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Abstract

Targeting HER2 with antibodies or small molecule inhibitors in HER2-positive breast cancer 

leads to improved survival, but resistance is a common clinical problem. To uncover novel 

mechanisms of resistance to anti-HER2 therapy in breast cancer, we performed a kinase open 

reading frame (ORF) screen to identify genes that rescue HER2-amplified breast cancer cells from 

HER2 inhibition or suppression. In addition to multiple members of the MAPK and PI3K 

signaling pathways, we discovered that expression of the survival kinases PRKACA and PIM1 

rescued cells from anti-HER2 therapy. Furthermore, we observed elevated PRKACA expression 

in trastuzumab-resistant breast cancer samples, indicating that this pathway is activated in breast 

cancers that are clinically resistant to trastuzumab-containing therapy. We found that neither 

PRKACA nor PIM1 restored MAPK or PI3K activation after lapatinib or trastuzumab treatment, 

but rather inactivated the pro-apoptotic protein BAD, thereby permitting survival signaling 

through BCL-XL. Pharmacological blockade of BCL-XL/BCL-2 partially abrogated the rescue 

effects conferred by PRKACA and PIM1, and sensitized cells to lapatinib treatment. These 

observations suggest that combined targeting of HER2 and the BCL-XL/BCL-2 anti-apoptotic 

pathway may increase responses to anti-HER2 therapy in breast cancer and decrease the 

emergence of resistant disease.
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INTRODUCTION

The receptor tyrosine kinase HER2 is amplified and/or overexpressed in 20–30% of all 

breast cancers (1, 2), leading to constitutive proliferative and survival signaling via the 

downstream Ras/Erk and PI3K/Akt pathways. Amplification or overexpression of HER2 is 

associated with poor prognosis, and perturbation of HER2 signaling with trastuzumab or 

lapatinib has led to clinical benefit in HER2-positive breast cancer patients (3–7). However, 

many patients with early-stage disease experience tumor recurrence despite adjuvant 

treatment with trastuzumab, and patients with metastatic disease inevitably develop 

resistance to anti-HER2 therapies.

For trastuzumab, a monoclonal antibody that binds to the extracellular domain of HER2, a 

number of potential mechanisms of resistance have been identified. These include cleavage 

of the extracellular domain of HER2, as well as heterodimerization with HER3 or IGF1R; 

both of these mechanisms result in continued downstream MAPK and PI3K signaling (8–

10). Resistance also has been shown to occur in the setting of PTEN loss, activating PIK3CA 

mutations, CCNE amplification, or c-SRC activation (11–17). Resistance to lapatinib, which 

inhibits intracellular tyrosine kinase activity, can be induced in HER2-amplified breast 

cancer cells by activating PIK3CA mutations, loss of PTEN (18), or by activation of 

mTORC1 (19). Since clinically resistant breast cancer samples have not been extensively 

molecularly characterized, due in part to limited sample availability, the extent to which 

each of these molecular mechanisms contributes to resistance in HER2-positive human 

breast cancers is largely unknown.

Although strategies to target the MAPK and PI3K pathways in resistant cancers are being 

pursued, these mechanisms likely fail to account for the development of resistant disease in 

all patients. Hence we conducted an unbiased screen to determine whether pathways other 

than those directly downstream of canonical HER2 signaling might also confer resistance. 

Here we describe a systematic interrogation of resistance mechanisms to suppression of 

HER2 to identify the major mechanisms of resistance to HER2-directed therapy.

RESULTS

We conducted two kinome ORF screens in parallel to identify genes that confer resistance to 

the lapatinib-like dual EGFR/HER2 inhibitor AEE788 and to suppression of HER2 with a 

short hairpin RNA (shRNA). We reasoned that the “off-target” effects of a small molecule 

inhibitor and an shRNA should be different, such that the intersection of hits from both 

screens would help to identify biological pathways that can confer resistance to anti-HER2 

therapy. We tested six independent anti-HER2 shRNAs in BT474 cells and found that there 

was a strong correlation between the degree of HER2 protein suppression and loss of 

viability/proliferation. We chose the most effective shRNA, sh4355, for the screen (Fig. 

S1A). We titrated the AEE788 dose in BT474 cells, and selected 0.85 µM for the screen 
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because it reduced cell viability to approximately 40% that of control, allowing a sufficient 

window for rescue to be detected (Fig. S1B).

We then used the Broad Institute/Center for Cancer Systems Biology (CCSB) V5 epitope-

tagged kinase ORF collection to identify genes that mediate resistance to these 

manipulations (20) (Fig. S2). Of the 597 ORFs, 14 scored more than two standard deviations 

(SD) above the median of all ORFs in the AEE788 screen, and 20 did so in the shRNA 

screen (Table 1 and Fig. 1A). Seven genes scored in both screens, including the activated 

forms of HRAS, KRAS, and MEK, which were screened as positive controls because they 

are known to signal downstream of HER2. AKT1, which signals downstream of HER2 to 

promote survival, scored strongly in both screens. In addition, MAP2K6, CRKL, and AKT3, 

which are known to signal through the Ras-ERK pathway or the PI3K-AKT pathway, scored 

more than two SD above the median in the shHER2 screen and more than 1.5 SD above the 

median in the AEE788 screen. These observations confirm prior work implicating MAPK 

and PI3K signaling as a major mechanism of resistance to HER2 inhibition (9–12, 21).

