner9–11.

A hyperspectral image also allows one to reconstruct an image of a given molecular compound (i.e., wav-
enumber, or spectral band), thus giving a spatial pattern of its distribution within the cell (Fig. 1II). Previous 
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Raman bioimaging studies reported that the distribution of specific molecular compounds could be used to 
quantify intracellular biological events of interest, such as the cytochrome activity12. Therefore, we envision that 
introducing Raman spectral images to extract explanatory variables for machine-learning would be a promising 
approach to achieve effective cell-state classification.

In this paper, we propose a novel, comprehensive method to classify living cells based on the mathematical 
patterns extracted from Raman hyperspectral images of single-cells (Fig. 1). In our method, we applied eleven 
image-transforms to Raman images in order to extract the mathematical features of the images. The image fea-
tures are ranked by their Fisher scores according to their statistical importance. These features can be input into 
any kind of classifier for the purpose of discrimination. Using a dataset of hyperspectral images from three mouse 
cells lines, we demonstrate that the accuracy and robustness of the classification can increase when using an 
image pattern rather than an average spectrum representing the cell. Then, we demonstrate that the combination 
of both methods is also possible. The current study provides supporting evidence that our methodology can ben-
efit the analysis of hyperspectral images in biological and biomedical studies.

Materials and Methods
Cell culture.  Hepa1–6 and neuro2A were obtained from the RIKEN BioResource Center (BRC) cell bank, 
mouse mesenchymal stem cells (MSC) were purchased from Takara Bio, and Hepa1–6 and MSC were cultured in 
Dulbecco’s Modified Eagle’s medium (DMEM: 4.5 g/L glucose; Sigma-Aldrich, St. Louis, MO) supplemented with 
10% Fetal bovine serum (FBS; Gibco) and antibiotics (1% penicillin-streptomycin; Sigma-Aldrich). Neuro2A 
was cultured in Minimum Essential Medium (MEM; Sigma-Aldrich) supplemented with 1% nonessential amino 
acids (Sigma-Aldrich), 10% FBS and antibiotics. To avoid a strong background scattering signal during Raman 
measurements, cells were seeded on a silica coverslip (SPI supplies, West Chester, PA) coated with 0.1% gelatin 
and cultured for three days.

Raman spectral imaging and spectral pre-processing.  Immediately before observation, the medium 
of cell cultures was replaced with warm PBS. All data were recorded with a custom-built slit-scanning Raman 
microscope based on an inverted microscope with an excitation wavelength of 532 nm for all observations. This 
setup was described previously13. A water-immersion objective lens with a 1.27 numerical aperture (NA) (40×, 
CFI Plan Apo IR, NIKON, Japan) was used as the objective lens. The Perfect Focus System remained active dur-
ing all measurements. We used a line illumination system to perform the scanning of cells. The laser is shaped 
as a line which allow to obtain 400 spectra in a single exposure, considerably reducing the time for scanning 
living cells. The spatial resolution of one line is about 300 nm. The line-shaped focused laser beam was scanned 
over a 40 μm range with 120 lines. The exposure time for each line was 5 s with a laser intensity of 2.4 mW/μm2. 
Hyperspectral images were processed through cosmic-ray removal, background subtraction, baseline correction 
and normalization in the same way as done in our previous study9. Specifically, to determine which pixel compose 
a given cell, first we identified cells using the spectral information of protein peaks (1650cm−1) and lipid peaks 
(2850 cm−1) using threshold values. When image contrast was not sufficient, pixels were added manually. For 
each cell lines, 24 images were obtained.

