
LAD-GCN: Automatic diagnostic
framework for quantitative
estimation of growth patterns
during clinical evaluation of lung
adenocarcinoma

Wei Xiao1*, Yanyun Jiang2, Zhigang Yao3, Xiaoming Zhou1,
Xiaodan Sui2 and Yuanjie Zheng2

1Shandong Provincial Hospital, Shandong University, Jinan, China, 2School of Information Science and
Engineering, Shandong Normal University, Jinan, China, 3Department of Pathology, Shandong
Provincial Hospital Affiliated to Shandong First Medical University Department of Pathology, Shandong
Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China

Quantitative estimation of growth patterns is important for diagnosis of lung

adenocarcinoma and prediction of prognosis. However, the growth patterns of

lung adenocarcinoma tissue are very dependent on the spatial organization of

cells. Deep learning for lung tumor histopathological image analysis often uses

convolutional neural networks to automatically extract features, ignoring this

spatial relationship. In this paper, a novel fully automated framework is

proposed for growth pattern evaluation in lung adenocarcinoma.

Specifically, the proposed method uses graph convolutional networks to

extract cell structural features; that is, cells are extracted and graph

structures are constructed based on histopathological image data without

graph structure. A deep neural network is then used to extract the global

semantic features of histopathological images to complement the cell

structural features obtained in the previous step. Finally, the structural

features and semantic features are fused to achieve growth pattern

prediction. Experimental studies on several datasets validate our design,

demonstrating that methods based on the spatial organization of cells are

appropriate for the analysis of growth patterns.
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1 Introduction

Lung cancer is a malignant tumor originating from the

bronchial mucosa or glands of the lungs that poses a great

threat to human health and life. In recent years, many

countries have reported significant increases in rates of lung

cancer; in men, lung cancer has the highest morbidity and

mortality among all malignant tumors (Ferlay et al., 2020).

The 5-year survival rate of patients with lung cancer is

relatively low at 19%, mainly owing to the high risk of distant

metastasis (Hirsch et al., 2017; Mayekar and Bivona, 2017).

Adenocarcinoma is the most common histopathological type

of lung cancer and accounts for up to 40% of lung cancer cases

(Cheng et al., 2016).

According to the 2011 IASLC/ATS/ERS lung

adenocarcinoma classification, lung adenocarcinoma has five

predominant growth patterns: lepidic, papillary, acinar,

micropapillary, and solid (Travis et al., 2011). Accurate

determination of growth patterns and proportions from

whole-slide images (WSIs) has crucial clinical implications

for diagnosis, subsequent treatment, and prognosis. The

World Health Organization recommends that invasive

adenocarcinoma should be semi-quantitatively estimated in

5% increments with respect to the various growth patterns

on histopathological slides (Travis et al., 2015). Typically, this

work involves visual inspection by experienced pathologists

through a microscope, which is a very time-consuming and

labor-intensive process (Gurcan et al., 2009). In particular,

semi-quantitative estimates of growth patterns are required;

however, traditional methods only allow estimation and not

quantification. WSI technology and computer-aided diagnosis

provide an effective strategy for lung adenocarcinoma

diagnosis, which can be used as an auxiliary basis for

manual evaluation and to alleviate the shortage of

pathologists. In this work, we focus on the identification and

quantification of lung adenocarcinoma tissue growth patterns

from WSIs. This is expected to help pathologists to make rapid

diagnoses in practical clinical applications and provide a basis

for subsequent treatment. However, identifying growth

patterns is challenging because of the high intraclass

variation and low interclass distinction among patterns. As

shown in, Figure 1, the spatial structure of lung cancer cells has

complicated characteristic manifestations; for instance, cells in

the lepidic growth pattern grow along alveolar walls in a lepidic

fashion, and the acinar growth pattern has well-defined

individual tumor glands with well-formed glandular lumina.

