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DynOmics to identify delays and 
co-expression patterns across time 
course experiments
Jasmin Straube1,2, Bevan Emma Huang3,* & Kim-Anh Lê Cao2,*

Dynamic changes in biological systems can be captured by measuring molecular expression from 
different levels (e.g., genes and proteins) across time. Integration of such data aims to identify 
molecules that show similar expression changes over time; such molecules may be co-regulated and 
thus involved in similar biological processes. Combining data sources presents a systematic approach 
to study molecular behaviour. It can compensate for missing data in one source, and can reduce false 
positives when multiple sources highlight the same pathways. However, integrative approaches must 
accommodate the challenges inherent in ‘omics’ data, including high-dimensionality, noise, and timing 
differences in expression. As current methods for identification of co-expression cannot cope with 
this level of complexity, we developed a novel algorithm called DynOmics. DynOmics is based on the 
fast Fourier transform, from which the difference in expression initiation between trajectories can be 
estimated. This delay can then be used to realign the trajectories and identify those which show a high 
degree of correlation. Through extensive simulations, we demonstrate that DynOmics is efficient and 
accurate compared to existing approaches. We consider two case studies highlighting its application, 
identifying regulatory relationships across ‘omics’ data within an organism and for comparative gene 
expression analysis across organisms.

High-throughput ‘omics’ platforms such as transcriptomics, proteomics, and metabolomics enable the simultane-
ous monitoring of thousands of biological molecules (transcripts, proteins, and metabolites), typically through a 
single static experiment1. The recent decrease in cost of such technological platforms has made possible the study 
of dynamic biological processes by instead quantify molecules at several time points. This allows deeper insight 
into the behaviour of the molecules in situations ranging from developmental processes to drug response. These 
time course ‘omics’ experiments enable the identification of regulators, and may give a better understanding of 
the structure and dynamics of biological systems.

The statistical analysis of dynamic ‘omics’ experiments is difficult. Applying traditional statistical methods for 
static experiments is limited, since each time point will be treated as independent, ignoring potentially important 
correlations between sampling times. Indeed, realising the potential power offered in time course studies to inves-
tigate a wide variety of changes is nontrivial. Analytical challenges are further complicated by noise, small sample 
sizes per time point, and few sampled time points. In the past decade, several methods have been proposed to 
analyse time course ‘omics’ data, with a particular focus on microarray and RNA-Seq data. These methods per-
form differential expression analysis using spline fitting2,3, Bayesian methods4–7, Gaussian processes8–10, and a 
two-step regression approach (maSigPro11). Other methods focus on clustering expression profiles to identify 
co-expressed trajectories, e.g., a subset of molecules for which expression changes occur simultaneously across 
time3,7,12–16. Targeted co-expression analysis can also be performed using various model-based applications to 
retrieve data sets from databases given specific query data17–19. Finally, a third category of methods was proposed 
based on biological pathway analysis20,21 see the detailed review of Spies et al.22. Co-expression analysis can pro-
vide valuable insight into the role of molecules during biological processes23–25, but faces significant challenges in 
dealing with different types of ‘omics’ and their variation in molecular response times. These timing differences 
or delays in the initiation or suppression of molecule expression are a common phenomenon in biology and 
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occur across both different molecular levels and organisms. For example, the study of regulatory processes after 
environmental changes has revealed that there is often a measurable delay from the time of signal introduction 
to molecular response23,24,26–28. This can result from differences in the reaction kinetics between an enzyme and 
its substrate, presence of an inhibitor, or altered binding affinities of transcription factors. Such processes can be 
studied through time course miRNA and mRNA data, since miRNAs play an important role in gene translation 
regulation in many organisms, through either mRNA translation inhibition or mRNA degradation29. This ability 
of miRNAs to fine tune gene expression and translation in a broad range of important biological processes is of 
broad interest in medicine30–32. While correlation analysis is frequently used to analyse miRNA-mRNA time 
course data33,34, it may have limited power in situations where delayed dynamic expression changes of miRNAs 
relative to mRNA have been observed30,35.

Delays can also hinder gene expression comparisons across organisms, since even highly conserved processes 
may vary in timing. The pre-implantation embryonic development (PED) is a highly conserved process across 
mammals, reflected through the progression of the same morphologic stages36. Nevertheless, attempts to compare 
PED in mammals based on gene expression data have faced challenges due to differences in timing of genome 
activation and regulatory processes37. Hence ignoring these delays in co-expression analysis can mask true asso-
ciations; the first step should instead be to detect and quantify the time delay between molecules. This will enable 
identification of functionally related molecules regardless of the differences in the timing of expression changes, 
as well as allowing quantification of similarities and differences between the observed responses in more detail.