Figure 1.  Overview of three different approaches to exploit information from Raman hyperspectral images 
prior to classification. (I) Spectrum-based approach. Cell information can be retrieved by calculating the 
average spectrum in the cell region. (II) Image-based approach. Various wavenumbers can be used to map the 
distribution of molecular compounds. From this set of images, image features can be computed using various 
algorithms (e.g., image transformation) to obtain a spatial frequency spectrum. The most relevant features can 
be used for classification. (III) Combined use of both the aforementioned methods prior to classification.
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Construction of wavenumber-specific images and extraction of image features.  A hyperspec-
tral image of Raman scattering is composed of Raman spectra (1024 wavenumber points) in two-dimensions 
(Fig. 1, left). For each position, the intensities of a few selected Raman peaks (750 cm−1 for cytochrome, 1687 
cm−1 for protein, and 2850 cm−1 for lipid) were fit to a Gaussian function. These three peaks, which represent 
three major biological compounds of cells, were selected to reconstruct grayscale images because they provided 
the best contrast of images. For cell segmentation, individual cell areas were manually delimited based on the 
Raman images at the protein peak (1687 cm−1), which exhibit relatively homogeneous distribution within a cell 
and reflect the cell shape accordingly. Computation of the image features was performed using an open-source 
software for image analysis called wndchrm, which was developed by Orlov and colleagues14,15. The algorithm 
extracts a generic set of numerical image content descriptors, including textures, statistical distribution of pixel 
values, and factors from polynomial decomposition of the raw image, as well as several image transforms of the 
raw image as previously described14. For each image constructed from the above peak intensities, 1025 features 
were obtained. We consider that the obtained ensemble of features is a signature of the image for the selected 
chemical compound present in the area of a segmented cell. For each cell, the image features from the three chan-
nels are then concatenated, yielding a single array of 3075 variables. All the variables (features) are standardized 
to have an average of 0 and standard deviation of 1. Each feature is assigned a weight corresponding to its infor-
mativeness14. We adopted the Fisher discriminant score as the feature weight, which can be conceptualized as the 
ratio of inter-group variance to the intra-group variances. The weighting method allows one to select the most 
informative features for classification, and a previous study discarded the features considered as less informative15. 
In this paper, we explored which number of features is required to achieve the best classification by comparing 
the performance of the model. Performance was evaluated using R2 entropy scores and −2 logLikelihood scores.

DA-PC classification models.  Our dataset contained 72 images of single living cells. As a test dataset, cells 
measured on a different day (independent experiment) were considered (hold-back proportion of 25%, so that 6 
cells were used as test data for each cell line). Classification models were built with principal component analysis 
(PCA)16 followed by a discriminant analysis (DA), an approach we name here DA-PC. The DA-PC approach 
requires a priori knowledge of the observation groups (label) to train the model. Calculations were performed 
using the JMP software (JMP®, Version v11, SAS Institute Inc., Cary, US). The PCA allowed the spectra to be 
decomposed into a linear combination of loading vectors that quantitatively express the type or state of cells in 
a reduced number of dimensions. Principal components (PCs) were then selected and used as the DA input. 
Only PCs with a statistically significant approximate F-value (p < 0.001) were included in the subsequent DA. 
The approximate F-values were calculated following the Wilk’s Lambda and Hotelling-Lawley Trace as defined 
in the JMP suite. The DA assumes that each group has a multivariate normal distribution, and calculates the 
Mahalanobis distance, which is the distance of an observation from the mean of a group divided by the stand-
ard deviation along the direction vector. Quadratic DA was applied to consider that the intra-group covariance 
matrices are not assumed to be equal. For a given observation, the membership probabilities in each group are 
calculated based on the Mahalanobis distances, and the observation is classified to the group with the largest 
probability of membership. To evaluate the performance of all the DA-PC models, scores of the R2 entropy and 
negative log-likelihood (−2 logLikelihood) were considered. Briefly, the R2 entropy score, hereafter called R2, is a 
measure of fit that estimates how the fitted model performs better than the null model. The likelihood function, 
denoted L(β), is the product of the probability density functions (or probability mass functions for discrete distri-
butions) evaluated at the observed data values. We use here the minimization of the negative log-likelihood (−2 
logLikelihood) score. Detailed equations are described in the JMP suite. Better models should give higher R2 and 
lower −2 logLikelihood (Supplementary Table 1).