Recently, owing to the enormous potential of deep learning,

many convolutional neural network (CNN)-based methods have

emerged that can automatically extract more beneficial features

for classification compared with hand-crafted features (Szegedy

FIGURE 1
Pictures of typical growth patterns. Left: An example of an HandE-stained digital pathology image with manual segmentation of growth
patterns, where red is the lepidic growth pattern and green is the acinar growth pattern. Right: Five common growth patterns (lepidic, papillary,
acinar, micropapillary, and solid).
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et al., 2016; Coudray et al., 2018; Šarić et al., 2019; Noorbakhsh

et al., 2020; Yu et al., 2020; Fan et al., 2021). For example,

Coudray et al. (2018) used an Inception v3 architecture (Szegedy

et al., 2016) to learn a parametric function to automatically

classify lung tumor subtypes (adenocarcinoma and squamous

cell carcinoma) and predict mutations using a dataset from The

Cancer Genome Atlas. Yu et al. (2020) built a CNN model to

identify tumor regions from whole-slide histopathology images,

achieving an area under the curve value (AUC) > 0.935, and used

the proposedmodel to predict pathologists’ diagnoses. Kalra et al.

(2020) presented a memory-based exchangeable model that

could learn interdependencies among instances through a self-

attention mechanism, achieving a competitive accuracy of

84.84% for the classification of lung adenocarcinoma and

squamous cell carcinoma. Although CNN can automatically

encode rich semantic features contained in captured images,

the analysis of histopathological images often focuses on local

features, which leads to biased learning. The main reason for this

is that the interclass differences among tissue growth patterns are

small, that is, cancer cells with different tissue growth patterns

show no obvious visual differences. Furthermore, intraclass

differences in tissue growth patterns are evident, and models

need to cope with altered tumor tissue and cell diversity.

Therefore, as well as understanding the semantic features of

an image, an algorithm designed for classification of lung tumor

histopathological images needs to be able to analyze the spatial

structure between cancer cells. Graph convolutional networks

(GCN) (Kipf andWelling, 2016), variants of CNN that transform

data into spatially structured features, have recently become a

popular choice for processing structured data in the field of

computer vision. Some studies have proposed the use of GCN to

analyze histopathological images. For example, Li et al. (2018)

proposed a GCN for WSIs, which obtains graph nodes by

sampling representative patches and extracting features for

survival prediction. Adnan et al. (2020) introduced attention

through graph pooling to infer relations among sampled patches

and applied multiple instance learning to classify lung cancer

subtypes. Zhou et al. (2019) developed CGC-Net, which converts

a large histology image into a graph, where each graph node is a

nucleus and the connecting edges of the nodes represent the

similarity between nuclei. Wang et al. (2020) also segmented the

cell nucleus and extracted topological composition graphs for

tumor microenvironment analysis in renal cell carcinoma and

patient outcome prediction; however, they did not use GCN.

Inspired by the above methods, in this work we designed a

novel deep learning framework, called LAD-GCN (lung

adenocarcinoma diagnosis GCN), which aggregates the

advantages of GCN and CNN for analyzing histopathology.

Specifically, to capture complex tumor microenvironment

information and semantic information of entire image

patches, we designed a model with two independent feature

extraction branches as follows. 1) The GCNmodule, including

a polar representation-based instance segmentation model

(Xiao et al., 2021), is used to extract all the cell nuclei

contained in the histopathological patch and extract a

nuclear feature composition map, which is used as an input

to the GCN network to extract cell structural features. 2) The

CNN module directly extracts semantic information from the

whole patch to supplement the information loss of the GCN

module. Then, the cell structural features extracted by the

GCN branch and the image patch semantic features extracted

by the CNN branch are fused. Compared with the CNN-only

models that are widely used in image classification tasks,

LAD-GCN could provide complementary semantic and cell

structural information during feature extraction. Finally, we

quantitatively evaluated the proposed method on a private

dataset of lung adenocarcinoma postoperative formalin-fixed,

paraffin-embedded (FFPE) tissue slides. The results

demonstrate that our method is able to capture features

that are beneficial for growth pattern typing. Our major

contributions can be summarized as follows.