To date, very few methods for time course ‘omics’ data account for time delay between molecule expression 
levels. Aijo et al.10 recently proposed DynB, a set of methods based on Gaussian processes, to quantify RNA-Seq 
gene expression dynamics. This allows rescaling of time profiles, but only between replicates (i.e., at the sample 
level) rather than at the molecule expression level. The most commonly used approach for molecules is to con-
sider the Pearson correlation34,38, despite its obvious limitations for detecting co-expressed molecules when their 
expression change occurs at different time points. Lagged Pearson correlation, a.k.a. Pearson cross-correlation 
for lagged time series, circumvents this limitation by introducing artificial delays or lags in the time expression 
profiles for every possible time shift. The method eventually applies the delay that maximises the correlation with 
the original profile, but can be prone to overestimation of delay.

More sophisticated approaches for time course ‘omics’ data come at the expense of computational cost.  
Shi et al.39 proposed an probabilistic model based on multiple datasets tabular combinations to identify pairwise 
transcription factor and gene (TF-G) pairs under different experimental conditions. This approach has shown 
to reduce false positive predictions but requires a time consuming learning step on existing and known TF-G 
pair data39. Dynamic Time Warping (DTW)40–42 is an algorithm that aligns the time points of two trajectories to 
minimise the distance between them. It can therefore identify similarities between trajectories which may vary 
in phase and speed. One variation, DTW4Omics24 identifies co-expressed molecules with a permutation test, 
but this can be computationally expensive. An alternate approach25 utilises a combined statistic based on Hidden 
Markov Models (HMM) and Pearson correlation. HMMs are trained on a set of trajectories where a distribution 
of values is considered for each time point. This generates a probability to observe a trajectory under the trained 
model that can tolerate small delays. While promising, this approach cannot detect large delays. Additionally, 
both it and DTW4Omics can only identify positively correlated trajectories, requiring heavier computational 
costs to exhaustively explore potential associations.

While integrating time course experiments from different ‘omics’ functional levels is the key to identifying 
dynamic molecular interactions, its challenging nature has thus far prevented much methodological develop-
ment. Difficulties lie not only in the computation required by complex algorithms, but also in variation in types 
of correlation, levels of noise in the expression profiles, and the delays themselves.

We present DynOmics, a novel algorithm to detect, estimate, and account for delays between ‘omics’ time 
expression profiles. The algorithm is based on the fast Fourier transform (FFT)43, which has already been shown 
to successfully detect periodically expressed genes in transcriptomics experiments44–46. By combining the FFT 
angular difference between reference and query trajectories with lagged Pearson correlation, we are able to char-
acterise the direction and magnitude of delay, whether the reference and query are positively or negatively corre-
lated. After accounting for the estimated delays, similar profiles can be clustered for further insight. Simulation 
results show that DynOmics outperforms current methods to detect time shift, both in terms of sensitivity and 
specificity. We apply it to two biological case studies: one focusing on the integration of miRNAs and mRNAs in 
mouse lung development, and one on the conservation of gene molecular processes across multiple organisms 
(mouse, bovine, human) during PED. In both cases, DynOmics is able to unravel timing differences between 
‘omics’ functional levels, demonstrating its wide applicability. DynOmics is implemented in the open source 
programming language R and is freely available via CRAN47. Our repository and user manual are also available at 
the following link https://bitbucket.org/Jasmin87/dynomics.

Material and Methods
The expression changes of molecules monitored in time course experiments often form simple temporary, 
sustainable or cyclic patterns that can be modelled as mixtures of oscillating/cyclic patterns using the discrete 
Fourier transform (FT)48. We introduce DynOmics, a novel method that first converts trajectories to the fre-
quency domain using the FFT, from which it extracts the frequency of the main cyclic pattern. Condensing the 
trajectory to information on the main frequency is then used to identify whether two trajectories are related or 
associated, while ignoring the noise in each time expression profile.