Other machine-learning classification models.  The performance of 3 well-known classifiers to dis-
criminate cell lines from the features obtained from Raman images was compared. Specifically, we applied a 
Projection on Latent Structure (PLS-DA), a K-means predictive model and a Support Vector Machine (SVM). 
Like in the above DA-PCA approach, 6 cells were used as test data for each cell line (25% test data). Standardized 
images features were used as input. For cross-validation of the model, a Venetian blind cross-validation with 
10 splits was applied. For PLS-DA, a model including 2 components was chosen. For K-means, 3 clusters were 
defined. For SVM, the model optimization is automatic. These analyses were performed using the Eigenvector 
software (Eigenvector Research Inc., Wenatchee, USA). While these models provide valuable alternatives, we 
choose to focus on the DA-PC model in this manuscript to perform the combination of Raman spectral data and 
image features as described below.

Data availability.  Data are made available on request.

Results and Discussion
In the present study, we propose a new method to classify cells based on the features extracted from the spectral 
images of molecular components in single living cells. Below, we show that this method can be used as an alter-
native to the more conventional approach using the average spectrum. Then, we demonstrate that using image 
features can also complement the conventional approach, with the possibility to significantly improve the classi-
fication accuracy. An overview of our concept is summarized in Fig. 1.

Spectral-based classification of three mouse cell lines.  Three types of mouse cell lines were pur-
posely chosen for their biological importance and their different morphologies. Hepa1–6 (Hepa) is a cell line 
derived from mouse hepatoma, neuro2a (N2a) is a neuroblastoma cell line, and mesenchymal stem cells (MSC) 
are primary cells. Figure 2a shows spectral images of these cells as reconstructed from their spectral features 
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and coloured according to three different wavenumbers (i.e., channels), namely cytochrome (750 cm−1), proteins 
(1687 cm−1), and lipids (2850 cm−1).

One conventional approach to analyse Raman spectral images of cells is to delimit the area of a given cell, 
then calculate an average spectrum across the pixels contained in this area to obtain a global chemical signature 
(Fig. 2a). Because spectral averaging reduces the variation within a cell, it also reduces the complexity of the 
analysis, or can benefit cases for which the image has a limited spatial resolution or pixel resolution. In many 
studies, the average spectrum of the whole cell, or eventually of the nucleus and cytoplasm, has been shown to 
be informative to classify cells by types or states9–11. Likewise, we apply this approach to verify the classification 
accuracy when using the averaged spectra from single cells. After delimiting each cell and performing appropri-
ate background subtraction and pre-processing, the averaged Raman spectra (878 variables) were used as the 

Figure 2.  Comparison of three analytical approaches to Raman hyperspectral images of mouse cell lines. (a) 
Typical Raman images of three types of mouse cells (Hepa1–6, Neuro2a, and MSC) used in this study. Raman 
peaks at 750 cm−1 (cytochrome C), 1687 cm−1 (proteins), and 2850 cm−1 (lipids) are mapped in blue, green, 
and red, respectively. (b) Averaged Raman spectra of the three types of cells. Solid lines are the averaged spectra 
and the faded ribbons show the standard deviation for each spectrum. The average and SD were obtained from 
24 cells for each cell-type. (c-e) Discrimination of the cell types using the DA-PC models. DA-PC score plots 
on the first two DA-PC dimensions obtained with approach I (c), II (d), and III (e). The inner ring and outer 
ring represent 95% and 50% confidence intervals, respectively. (f) Comparison of the classification accuracies 
achieved by the three discrimination models shown in (c–e).
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input of our DA-PC model. In this particular dataset, it is interesting to note that the cells, despite their different 
morphologies, have rather similar averaged spectra (Fig. 2b). The DA-PC model shown in Fig. 2c exhibited an 
accuracy of 83.3%, yielding an R2 score of 0.610 and a −2 logLikelihood score of 45.361. (Supplementary Table 1). 
We found these scores were the worst when compared to all other models evaluated in this study (Supplementary 
Table 1). This initial result suggests that this approach does allow cell type classification, but it may be limited by 
similarities in the molecular profiles averaged across different cells.