1. In response to the problem of the small interclass differences

in tissue growth patterns that mean there are no obvious

visual differences among cancer cells with different growth

patterns, we developed a novel GCN-based framework for

analysis of the histopathological growth patterns of lung

adenocarcinoma. The proposed method adopts a polar

representation-based instance segmentation model to

segment the nucleus and uses GCN to extract cell spatial

structural features.

2. To overcome the limitations of a single feature extraction

module, we designed a dual-network joint analysis method:

the GCN branch extracts the spatial structural features of cells,

while the CNN branch complements these with the extraction

of semantic features of patches.

3. We validated the proposed method on a private lung

adenocarcinoma WSI dataset, demonstrating the

effectiveness of the architecture.

2 Materials and methods

2.1 Materials

Our histopathological image dataset contained data obtained

from 243 lung adenocarcinoma patients at Shandong Provincial

Hospital; for each patient, there was one FFPE image of the

tumor area, stained with hematoxylin and eosin (HandE) and

scanned at 20× and 40× magnification with a pixel scale of

0.23 μm × 0.23 μm. All samples represented postoperative

pathology, including tumor tissue slides, normal tissue slides,

and slides containing the border between normal and tumor

tissue. In this dataset, all data were positive samples, that is, slides

containing tumor tissue. The tumor/non-tumor area and five

histological patterns (lepidic, acinar, papillary, micropapillary,
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and solid) were manually delineated by an experienced oncology

pathologist.

To make the algorithm more effective, we built a

segmentation model based on U-Net (Ronneberger et al.,

2015) to achieve tumor region extraction; the process is

shown in Figure 2. Specifically, for the images in the dataset,

both tumor and non-tumor regions were manually annotated by

pathologists. We derived 2× magnification WSIs, which were

full-coverage images, and trained the U-Net backbone in a

traditional fully supervised manner with a cross-entropy loss

function (Xie and Tu, 2015) to predict tumor regions in theWSIs.

It is worth noting that the size of the original pathological images

was non-uniform, and the model was able to achieve region

prediction in images of any size.

2.2 Overview of the LAD-GCN
architecture

Figure 3 provides an overview of our automatic diagnosis

framework. As shown in the figure, instead of directly

extracting features using a CNN, we developed both CNN

and GCN feature extractors simultaneously. The inputs are

patches from digitized postoperative FFPE tissue slides, and the

output is the predicted growth pattern type. The whole process

consists of three parts. 1) GCN module: a polar representation-

based instance segmentation model is used to segment all the

cell nuclei contained in the histopathological patch; the nuclear

features are extracted to form a composite map that can be used

as the input to the GCN; and then GCN are used to extract cell

spatial structure features. 2) CNN module: semantic feature

extraction is performed using a CNN, VGG16 (Simonyan and

Zisserman, 2015). 3) Feature fusion: cell spatial structural

features and semantic features are fused for tumor growth

pattern prediction.

2.3 Spatial feature encoding with GCN

In histopathology images, each cell has its own characteristic

information, and there is structural information between cells. To

extract this information, we segment out the nuclei and construct

a graph of the tumor microenvironment for graph convolution

operations. Specifically, we first extract all the nuclei contained in

the patch and calculate the centroids of the nuclei to define the

graph node set V; then extract the nuclei features, use K-nearest

neighbors (KNN) (Muja and Lowe, 2009) to find the connections

between adjacent cells to define the edge set A (Chen et al., 2020);

FIGURE 2
Schematic representation of data processing; we used U-Net as the backbone to segment tumor regions.

FIGURE 3
Overview of the proposed diagnostic methods for lung adenocarcinoma.
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and, finally, use GCN to learn the graph depth spatial structural

features.