Three genes that have not been previously described as downstream targets of HER2 

signaling scored more than 2 SD above the median in both screens: PRKACA, PIM1, and 

PIM2. In validation studies we found that, of these three molecules, PRKACA expression 

rescued BT474 cells most strongly from lapatinib, although PIM1 and PIM2 were expressed 

at much lower levels in these experiments (Fig. S3).

PRKACA is the alpha catalytic subunit of cyclic AMP (cAMP)-activated Protein Kinase A 

(PKA), whose activity is inhibited by PKA regulatory subunits. The second messenger 

cAMP activates PKA by causing the release of PRKACA or PRKACB from the regulatory 

subunits. Myriad effects of PKA activation have been described, including promotion of 

survival signaling. In addition, Vegran and colleagues demonstrated that PRKACA was one 

of 16 upregulated genes within a transcriptional signature that distinguishes breast cancers 

that failed to achieve a pathological complete remission (pCR) after trastuzumab plus 

docetaxel neoadjuvant chemotherapy from those that did achieve a pCR (22).

We validated our findings by performing dose titration curves for lapatinib in the setting of 

ectopic PRKACA expression in three HER2-amplified breast cancer cell lines. PRKACA 

expression increased the viability of BT474, SKBr3, and ZR-75-30 cells propagated in the 

presence of lapatinib (Fig. 1B). PRKACA expression also increased the viability of 

trastuzumab-treated HER2-amplified cells (Fig. S4). By counting viable cells, we found that 

lapatinib treatment of control cells expressing LACZ resulted in cell death, whereas 

overexpression of PRKACA in BT474 cells prevented cell death but failed to restore 

proliferation (Fig. 1C). Based on these observations, we hypothesized that PRKACA 

expression interferes with lapatinib-induced apoptosis. We found that, indeed, lapatinib 

treatment induced caspase 3/7 cleavage, and this event was significantly reduced by 

PRKACA overexpression (Fig. 1D, LACZ vs. PRKACA, p = 0.0003 for ZR-75-30, p = 

0.0002 for BT474). These findings indicate that PRKACA rescues HER2-amplified cells 

from lapatinib treatment at least in part through the restoration of anti-apoptotic survival 

signaling.
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We then investigated mechanism(s) by which PRKACA conferred resistance to trastuzumab 

and lapatinib treatment. Since HER2 is thought to signal primarily through the Ras/Raf/

MAPK and PI3K/AKT pathways, we first examined the activation of these pathways in the 

presence of AEE788 or lapatinib in BT474 cells transduced with a control ORF, LACZ. As 

expected, both p-ERK and p-AKT levels decreased in a dose-dependent manner in these 

cells in response to AEE788 and lapatinib (Fig. 2A). Transduction of HRASV12 into 

BT474s prior to treatment with either inhibitor completely restored p-ERK levels at all doses 

examined, but only partially restored p-AKT levels in the setting of AEE788 treatment and 

had no effect at the doses of lapatinib tested. These observations may be the result of the 

failure of Ras signaling to fully restore HER2-mediated, Ras-independent PI3K activation 

(Fig. 2A)(23). By contrast, expression of PRKACA failed to restore p-AKT or p-ERK levels 

in the context of either drug (Fig. 2B). Although we noted a slight decrease in baseline p-

ERK levels in BT474 cells in the context of ectopic PRKACA expression, we were unable 

to verify this finding in the other cell lines tested (Fig. 2D); it is therefore possible that a 

feedback mechanism is operative in BT474 cells that results in a small decrease in MAPK 

signaling when PRKACA is overexpressed, but which does not lead to a significant decrease 

in proliferation (Fig. 1C). These observations suggested that PRKACA rescues cells from 

HER2 tyrosine kinase inhibition by a mechanism that is not mediated by AKT or ERK 

activation.

PRKACA has previously been reported to phosphorylate β-catenin, resulting in its 

activation, as well as BAD, resulting in its inactivation (24–27). BAD phosphorylation, 

which is also mediated by AKT, prevents the inhibitory influence of BAD on BCL-2 and 

BCL-XL, thereby promoting the anti-apoptotic activities of these molecules (28). PRKACA 

has also been reported to phosphorylate and inactivate GSK3-beta, which could lead to 

increased β-catenin activation (29). We therefore investigated the phosphorylation status of 

β-catenin, BAD, and GSK3 in PRKACA-overexpressing cells in the context of trastuzumab 

or lapatinib treatment. We found that phosphorylation of BAD at ser112 and ser136 was 

strikingly diminished by lapatinib treatment, and was also inhibited by trastuzumab 

treatment (Fig. 2C). In contrast, exposure to lapatinib or trastuzumab failed to affect the 

phosphorylation of β-catenin or GSK3-beta (Fig. 2C). Similarly, phosphorylation of a 

canonical downstream target of PKA, CREB, and its closely related family member, ATF1, 

were increased as expected by PRKACA overexpression, but were not decreased by 

exposure to lapatinib or AEE788 (Fig. 2C). Phosphorylation of BAD at ser112 and ser136 in 

the setting of lapatinib treatment was fully restored by PRKACA expression in BT474, 

SKBr3, and ZR-75-30 cells (Fig. 2C, 2D). In consonance with the observation in BT474 

cells that PRKACA did not restore MAPK or PI3K signaling in the context of lapatinib 

treatment, PRKACA expression in SKBr3 or ZR-75-30 cells failed to restore 

phosphorylation of AKT, ERK, mTOR, and p70-S6K (Fig. 2D). These observations suggest 

that lapatinib and trastuzumab exert some of their inhibitory effects on HER2-positive cells 

through BAD de-phosphorylation, likely as a result of AKT inactivation, and that PRKACA 

overexpression rescues these cells in part through BAD re-phosphorylation and inactivation.