Image-based classification of spectral image of cells.  Here, we choose 3 different channels (i.e., spec-
tral bands), each representing a different molecular bond associated to cytochrome (750 cm−1), proteins (1687 
cm−1), and lipids (2850 cm−1) to reconstruct images that are specific to these compounds. These molecular com-
pounds have a strong biological importance and the local maximum around these spectral wavenumbers also 
allow to obtain the best contrast on images. Examples of a few image cells are shown in Fig. 3. These images 
are then used to calculate the mathematical features of spatial patterns using eleven mathematical algorithms 
described previously by Orlov and colleagues14. We used the Fisher scores as a measure to evaluate the contribu-
tion of each feature to cell type classification. Therefore, the features with the highest Fisher score, which are likely 
to best explain the variation of patterns across the samples, can be selected as an input of any classification model, 
such as the DA-PC model used here.

It is likely that the optimum number of image features required to achieve the best classification is specific 
to each dataset, and therefore the adequate number of features must be carefully assessed beforehand. In their 
study, Shamir and colleagues suggested to remove 35% of the features that are associated with the lowest Fisher 
scores, as these are considered to be less informative15. Here, we explored the number of features required to 
achieve accurate classification, as evaluated by the R2 and −2 logLikelihood scores described above. Classification 
models were built using 10, 25, 50, 75, 100, 200 and 300 features associated with the highest Fisher scores (Fig. 3b, 
Supplementary Table 1). Our results showed that the use of the top 50, 75 or 100 features was sufficient to achieve 
high classification accuracy for this dataset (97.5%) (Fig. 3b, Supplementary Table 1). However, the highest R2 

Figure 3.  Feature extraction from spectral images at specific wavenumbers, and comparison of image-based 
classification results. (a) Example images showing the distribution of cellular compounds for three cell lines at 
three different channels associated to cytochrome (750 cm−1), proteins (1687 cm−1), and lipids (2850 cm−1). 
(b) Comparison of classification models when using the top 10 to top 300 features concatenated from the three 
channels. The overlaid curve shows the −2 logLikelihood score. The model with 100 features showed the highest 
accuracy and lowest −2 logLikelihood score. (c) Comparison of classification models computed using the top 
100 features for three separate or concatenated channels. The best model was obtained when the three channels 
were combined together, which model includes 100 features.
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score and the lowest −2 logLikelihood score were obtained when using the top 100 features (Supplementary 
Table 1), suggesting that this number of features provided a more robust model. Therefore, we choose to keep the 
100 top features in subsequent analyses of this dataset. The list of these features and their associated Fisher scores 
are shown in Supplementary Fig. S1.

Using the top 100 features out of 3075 mathematical features calculated for each cell (across the three chan-
nels), the three mouse cell lines were classified using the DA-PC model (Fig. 2d). The DA-PC model exhibited an 
accuracy of 96.3%, for an R2 of 0.87 and a −2 logLikelihood of 15.453. Only two cells were misclassified (1 Hepa 
and 1 MSC cell) and were identified as belonging the group of the neuro2a cells. This classification results being 
based on the mathematical features of pattern distribution, it suggests that these two cells were mistaken as neu-
ro2a cells due to similarities in the pattern distribution of molecular compounds at the chosen three channels. It 
worth noticing that the image-based model performed better than when using an average over the spectral data 
(Fig. 2c). Thus, the image-feature extraction method gave us the opportunity to classify the cells from a reduced 
number of channels with a high accuracy.

One channel versus multiple channels.  In most cases, the user has no a priori knowledge about which 
spectral wavenumber should be more relevant to describe the biological system under study. Here, we compared 
how the information extracted from each channel defined above (cytochrome, lipids, and proteins) could per-
form in discriminating the three mouse cell lines. For each channel, 100 features with highest Fisher scores were 
extracted and used to build the DA-PC models. The results are presented in the Fig. 3c. While the accuracy for 
each independent single channel (namely, cytochrome, protein, or lipid) was overall greater than or equal to 85%, 
the best single-channel model was obtained for the cytochrome-related wavenumber. The model constructed 
with individual channels however performed less well than the model with the combined information from three 
channels (Fig. 3c). The combined model includes 100 features, which was also compared to models with other 
number of features (Fig. 3b).