2.3.1 Nuclei segmentation module
The major purpose of the nuclei segmentation module is to

extract the various nuclei contained in the input image patch,

which includes normal cells, tumor cells, and stromal cells. The

cell nuclei produced by the nuclei segmentation module are then

constructed as a graph and fed into a GCN module for spatial

feature extraction. To achieve this aim, we use a polar

representation-based instance segmentation model (Xiao et al.,

2021) from our previous work to learn the segmentation of

nuclei; this model leverages fully convolutional one-stage

object detection and consists of a backbone network, feature

pyramid network, and task-specific heads. Specifically, when we

input an original image via the proposed network, the position of

the cell center point and the distance of n (n = 36) root rays can be

obtained; then, the coordinates of these points on the contour are

calculated according to the angle and length, connecting these

points starting from 0°; and, finally, the regions within the

connected regions are taken as the results of instance

segmentation. The nuclei segmentation module models a

contour based on the polar coordinate system and transforms

the instance segmentation problem into an instance center

classification problem and a dense distance regression

problem (Xie et al., 2020); thus, the network only needs to

return to the length of the fixed angle, which reduces the

difficulty of the problem. Through the prediction of the

segmentation module, we obtain the mask of the nuclei, and

the second column in Figure 4 shows the result of the nuclei

segmentation.

2.3.2 Cell feature extraction and construct graph
A feature matrix for graph convolution is generated based on

the nuclear segmentation map generated in the previous step. It is

used for two main processes: cell feature extraction and graph

construction. In the first of these processes, the PyRadiomics

package (Van Griethuysen et al., 2017) in Python is used to

generate features corresponding to each cell, including eight

shape features and four textural features. The shape features

include major axis length, minor axis length, angular orientation,

eccentricity, roundness, area, and solidity. The textural features,

obtained from gray-level co-occurrence matrices, are

dissimilarity, homogeneity, angular second moment, and

energy. In addition, we use contrastive predictive coding

(Henaff, 2020) to encode features of 64 × 64 image patch

regions centered on the centroids of cell nuclei.

In the second process, we connect the nuclei into a graph,

using the centroid of each nucleus as a graph node, and use the

KNN algorithm to build the edge set A of the graph. Specifically,

in principle, each nucleus should have contact with the other

nuclei, and the nearest neighbor cells are considered to have

obvious intercellular interactions. The adjacency matrix is

defined as:

aij � 1, if j ∈ KNN i( ) andD i, j( )<d
0, otherwise,

{ (1)

where j ∈ KNN(i) denotes the K instances closest to instance i.

In this work, we set K = 5. D (i, j) indicates the Euclidean

distance between two nucleus instances. Thus, we obtain the

input for the GCN, the set of nodes and edges G = (V, A).

Figure 4 shows the nuclear segmentation results and the graph

structure constructed based on these results for three sample

patches.

2.3.3 GCN module
The cell structural information used to construct a graph is

very suitable for GCN-based feature extraction. To simplify the

operation, we use a spatial-based GCN, where the convolution

operation is defined as:

H l+1( ) � σ ~D
−1/2 ~A ~D

−1/2
H l( )W l( )( ), (2)

in whichH(l) ∈ Rm×k(l) denotes the k(l)-channel features at the lth

layer, σ(.) denotes an activation function, and W(l) is the trainable

weight matrix of each layer. ~A � A + IN is the adjacency matrix of

the undirected graph with added self-connection, and IN is the

identity matrix.

FIGURE 4
Three sample patches of cell nuclei structures. First column:
typical patches from lung tumor histopathological images. Second
column: nuclei segmentation mask from nuclei segmentation
module. Third column: graph nodes and edges.