We next examined whether the kinase activity of PRKACA was required for the observed 

phenotypes of lapatinib resistance and BAD phosphorylation. Expression of a kinase-dead 

PRKACA mutant (K72H, PRKACA-KD) (30) failed to rescue ZR-75-30 or SKBr3 cells 
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from lapatinib treatment, whereas both a V5-tagged and untagged (closed) version of 

PRKACA-WT conferred robust rescue (Fig. 3A). In addition, PRKACA-KD failed to 

restore BAD phosphorylation, indicating that the kinase activity of PRKACA is required for 

this effect (Fig 3B). Moreover, PRKACA-WT levels, which were higher in the V5-tagged 

construct than in the closed construct, positively correlated with the extent of rescue from 

lapatinib, as well as with the extent of BAD phosphorylation observed (Fig. 3A, 3B). These 

findings confirm that the kinase activity of PRKACA is required for the observed 

phenotypes of rescue from lapatinib and of BAD phosphorylation.

To confirm that the phenotypes observed with exogenous PRKACA expression also occur 

upon activation of endogenous PRKACA, we conducted an experiment using forskolin to 

activate cyclic AMP, which in turn activates PRKACA. Forskolin pre-treatment of 

ZR-75-30 cells resulted in resistance to lapatinib treatment (Fig. S5A) as well as restoration 

of inactivating BAD phosphorylation (Fig. S5B). These results demonstrate that the 

phenotypes observed can be achieved by activation of physiologic levels of endogenous 

PRKACA.

Since we found that high levels of PRKACA expression conferred resistance to lapatinib 

and trastuzumab treatment, we wished to determine whether PRKACA is overexpressed in 

the setting of acquired resistance to anti-HER2 therapy in human breast cancer samples. To 

examine this question, we performed PRKACA immunohistochemistry on breast cancer 

samples taken from patients prior to the administration of anti-HER2 therapy and after the 

development of clinical resistance to trastuzumab-containing therapy. In three of five cases 

we found dramatically increased PRKACA expression in the clinically resistant sample as 

compared to the pre-treatment sample (Fig. 3C). Specifically, patient #1 was diagnosed with 

de novo HER2-positive metastatic breast cancer, confirmed by biopsy of a sternal lesion 

(Fig. 3C, panel a). She initially responded to trastuzumab-containing therapy for 17 months, 

but then developed clinical resistance and progression in her breast lesion while other areas 

of disease remained stable. At that time she underwent a mastectomy for local disease 

control (Fig. 3C, panel b). Patient #2 was diagnosed with early stage HER2-positive breast 

cancer, treated with lumpectomy, axillary lymph node dissection, and radiation. Twelve 

years later she experienced a recurrence in the same breast and the contralateral axilla (Fig. 

3C, panel c, breast biopsy is shown). She then received a total of 24 months of trastuzumab-

based treatment, with good response initially but with subsequent progression in the axilla 

only, which was resected at that time (Fig. 3C, panel d). Patient #3 was diagnosed with de 

novo metastatic breast cancer, confirmed by fine needle aspirate of a liver lesion. A biopsy 

of her breast cancer at diagnosis is shown (Fig. 3C, panel e). She was treated with 

trastuzumab plus vinorelbine, with an excellent response in both the breast and liver lesions. 

However, after nine months of treatment her breast lesion was clearly growing while her 

distant metastatic disease continued to respond to therapy. She therefore underwent 

mastectomy for local disease control (Fig. 3C, panel f). In each of these cases, the level of 

PRKACA in the epithelial tumor cells was strikingly higher in the clinically resistant sample 

than in the pre-treatment sample, which had demonstrated response to trastuzumab-based 

therapy. Together with our functional data demonstrating that PRKACA confers resistance 

to trastuzumab and lapatinib in HER2-amplified breast cancer cells, these observations 
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strongly suggest that PRKACA overexpression contributes to trastuzumab resistance in a 

subset of human breast cancers.

The two samples that did not clearly demonstrate an increase in PRKACA expression in the 

post-treatment sample differed from the other three in that the pre-treatment sample was 

obtained from early stage disease which was completely resected (Fig. S6, panels a and c). 

No sample from the time of metastatic diagnosis was available for testing, so the level of 

PRKACA initially present in the metastatic disease is unknown. These patients received 

trastuzumab and/or lapatinib-based treatment in the metastatic setting, and were biopsied at 

a later point of progression (Fig. S6, panels b and d). PRKACA expression was low to 

moderate in these samples, suggesting that a different mechanism of resistance may have 

been operative in these cases.

Given the high PRKACA expression observed in several of the samples analyzed, we 

wished to examine a larger panel of breast cancers for PRKACA expression. Although we 

were unable to obtain more matched samples before and after the development of resistance 

to anti-HER2 therapy, we performed PRKACA immunohistochemistry on a commercially 

available breast tissue microarray. We found that, compared to normal breast tissue or 

benign breast disease, a large proportion of invasive breast cancers expressed high levels of 

PRKACA (Fig. S7). These findings demonstrate that PRKACA overexpression is a common 

feature of invasive breast cancers, and suggest that it may play a role in intrinsic as well as 

acquired resistance to anti-HER2 therapy.