Cytochrome activity is particularly relevant in cell biology and it is interesting to see that the pattern of distri-
bution of this molecular compound resulted in a better classification. Changes in the cytochrome c distribution 
can be associated to the release of cytochrome c from mitochondria, an indicator of apoptosis12, or to an increase 
of cytochrome proteins, which play a role in glycolytic activity and cell proliferation17. Hence, the differences in 
cytochrome distribution observed across the observed cell lines might account for differences in their metabolic 
states link to glycolytic activity or proliferation. Unfortunately, at the time of the experiment, we did not verify 
this hypothesis by conventional methods. In a more general perspective, by comparing the classification results 
obtained from various independent wavenumbers, one can identify the wavenumber the most informative for 
classification, which may help to describe their biological system or generate testable hypotheses.

Alternatively, when a priori knowledge on the system is available, the spectral channels that are thought to 
be biologically-relevant can be selected to reconstruct the images prior to classification. The rich information of 
label-free Raman spectroscopy gives this advantage to select, after the measurement is done, the wavenumbers 
that are known to be associated with a specific cell type or cell state. As a case in point, a previous study pointed 
out the importance of the protein related peak at 757 cm−1 and the nucleic-acid related peak at 784 cm−1, which 
ratio has been used in discriminating and predicting the differentiated state of embryonic stem cells18,19. Many 
other wavenumbers can be envisaged. For example, previous studies reported that the possibility to monitor the 
degree of unsaturation and transition temperatures of constituent lipids in microalgae20, or cell cycle and cell 
confluency in human cancer cells21. In such cases for which wavenumber of interest are known, the classification 
could be tightly correlated to the biological state of the cells, thus becoming more relevant from a biological 
perspective.

Applicability of other classifiers for cell image analysis.  To our best knowledge, very few studies 
have been taking advantage of machine learning classifiers to extract features from Raman images and perform 
the automated discrimination of cells. It is likely that depending on the dataset, one kind of classifier may per-
form better than others. Although it is not the objective of this paper to do an extensive investigation of how 
different models perform, we provide in the Supplementary Table 2 a comparison the classification results of 
three well-known classifiers as an example. Specifically, we applied a Projection on Latent Structure (PLS-DA), 
a K-means predictive model and a Support Vector Machine (SVM) models to identify the three cell lines based 
on the analysis of top 100 image features across three channels. Results are described in Supplementary Table 2.
The DA-PCA model shown in Fig. 2d had misclassified two cells among tested data. Unfortunately, the software 
we used for these models did not provided the same indicators as we obtained for the DA-PCA models. However, 
by comparison to DA-PCA, we found that these three other kinds of model performed generally very well in 
classifying cell types as judged by the low error rate on the R2 for predicted (test) dataset. The SVM model had the 
best results during the training data, and the K means model the best result on the test dataset. These results must 
however be taken cautiously due to the small size of our dataset. The point we want to underline is, however, that 
other classifiers can be used to perform the classification of living cells using Raman spectral images, and that they 
can perform as well if not better than DA-PCA.