Frontiers in Physiology frontiersin.org05

Xiao et al. 10.3389/fphys.2022.946099

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.946099


2.4 Semantic feature encoding with CNN

The purpose of semantic feature encoding is to encode the

semantic features of an entire image patch, which can be used to

mine the overall information contained in the image block and as

supplementary information regarding the spatial structure of

cells. In this work, we apply VGG16 (Simonyan and Zisserman,

2015) as a feature extractor for the CNN, which consist of a

convolutional layer, ReLU, max pooling, and fully connected

layer. The model structure is shown as the “CNN module” in

Figure 3. The size of the input feature map for each pooling

operation is 1/2 that of the previous layer. Finally, the semantic

feature encoding the CNNmodule outputs a feature vector with a

length of 1,024.

2.5 Multimodal tensor fusion

In many approaches, the features extracted by multiple

networks are superimposed onto a set of features through a

concatenation operation, followed by convolution operations.

However, such approaches are only suitable for extraction of

features of the same type. Here, the image semantic features are

extracted as a set of feature maps by CNN, and cell structure

features are extracted as nodes and edges by GCN. To integrate

these multimodal features, we recommend using kronecker

product (Zadeh et al., 2017), a feature fusion method for

modeling multi-feature interaction. The fusion module

combines multimodal tensors through outer product

calculation, which can be formulated as:

hfusion � hc ⊗ hs, (3)
where ⊗ is the outer product; hc and hs denote cell graph and

semantic features, respectively, and hfusion is a differential

multimodal tensor formed in a three-dimensional Cartesian

space. After aggregating the multimodal tensors, we use a

fully connected layer for the next feature operation. In

addition, we adopt a gating-based attention mechanism

(Arevalo et al., 2017) to limit the fusion proportion of

different modal features. For each modality feature hm, ∀m ∈
{c, s}, we learn a linear transformation Wcs→m for the weight

matrix parameters. The importance score of each feature is

defined as zm � σ(Wcs→m · [hc, hs]). Subsequently, the gated

representation hm, gated can be calculated as:

hm, gated � zmphm,∀m ∈ c, s{ }, (4)

where hm � ReLU(Wm · hm) denotes the feature after

activation by ReLU. Through this gated attention

mechanism, the expressive ability of each modality feature

can be controlled, and the size of the feature space is also

reduced before feature fusion.

2.6 Loss function

The loss function for LAD-GCN is the standard cross-

entropy loss:

TABLE 1 Effects of each module in our LAD-GCN design. Bold font indicates best result obtained for predictions.

Growth pattern Methods CNN GCN P (%) R (%) F1S (%)

Lepidic CNN module ✓ 90.64 87.76 89.18
GCN module ✓ 84.55 78.55 81.44
LAD-GCN ✓ ✓ 90.26 89.83 90.04

Acinar CNN module ✓ 89.79 87.24 88.50
GCN module ✓ 83.61 85.98 84.78
LAD-GCN ✓ ✓ 89.27 90.39 89.83

Papillary CNN module ✓ 85.17 79.78 82.39
GCN module ✓ 83.33 81.52 82.42
LAD-GCN ✓ ✓ 87.15 85.80 86.47

Micropapillary CNN module ✓ 79.56 89.44 84.21
GCN module ✓ 85.63 89.03 87.30
LAD-GCN ✓ ✓ 86.53 86.80 86.67

Solid CNN module ✓ 98.17 98.02 98.10
GCN module ✓ 95.85 97.33 97.07
LAD-GCN ✓ ✓ 98.34 98.78 98.56

TABLE 2 Comparison of the performances of each module in terms of
accuracy.

Methods Accuracy (%)

CNN module 88.49

GCN module 86.71

LAD-GCN 90.35
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min
P

L � −∑B
b�1

pb logqb, (5)

where A represents the total number of image patches, and pb
and qb = pmodel (y|b) indicate the target labels and the

predicted class distribution produced by the model for

input b, respectively. The whole training process of the

network is performed in an end-to-end manner.

3 Experiments and results

3.1 Implementation details

For the GCN module, we first use a pre-trained nuclei

segmentation module to extract various nuclei from each

patch, and train the GCN model classifiers. We train the

CNN module and GCN module using the Adam optimizer

with an initial learning rate of 0.001 and a batch size of 64.