The observations that PRKACA appears to confer resistance to HER2-targeted therapy via 

BAD phosphorylation and that PIM1 and PIM2, which also scored in our screens, have been 

reported to phosphorylate BAD suggested that BAD may be involved in PIM-mediated 

resistance to anti-HER2 directed therapy. We first confirmed that PIM1 rescues HER2-

amplified cells from lapatinib and trastuzumab treatment (Fig. 4A and 4C). We further 

found that PIM1 expression restores BAD phosphorylation at ser112 in the presence of 

lapatinib (Fig. 4D) and also inhibits lapatinib-induced apoptosis (Fig. 1D). These findings 

support the hypothesis that PIM1 expression promotes survival in lapatinib-treated cells by 

restoring BAD phosphorylation and thereby suppressing apoptosis. Although PIM2 also 

scored in the initial screens, in validation studies we were unable to express PIM2 at levels 

comparable to other candidates and therefore did not pursue this candidate further (Fig. S3).

Based on our hypothesis that phosphorylation and inactivation of BAD in lapatinib-treated 

HER2-amplified cells allows continued survival signaling through modulation of BCL-XL 

activity, we reasoned that BCL-XL overexpression should also confer resistance to HER2 

inhibition. Indeed, we found that overexpression of BCL-XL rescues cells from lapatinib 

treatment (Fig. 4B, 4C). We therefore hypothesized that combined inhibition of BCL-XL 

and HER2 would result in increased cell death of HER2-positive cells and would at least 

partially abrogate the resistance effects conferred by PRKACA and PIM1. Indeed, treatment 

of ZR-75-30 cells with a dual BCL-2/BCL-XL inhibitor, ABT-263, at a dose that on its own 

had no effect on cell viability, synergized with lapatinib to cause increased cell death (Fig. 

4E and 4D, LACZ controls). Furthermore, the addition of this drug also partially abrogated 

the lapatinib rescue effect conferred by PRKACA, PIM1, and BCL-XL (Fig. 4E and 4D). 
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These findings support the hypothesis that activation of BCL-2/BCL-XL at least partially 

underlies the lapatinib resistance conferred by PIM1 and PRKACA overexpression, and 

suggest that combined blockade of BCL-2/BCL-XL survival signaling and HER2 could 

enhance tumor responses and decrease rates of recurrent and resistant disease.

DISCUSSION

Resistance to targeted therapy in breast cancer remains a major clinical problem. Although 

significant clinical benefit has been achieved in HER2-positive breast cancers with the 

introduction of the anti-HER2 drugs trastuzumab, lapatinib, pertuzumab, and trastuzumab 

emtansine, such cancers remain nearly universally fatal once metastasis has occurred (31–

34). Even in cases in which complete clinical responses are observed, it is evident that 

residual viable cancer cells remain which ultimately give rise to resistant disease. 

Eradication of residual disease is critical for preventing the emergence of resistance, and we 

hypothesize that this may be achieved by combining additional targeted therapies with anti-

HER2 therapy.

Efforts to target resistant or residual disease in HER2-positive breast cancer thus far have 

largely focused on canonical downstream targets of HER2 signaling, such as PI3K, mTOR, 

and MEK, whose activation may serve to bypass the upstream HER2 blockade. However, 

such approaches have met with limited success in early phase clinical trials (35, 36). In 

addition, eradication of residual disease early in treatment may require targeting pathways 

that are independent of HER2 signaling, while simultaneously targeting HER2.

To identify a broad spectrum of biological pathways that help evade the blockade of HER2 

signaling, we used an unbiased, systematic approach to interrogate 597 kinases and kinase-

related molecules for their ability to confer resistance to a small molecule EGFR/HER2 

inhibitor or to an anti-HER2 shRNA in HER2-dependent BT474 cells. We chose this dual 

approach in order to identify robust biological mediators of resistance to anti-HER2 therapy, 

irrespective of the specific mechanism by which HER2 signaling was blocked. We note that 

the expression of oncogenic versions of HRAS or KRAS or of activated MEK, as well as 

MAP2K6, CRKL, AKT1, or AKT3 conferred resistance to both the HER2 inhibitor and the 

anti-HER2 shRNA. These results confirm prior work implicating the MAPK and PI3K 

pathways in resistance to anti-HER2 therapy, and serve to validate the screening approach 

(8–15, 18, 19).

In addition to identifying expected mediators of PI3K and MAPK signaling, the most robust 

mediators of resistance that scored in both screens and that are not implicated in canonical 

signaling downstream of HER2 were PRKACA and PIM1. Consistent with these findings, 

downregulation of a regulatory subunit of PKA, PRKAR2A, has been reported to confer 

resistance to trastuzumab in HER2-amplified cells in vitro (37). Both PRKACA and PIM1 

converge on activation of survival signaling through inactivation of BAD. We found that 

both lapatinib and trastuzumab treatment of HER2-positive breast cancer cells results in 

BAD de-phosphorylation, suggesting that the anti-cancer effects of these drugs are in part 

mediated by BAD activation and its subsequent inhibition of survival signaling. Since AKT 

and RSK are also known to phosphorylate BAD, it is possible that BAD inactivation 
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represents a common downstream node through which resistance induced by PI3K or 

MAPK pathway activation is partly mediated and through which HER2 activation itself 

promotes survival in the absence of anti-HER2 treatment.