Combining spectral and spatial information.  In some cases, there is the possibility that the image infor-
mation is not informative enough to discriminate the cell types or cell states. To overcome this issue, we envision 
that the combination of both spectral and image information could be useful to increase the accuracy of classifica-
tion, because they provide complementary aspects of the cell phenotypes. Here, we choose to apply the DA-PCA 
approach to combine both types of information to test this hypothesis. The advantage of the DA-PCA approach 
by comparison to the other classifiers mentioned above (such as PLS-DA), is that it allows to combine data of 
different nature through the PC components. Here, standardized PC components calculated independently from 
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spectral and image information were included in the model. Then, a stepwise selection of the PCs components 
was performed based on their discriminant scores and p values (see Materials and Methods). In this model, 3 
components from the spectral dataset and three components from the image features calculated from image 
transformation were selected, suggesting that these two modes of information provide unique aspects of the 
cells. The resulting DA-PC plot of Fig. 2e shows that the model accurately discriminated the three cell lines, with 
an accuracy of 100%, an R2 value of 0.99 and a −2 logLikelihood of 1.096. The scores show that this model per-
formed better compared to the DA-PC models of Fig. 1 (Supplementary Table 1). In Fig. 2d, we note that the Hepa 
cell and the MSC cell were placed close to the Neuro2a group in two dimensional spaces, showing that image 
information alone was not sufficient to discriminate these two cells from neuronal cells. However, in the DA-PC 
plot of Fig. 2e, these cells were closer to their original group, demonstrating how the contribution of the spectral 
information complemented the image information to identify these cells back to their original group. This result 
showed that, for our dataset, the combination of (i) averaged spectral information and (ii) the spatial information 
extracted from the distribution patterns of the molecular compounds may lead to a more robust classification. 
However, we acknowledge it may be not the case for other datasets.

Comparison to other imaging methods.  Previous studies have focused on the use of brightfield or 
fluorescent-labelled images of cells prior to classification6. Fluorescent studies can be limited by the number 
of resolvable colours (up to nine using complex instrumentation)22, although only a few channels can be used 
simultaneously to monitor biological phenomenon of interests. However, when comparing a very large number 
of cell lines and/or cellular states, the number of resolvable colour can arguably become a limiting factor for the 
purpose of cell discrimination. In this regard, label-free spectroscopy can provide as much channels as needed to 
achieve a good classification, although further investigations using large datasets must be conducted to verify this 
assumption. Moreover, label-free Raman spectroscopy can circumvent the limitations of impermeability, toxicity, 
and specificity of the fluorescent reporters. Other technical advantages have been mentioned in previous studies. 
For example, in the study case of lipidomics, Raman spectroscopy allows to circumvent the need for lipid extrac-
tion and analysis, which is slow and invasive20. It must be stressed, however, that the above imaging techniques 
all provide different information with different temporal resolution and sensitivity, therefore they are all valuable 
regarding their respective applications.

Conclusion
In this study, we demonstrated that the presented approaches are particularly efficient to perform and improve 
the classification of single living cells (Fig. 2). Although this study is limited to a single dataset of limited sample 
size, our approach is systematic and can be adapted to other study types of classifiers and datasets. The statistical 
analysis of cell images allows to quantify how molecular compounds distributes within single cells, which may 
help in return to generate hypotheses about why the considered cell-lines or cell states would differ for this given 
compound. Alternatively, depending on the application, we described the possibility to choose spectral wave-
numbers that are known to specifically relate with the biology of the studied system. This may be relevant for a 
number of biomedical or industrial application. Future developments may improve even more the quantity of 
information that can be extracted from hyperspectral information. In a future work, we would like to combine 
the information from brightfield, contrast-phase, or fluorescence images with Raman spectral information and 
see how each method or their combination can contribute to the discrimination of cells. Overall, the present study 
provides a basis for further investigations in exploiting the full potential of information from spectral images.

References
	 1.	 Terstegge, S. et al. Automated maintenance of embryonic stem cell cultures. Biotechnol. Bioeng. 96, 195–201 (2007).
	 2.	 Terstegge, S. et al. Laser-assisted selection and passaging of human pluripotent stem cell colonies. J. Biotechnol. 143, 224–230 (2009).
	 3.	 Carpenter, A. E. et al. Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 

(2006).
	 4.	 Wiesmann, V. et al. Review of free software tools for image analysis of fluorescence cell micrographs. J. Microsc. 257, 39–53 (2015).
	 5.	 Raza, S., Sharma, Y., Chaudry, Q., Young, A. N. & Wang, M. D. Automated classification of renal cell carcinoma subtypes using scale 

invariant feature transform. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 6687–6690 (2009).
	 6.	 Tokunaga, K. et al. Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem 

cells. Sci. Rep. 4, 6996 (2014).
	 7.	 Machine learning classification of OARSI-scored human articular cartilage using magnetic resonance imaging. Osteoarthritis 

Cartilage 23, 1704–1712 (2015).
	 8.	 Cheng, J.-X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. 