For the proposed LAD-GCN, the trained GCN module and

CNN module are then fine-tuned for 100 epochs with a

learning rate of 0.00001. All our modules were

implemented with PyTorch and trained on four NVIDIA

Tesla A100 GPUs.

3.2 Evaluation metrics

We employed four metrics for performance evaluation

of the baseline classification model, GCN module, CNN

module, and the proposed LAD-GCN: precision, recall,

F1-score, and accuracy. These performance metrics can

be understood by considering four terms: true positives

(TP), true negatives (TN), false positives (FP), and false

negatives (FN). The precision (P) and recall (R) were

defined as:

P � TP

TP + FP
, (6)

and

R � TP

TP + FN
. (7)

FIGURE 5
Typical histopathological image analysis results obtained with three networks. Red, green, yellow, blue, and cyan masks represent lepidic,
acinar, papillary, micropapillary, and solid growth patterns, respectively. (A) Example of histopathological images. (B) Ground truth by pathologists.
(C,D,E) Typical histopathological image analysis results obtained with three networks: (C)CNN, (D)GCN and (E) LAD-GCNs. Red, green, yellow, blue,
and cyan masks represent lepidic, acinar, papillary, micropapillary, and solid growth patterns, respectively.
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We further measured the F1 score (F1S), which combines

precision and recall, defined as:

F1S � 2TP
2TP + FP + FN

. (8)

In addition, we calculated the accuracy of five growth

patterns, defined as:

Accuracy � TP + TN

TP + TN + FP + FN
. (9)

3.3 Ablation study

To verify the effectiveness of the CNN module and GCN

module in lung tumor histopathological image analysis, we

conducted an ablation study. The results are shown in Table 1

and Table 2. The CNN module demonstrated greater ability in

the analysis of lepidic and acinar growth patterns, whereas the

GCN module could better capture the micropapillary

structure. Both modules worked well for identifying solid

growth patterns, possibly because the tumor cells were

densely packed and lacked characteristic patterns of

adenocarcinoma. The proposed model (LAD-GCN) fuses

semantic features and spatial features. Although it could

not achieve optimal results in the analysis of every growth

mode, its performance was stable. It achieved an accuracy of

90.35%, which was more than 1.8% better than that of the

CNNmodule, and more than 3.6% better than that of the GCN

module.

Figure 5 shows the results of histopathological image

analysis of four images, which included lepidic, acinar,

papillary, micropapillary, and solid growth patterns. The

GCN and CNN modules produced very similar masks to

the manual ground truth; however, LAD-GCN could still

provide a subtle improvement. As shown in the figure, the

areas predicted by the deep learning model were often larger

than those obtained by manual labeling; this was because

manual annotation focused on regions typical of particular

growth patterns, whereas the trained deep learning model

could predict both typical and atypical growth pattern regions.

Pathologists perform semi-quantitative assessments of growth

patterns when analyzing histopathological images of lung

adenocarcinomas. This process is very dependent on the

subjective evaluation of individuals and is difficult to

quantify. The trained model could predict the type of

growth pattern for each small patch region, enabling

quantification of types across the entire histopathological

image.

4 Discussion and conclusion

In this study, we proposed the LAD-GCN framework, which

consists of a GCN module and a CNN module, for the task of

lung adenocarcinoma growth pattern prediction. The GCN

module captures the spatial structural features between cells,

whereas the CNN module captures semantic features of whole

patches; these features can be fused to predict growth patterns. In

particular, our proposed model showed significantly enhanced

performance in lung adenocarcinoma growth pattern prediction

tasks. In the future, our goal is to combine image analysis with

patient medical records to predict medication and prognostic

status, and to apply our LAD-GCN framework to other

histopathological WSI analysis tasks such as images of breast,

kidney, and brain.
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