The clinical relevance of our findings to human breast cancers is underscored by our finding 

of increased levels of PRKACA expression in three out of five breast cancer samples that 

developed clinical resistance to trastuzumab. Together with our results showing that 

PRKACA expression activates survival signaling in HER2-positive breast cancer cells 

treated with anti-HER2 therapy, these findings support the hypothesis that high levels of 

PRKACA expression mediate treatment resistance in HER2-positive breast cancer. Results 

from a tissue microarray of primary invasive breast cancers demonstrating strikingly high 

levels of PRKACA in a subset of samples, as compared to benign breast tissue, raises the 

possibility that PRKACA may play a role in intrinsic as well as acquired resistance. It is 

notable that only approximately 50% of trastuzumab-naïve, metastatic HER2-positive breast 

cancers undergo objective responses upon treatment with trastuzumab-based therapy, 

indicating that a subset of HER2-positive breast cancers do exhibit intrinsic resistance (33). 

The finding of high levels of PRKACA expression in a subset of primary invasive breast 

cancers also suggests that PRKACA may play a role in breast cancer progression. Indeed, a 

recent report showed that bi-allelic ablation of PRKAR1A, one of the regulatory subunits 

that inhibits PRKACA activity, results in spontaneous mammary tumorigenesis in mice (38). 

In addition, a chimeric transcript involving PRKACA that retains kinase activity has 

recently been identified in 15/15 human fibrolamellar hepatocellular carcinomas, and 

somatic activating mutations in PRKACA have been identified by two groups in 37–66% of 

adrenal adenomas from patients with Cushing’s syndrome (39–41). These findings further 

support a role for PRKACA in tumorigenesis.

Our findings suggest that inhibition of PRKACA and/or its downstream anti-apoptotic 

effectors in combination with anti-HER2 therapy may prevent the emergence of resistant 

disease. Since activation of PIM1, AKT1, RSK, or p70S6K is also known to result in BAD 

phosphorylation and subsequent activation of BCL-XL/BCL-2 [reviewed in (28)], blockade 

of this signaling pathway may provide a robust means of simultaneously targeting multiple 

mechanisms of resistance to anti-HER2 therapy. Our finding that the BCL-XL/BCL-2 

inhibitor ABT-263 synergizes with lapatinib in HER2-amplified cells supports this 

hypothesis. Indeed, recent work showed that blockade of this pathway also synergizes with 

tamoxifen in ER-positive breast cancers, suggesting that co-targeting of BCL-XL/BCL-2 

with either ER- or HER2-directed therapies may represent a useful strategy across breast 

cancer subtypes (42). ABT-263 is currently under investigation in early phase clinical trials 

in a variety of cancers, although not in combination with anti-HER2 therapy in breast cancer 

(Clinicaltrials.gov).

Although our observations strongly suggest that the resistance effect conferred by both 

PRKACA and PIM1 overexpression is at least in part mediated through the restoration of 

anti-apoptotic signaling, it is possible that other pathways that contribute to this phenotype 

are also activated by PRKACA and/or PIM1. PRKACA in particular has been implicated in 

a variety of cellular processes, which vary by cell type and context. Moreover, the 

observation that the degree of rescue conferred by PRKACA is greater than that conferred 

Moody et al. Page 8

Oncogene. Author manuscript; available in PMC 2015 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Clinicaltrials.gov


by PIM1 suggests that PRKACA may induce additional antagonistic effects to anti-HER2 

therapy. Further studies will be necessary to identify such mechanisms.

In summary, we have identified PRKACA as a molecule that is frequently overexpressed in 

invasive and trastuzumab-resistant breast cancers and have demonstrated that PRKACA 

overexpression leads to resistance to trastuzumab and lapatinib. We have also identified 

PIM1 as a novel mediator of resistance to anti-HER2 therapy and, by identifying the 

survival mechanism through which both PRKACA and PIM1 signal to promote resistance to 

anti-HER2 therapy, we have discovered a common resistance node whose simultaneous 

targeting along with HER2 may lead to improved tumor responses. Specifically, our study 

provides a rationale for further investigation of combined anti-HER2 and anti-BCL-XL/

BCL-2 therapy in HER2-positive breast cancers. Such studies could lead to better responses 

and a decrease in residual disease, treatment resistance, and tumor recurrence.

MATERIALS AND METHODS

Cell Culture and Lentiviral Transduction

All cell lines were grown in media containing 10% FBS (Sigma) and 1% Penicillin/

Streptomycin (GIBCO) (293T: DMEM; BT474 and ZR-75-30: RPMI; SkBr3: McCoy’s 

5A).

For lentivirus production, 293T cells were co-transfected with VSV-g and delta 8.9 

packaging plasmids and the target plasmid using Mirus TransIT L1 transfection reagent 

according to manufacturer’s instructions. The following morning, media was replaced with 

DMEM containing 30% FBS, and lentiviral supernatants were collected at 48 and 72 hours 

post-transfection, pooled, and stored at −80 degrees C.