Science 350, aaa8870 (2015).
	 9.	 Ichimura, T. et al. Non-label immune cell state prediction using Raman spectroscopy. Sci. Rep. 6, 37562 (2016).
	10.	 Ichimura, T. et al. Visualizing cell state transition using Raman spectroscopy. PLoS One 9, e84478 (2014).
	11.	 Teng, L. et al. Label-free, rapid and quantitative phenotyping of stress response in E. coli via ramanome. Sci. Rep. 6, 34359 (2016).
	12.	 Okada, M. et al. Label-free Raman observation of cytochrome c dynamics during apoptosis. Proc. Natl. Acad. Sci. USA 109, 28–32 

(2012).
	13.	 Palonpon, A. F. et al. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 8, 677 (2013).
	14.	 Orlov, N. et al. WND-CHARM: Multi-purpose image classification using compound image transforms. Pattern Recognit. Lett. 29, 

1684–1693 (2008).
	15.	 Shamir, L. et al. Wndchrm - an open source utility for biological image analysis. Source Code Biol. Med. 3, 13 (2008).
	16.	 Law, J. & Jolliffe, I. T. Principal Component Analysis. Statistician 36, 432 (1987).
	17.	 Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. 

Biol. 27, 441–464 (2011).
	18.	 Schulze, H. G. et al. Assessing differentiation status of human embryonic stem cells noninvasively using Raman microspectroscopy. 

Anal. Chem. 82, 5020–5027 (2010).
	19.	 Tan, H. G. et al. Comparative study using Raman microspectroscopy reveals spectral signatures of human induced pluripotent cells 

more closely resemble those from human embryonic stem cells than those from differentiated cells. Analyst 137, 4509–4515 (2012).
	20.	 Wu, H. et al. In vivo lipidomics using single-cell Raman spectroscopy. Proc. Natl. Acad. Sci. USA 108, 3809–3814 (2011).



www.nature.com/scientificreports/

8Scientific REPOrTs |  (2018) 8:11726  | DOI:10.1038/s41598-018-30276-1

	21.	 Matthews, Q. et al. Variability in Raman spectra of single human tumor cells cultured in vitro: correlation with cell cycle and culture 
confluency. Appl. Spectrosc. 64, 871–887 (2010).

	22.	 Niehörster, T. et al. Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat. Methods 13, 257–262 (2016).

Acknowledgements
The authors thank Dr. V. Kumar and Prof. K. Shiroguchi for critical discussion in the early phase of this project.

Author Contributions
A.G., T.I., and H.F. wrote the manuscript. L.C. and H.F. performed the Raman imaging of cells. A.G., T.I., and H.F. 
performed spectral and image analysis. K.F. and T.M.W. supervised the project. H.F. designed the experiments.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-30276-1.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-30276-1
http://creativecommons.org/licenses/by/4.0/

	Cell type discrimination based on image features of molecular component distribution

	Materials and Methods

	Cell culture. 
	Raman spectral imaging and spectral pre-processing. 
	Construction of wavenumber-specific images and extraction of image features. 
	DA-PC classification models. 
	Other machine-learning classification models. 
	Data availability. 

	Results and Discussion

	Spectral-based classification of three mouse cell lines. 
	Image-based classification of spectral image of cells. 
	One channel versus multiple channels. 
	Applicability of other classifiers for cell image analysis. 
	Combining spectral and spatial information. 
	Comparison to other imaging methods. 

	Conclusion

	Acknowledgements

	Figure 1 Overview of three different approaches to exploit information from Raman hyperspectral images prior to classification.
	Figure 2 Comparison of three analytical approaches to Raman hyperspectral images of mouse cell lines.
	Figure 3 Feature extraction from spectral images at specific wavenumbers, and comparison of image-based classification results.