Lentiviral transductions were performed at 1:20 to 1:10 dilution in media containing 8 ug/ml 

polybrene. Cells were centrifuged at 2000 rpm×15 min and allowed to infect for 24h at 37 

degrees C, followed by a change to media with or without puromycin (pLKO) or blasticidin 

(pLX303 and pLX304). Puromycin doses were 2 ug/ml for all cell lines and blasticidin 

doses were 5 ug/ml for SKBr3 and 15 ug/ml for BT474 and ZR-75-30.

Kinase ORF Library Screening

Kinase library lentivirus production was performed as previously described (20). Optimal 

viral dilution was determined by titering in BT474 cells to ensure high infection efficiency 

with minimal viral toxicity. BT474 cells were seeded at a density of 5000 cells per well of 

384-well plates. The following day, cells in each duplicate set of plates were transduced in 

quadruplicate with each lentivirally-delivered ORF (pLX304, Addgene) at 1:25 dilution in 

media containing 10 ug/ml polybrene; each ORF was tested in duplicate. Plates were 

centrifuged for 15 min at 930×g. After 24 h, virus was removed and cells were re-fed with 

media. On day 4, one set of kinase-library transduced ORFs was treated with 0.85 uM 

AEE788 or DMSO; blasticidin 15 ug/ml was also added to all wells at this time for selection 

of ORF-transduced cells. One parallel plate was run without blasticidin to confirm infection 

efficiency, which was >70% for >90% of ORFs, with an average of 91%. The second set of 

replicate plates was transduced with 4 ul (1:12.5 dilution) of pLKO-shHER2-4355, or mock 
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transduction, in media containing 10 ug/ml polybrene. The latter set of plates underwent a 

media change on day 5 to remove virus. On day 10, 30 ul of Cell-Titer Glo reagent 

(Promega) was added to each well and luminescence was read 20 min later using Wallac 

Envision software.

Plasmids and Drugs

pLX304-ORF and pLKO-shRNA constructs were obtained from the Broad Institute Genetic 

Perturbation Platform (all available in Addgene). For the generation of PRKACA kinase-

dead (K72H), the following PCR primers were used with pLX304-PRKACA-WT as 

template to generate overlapping 5’ and 3’ PRKACA fragments containing the appropriate 

mutations: PRKACA-KD-Fwd GAA CCA CTA TGC CAT GCA TAT CCT CGA CAA 

with pLX304-Rev 5’-CAA CAC CAC GGA ATT GTC AG-3’; PRKACA-KD-Rev TTG 

TCG AGG ATA TGC ATG GCA TAG TGG TTC with pLX304 Fwd 5’-CAC CAA AAT 

CAA CGG GAC TT-3’. The fragments generated were then gel purified (Qiagen) and 

combined as template for PCR with pLX304-Fwd and pLX304-Rev to generate the full-

length PRKACA-KD coding sequence containing the K72H mutation. The mutant construct 

was confirmed by sequencing.

AEE788 was a generous gift from Novartis, lapatinib (Tykerb) was purchased from Selleck 

Chemicals, ABT-263 (Navitoclax) was purchased from Toronto Research Chemicals, and 

trastuzumab (Herceptin) was purchased from the Dana-Farber Cancer Institute pharmacy.

Luminescence Assays

For ATP-based viability assays, 40 ul of Cell Titer Glo (Promega) was added to each well of 

a 96 well plate containing 100 ul media. For caspase 3/7 cleavage assays, 50 ul of Caspase 

3/7 Glo reagent (Promega) was added to wells containing 50 ul media. Luminescence was 

read 20 minutes later using Wallac Envision software. For Caspase 3/7 Glo experiments, p-

values were determined by 2-tailed paired t-test.

Immunoblot Analyses

Cells were washed with PBS and lysed on ice in RIPA buffer containing Complete protease 

inhibitor cocktail (Roche) and Phos-stop phosphatase inhibitor cocktail (Roche). Lysates 

were cleared by centrifugation at 13,000 rpm at 4 degrees C for 20 minutes and protein was 

quantified using BCA reagent (Thermo Scientific). 30–50 ug of protein lysate were run on 

Bis-Tris gels (Invitrogen) using MOPS or MES buffer (Invitrogen). Proteins were 

transferred to nitrocellulose membranes by wet transfer or by iBlot (Invitrogen) dry transfer. 

Membranes were blocked in 10% milk in 1X PBS containing 0.01% Tween 20 (PBST) and 

were incubated with antibodies in 5% milk or BSA in 1X PBST, according to manufacturers 

instructions. Membranes were washed with 1X PBST and incubated with secondary 

antibodies (Bio-Rad) in 5% milk/1X PBST at room temperature. Membranes were washed 

with 1X PBST and visualized with enhanced chemiluminescence (Amersham). Antibodies 

used were: ERBB2/Neu (Santa Cruz, #sc-7301), HRP-V5 (Invitrogen, #P/N 46-0708), HRP-

b-actin (Santa Cruz, #sc-47778 HRP), PRKACA (BD Transduction Labs, #610980), HRAS 

(Santa Cruz, #sc-29), BAD (Cell Signaling, #9268), p-BAD ser112 (Cell Signaling, #5284), 

p-BAD ser136 (Cell Signaling, #4366), p-BAD ser155 (Cell Signaling, #9297), ERK p42/44 
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(Cell Signaling, #9102), p-ERK p42/44 (Cell Signaling, #9101), AKT1 (Cell Signaling, 

#9272), p-AKT ser473 (Cell Signaling, #9271), p-b-catenin ser552 (Cell Signaling, #9566), 

p-b-catenin ser675 (Cell Signaling, #4176), b-catenin (Cell Signaling, #9562), p-GSK3 a/b 

ser21/9 (Cell Signaling, #9331), p-GSK3a ser21 (Cell Signaling, # 9316 ), GSK3 a b (Cell 

Signaling, #5676), CREB (Cell Signaling, #9197), p-CREB (Cell Signaling, #9198 ), p-

mTOR (Cell Signaling, #5536), mTOR (Cell Signaling, #2972), p-p70S6K (Cell Signaling, 

#9234), p70S6K (Cell Signaling, #9202), PIM1 (Cell Signaling, #3247), PIM2 (Cell 

Signaling, #4730).

Immunohistochemistry

Formalin-fixed, paraffin-embedded tumor samples with associated clinical information were 

obtained for analysis under Dana-Farber Cancer Institute Institutional Review Board 

Protocols 93-085 and 11-264. All subjects gave informed consent. Breast tissue microarray 

BRC961 was purchased from U.S. Biomax. PRKACA immunohistochemistry was 

performed by the Dana-Farber/Harvard Cancer Center Research Pathology core using 

standard protocols. The PRKACA primary antibody (BD Transduction Labs, #610980) was 

used at 1:1000 dilution with an overnight incubation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PRKACA confers resistance to anti-HER2 therapy and impairs apoptosis. A. Relative 

viability of screened BT474 cells containing each ORF and treated with AEE788 (top panel) 

or an shRNA targeting HER2 (bottom panel). B. PRKACA confers resistance to lapatinib. 

Cells were lentivirally-transduced with the indicated ORFs, treated with lapatinib at the 

indicated doses, and cell viability was assessed by ATP-based luminescence assay. Results 

are normalized to the DMSO control for each ORF and represent the mean and standard 

deviation (SD) of 6 replicates. C. PRKACA expression prevents lapatinib-induced cell 
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death. BT474 cells were transduced with LACZ or PRKACA constructs and subsequently 

treated with lapatinib 5 uM or DMSO. Viable cells were counted by trypan blue exclusion 5 

days after the addition of drug. Results show the mean and standard deviation of 3 

replicates. D. Lapatinib treatment results in apoptosis of BT474 (top panel) and ZR-75-30 

(bottom panel) cells, and this is partially rescued by PRKACA, PIM1, and BCL-XL. Cells 

were transduced with the indicated ORFs. Two days later lapatinib 10 uM or DMSO was 

added, and caspase 3/7 cleavage was measured 24h later by luminescent assay. Results 

represent the mean and SD of 5 replicates per cell line. For BT474, LACZ vs. PRKACA p = 

0.0002, LACZ vs. PIM1 p = 0.000007. For ZR-75-30, LACZ vs. PRKACA p = 0.0003, 

LACZ vs. PIM1 p = 0.0006.
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Figure 2. 
PRKACA does not restore MAPK or AKT signaling, but does restore BAD 

phosphorylation. A. AEE788 or lapatinib treatment decreases p-ERK and p-AKT levels in 

HER2-amplified cells, and p-ERK levels are fully restored by activated HRAS (HRASV12) 

overexpression. B. PRKACA overexpression does not restore p-ERK or p-AKT levels in 

AEE788- or lapatinib-treated cells. For both panels, BT474 cells were transduced with the 

indicated pLX304 constructs and blasticidin selected. Lapatinib, AEE788, or vehicle control 

(DMSO) was added at the indicated concentrations, and cell lysates were harvested 24 h 
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later for immunoblot analysis with the indicated antibodies. The V5 antibody identifies each 

of the V5-tagged ORFs, as indicated. C. Lapatinib or trastuzumab treatment results in loss of 

BAD phosphorylation, which is restored by PRKACA overexpression. BT474 cells were 

lentivirally-transduced with the indicated pLX304 constructs, blasticidin selected, and 

treated with lapatinib 0.1 uM or trastuzumab 10 ug/ml for 24 h. Protein lysates were 

harvested and subjected to immunoblot analysis with the indicated antibodies. The samples 

for the p-CREB and CREB immunoblots were run on the same gel, but the lapatinib and 

trastuzumab lanes were run in inverse orientation from the other panels, so the image was 

cut and re-aligned for labeling consistency with the other panels. D. BAD phosphorylation 

was restored by PRKACA overexpression in multiple HER2-positive cell lines after 

lapatinib treatment. SKBr3 and ZR-75-30 cells were lentivirally-transduced with pLX304 

constructs expressing LACZ or PRKACA, blasticidin selected, and then treated with 

lapatinib 0.1 uM or DMSO for 24 h prior to immunoblot analysis with the indicated 

antibodies.

Moody et al. Page 18

Oncogene. Author manuscript; available in PMC 2015 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
PRKACA is overexpresed in trastuzumab-resistant breast cancers. A. The kinase activity of 

PRKACA is required to confer resistance against lapatinib and for BAD phosphorylation. A 

closed (untagged) kinase-dead mutant of PRKACA (PRKACA-KD) was transduced into 

ZR-75-30 and SKBr3 cells alongside wild-type PRKACA constructs that were either V5-

tagged or closed, as well as a LACZ control. Cells were treated with lapatinib at the 

indicated doses or DMSO and viability was assessed 6 days later by ATP-based 

luminescence assay. Results are normalized to the DMSO control for each ORF and 
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represent the mean and SD of 3 replicates. B. Cells were lentivirally-transduced with 

pLX304-ORFs expressing V5-tagged PRKACA, closed PRKACA, closed PRKACA-KD, or 

LAZ. After blasticidin selection cells were treated with DMSO or lapatinib 0.1 uM for 24 h. 

Protein lysates were harvested and subjected to immunoblot analysis with the indicated 

antibodies. C. PRKACA is overexpressed in trastuzumab resistant human breast cancers. 

Immunohistochemical analysis for PRKACA expression in matched breast cancer samples 

from patients prior to any treatment (panels a, c, e) and after the development of resistance 

to trastuzumab-containing therapy (panels d, e, f). Magnification 40X.
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Figure 4. 
PIM1 and BCL-XL confer resistance to anti-HER2 treatment in HER2-positive cells, and 

blockade of BCL-2/BCL-XL partially abrogates the resistance effect of PRKACA and 

PIM1. A. ZR-75-30 cells were transduced with the indicated pLX304 constructs. Two days 

later they were treated with increasing doses of lapatinib (left panel) or trastuzumab (right 

panel), and cell viability was assessed by ATP-based luminescence assay 6 days later. 

Results are normalized to the vehicle control for each ORF and represent the mean and SD 

of 3 replicates. B. BCL-XL overexpression confers resistance to lapatinib. ZR-75-30 cells 
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were transduced with the indicated constructs. Two days later cells were treated with 

increasing doses of lapatinib, and cell viability was assessed by ATP-based luminescence 

assay 6 days later. Results are normalized to the vehicle control for each ORF and represent 

the mean and SD of 3 replicates. C. Immunoblot analysis of lysates from ZR-75-30 cells 

three days after ORF transduction in parallel with the cells used in (A) and (B) demonstrates 

exogenous expression of the indicated proteins. The anti-V5 antibody identifies each of the 

V5-tagged ORFs. D. PIM1 restores BAD ser112 phosphorylation after lapatinib treatment. 

ZR-75-30 cells were lentivirally-transduced with the indicated pLX304 constructs, 

blasticidin selected, and treated with DMSO or lapatinib 0.1 uM for 24h. Protein lysates 

were harvested and subjected for immunoblot analysis with the indicated antibodies. E. 

Pharmacological blockade of BCL-2 and BCL-XL synergizes with lapatinib treatment and 

partially abrogates the rescue effect conferred by PIM1 (top panel), PRKACA (middle 

panel), and BCL-XL (bottom panel). Two days after transduction with the indicated pLX304 

constructs, ZR-75-30 cells were treated with the indicated doses of lapatinib and ABT-263 

or DMSO. Cell viability was read out 6 days later by ATP-based luminescent assay. All 

results are normalized to the LACZ, DMSO-treated control and represent the mean and SD 

of 3 replicates. All three panels are from the same experiment using the same LACZ 

controls, but results are shown in separate graphs for ease of visualization. F. Immunoblot 

analysis of lysates from ZR-75-30 cells three days after ORF transduction in parallel with 

the cells used in (E) demonstrates exogenous expression of the indicated proteins. The anti-

V5 antibody identifies each of the V5-tagged ORFs.
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Table 1

ORF screen identifies mediators of resistance to anti-HER2 treatment. Listed are ORFs that scored ≥ 1.5 

standard deviations above the median of all ORFs for their ability to confer resistance to the anti-HER2 

tyrosine kinase inhibitor AEE788 or an shRNA targeting HER2. ORFs that are listed in bold scored greater 

than two standard deviations above the median in one screen and at least greater than 1.5 standard deviations 

above the median in the other screen.

AEE788, > Median + 2 STDEV shHER2, > Median + 2 STDEV

Gene Relative Viability Gene Relative Viability

FGR 0.889 HRASV12 1.033

HRASV12 0.870 STYK1 0.391

LIMK2 0.774 MEKDD 0.390

RP6-213H19.1 0.690 MAP2K6 0.351

PRKACA 0.624 PIM2 0.343

BLK 0.591 PIM1 0.324

PIM1 0.585 DDR1 0.315

ERBB3 0.579 KRASV12 0.314

PIM2 0.553 PRKACA 0.306

KRASV12 0.550 CRKL 0.304

AKT1 0.543 LYN 0.291

MEKDD 0.538 JAK2 0.290

HIPK1 0.529 ABL2 0.290

TNK1 0.523 AKT3 0.286

AKT1 0.285

ABL1 0.283

MAP3K15 0.282

PTK2B 0.272

FER 0.267

AK1 0.267

AEE788, > Median + 1.5 STDEV shHER2, > Median + 1.5 STDEV

Gene Relative Viability Gene Relative Viability

DAPK3 0.516 HIPK4 0.265

MAP2K6 0.515 YES1 0.264

LOC646505 0.514 CDKL4 0.263

DYRK1B 0.514 SNX16 0.260

CRKL 0.509 KHK 0.258

NLK 0.500 LYK5 0.258

NEK5 0.498 ROR2 0.257

PRPS2 0.497 TSSK6 0.256

AKT3 0.491 NME3 0.255

RPS6KA6 0.253

NRBP 0.252
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