Fourier Transform. For a given time series x =  (x1, … , xt, … xT), measured at time points t =  1, … T, the FT 
decomposes x into circular components or cyclic patterns for each frequency k =  1, … , T −  1 as:

https://bitbucket.org/Jasmin87/dynomics
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As the amplitude at frequency k =  0 simply describes the y-axis offset (i.e., the global differences of expression 
levels), this frequency is not included in our analysis context. Equation (1) can be written with polar coordinates 
with real part a and imaginary part b as Xk =  ak +  bki.

For each frequency k =  1, … , T −  1 we can calculate the amplitude rk of the component as = +r a bk k k
2 2 . The 

amplitude reflects the contribution of the kth cyclic pattern to the overall trajectory, and the pattern with maxi-
mum amplitude rk describes the main shape of the time series. The argument Arg(Xk) is the offset of the cyclic 
pattern, defined as:
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We can transform the argument to the phase angle (delay) φk in degrees by:
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Together, the amplitude and phase angle describe each frequency component, and the set of these quantities is 
known as the frequency domain representation.

DynOmics. We describe DynOmics, a novel method to estimate delays between a reference x and query y 
given in frequency domain representation. First, we identify K as the frequency of the pattern with maximum 
amplitude for x, i.e., the main reference pattern frequency. Then, for both x and y, we extract phase angles at this 
frequency φx =  φxK, φy =  φyK and define Δ xy =  φx −  φy as the difference between the phase angles. In FFT literature, 
Δ xy is often expressed in the range of [− 180, 180]. To simplify representation in DynOmics, when Δ xy <  0, we add 
360 so that Δ xy is in the range of 0 to 359. Δ xy indicates both the sign of the correlation between x and y and the 
sign of the delay, as seen in Fig. 1. The trajectories x and y can be either positively (Fig. 1a,b,f) or negatively cor-
related (Fig. 1c,d,e), with a delay that we refer to as negative, i.e., the reference x is prior to the query y (Fig. 1b,e) 
or positive, i.e., the reference x is delayed with respect to the query y (Fig. 1c,f). Specific angular difference cases 
include when Δ xy =  0 (positive correlation, but no delay, Fig. 1a) and when Δ xy =  180 (negative correlation, no 
delay, Fig. 1d). We can estimate the delay between two trajectories based on the FT frequency, the length of the 
time series and Δ xy as
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∆
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K
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lapse these values to the range of 


− 


,T

K
T
K4 4

 by setting δ δ= −xy xy
T
K

 when 270 ≤  Δ xy ≤  359, and δ δ= −xy xy
T
K2

 
when 90 ≤  Δ xy ≤  270. We note that for query profiles either positively or negatively correlated with the reference, 
this means that δxy <  0 represents positive delay, and δxy >  0 represents negative delay.

Using lagged Pearson correlation to increase accuracy in delay estimation. The delay estimate based on the angu-
lar difference presented above is based on approximating both the reference and query by the pattern at the main 
frequency for the reference. This approximation works well when the signals from both query and reference are 

Figure 1. Relationship between angular differences, correlation and delay for a reference trajectory x (red 
dots) and a query trajectory y (green line). The trajectories are (a) positively correlated with no delay (Δ xy =  0); 
(b) positively correlated with negative delay (0 <  Δ xy ≤  90); (c) negatively correlated with positive delay (90 <  Δ 
xy <  180); (d) negatively correlated with no delay (Δ xy =  180); (e) negatively correlated with negative delay 
(180 <  Δ xy <  270); (f) positively correlated with positive delay (270 ≤  Δ xy <  360).
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dominated by that main pattern and relatively ‘noise-free’. However, when multiple frequencies have substantial 
contributions to the overall signal, we can improve the estimate by maximising the lagged Pearson correlation 
coefficient over small perturbations in the delay.

Specifically, let δ δ= 

xy0  denote our initial delay estimate, rounded to the closest integer. Let  be a set of lags 

{l} representing perturbations to this initial delay estimate. For each lag, we construct trajectories xl and yl by  
shifting the original trajectories so that if l <  0, xl =  x1+|l|, … , xT and yl =  y1, … , yT−|l|; if l >  0, conversely, xl =  x1, … , 
xT−|l| and yl =  y1+|l|, … , yT. The (lagged) Pearson correlation coefficient between the two trajectories xl and yl is 
defined as:
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where xl (yl) is the sample mean across time points for each trajectory. We determine the optimal delay for a given 
set of lags as that for which the Pearson correlation coefficient is maximised:
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where δ1 is the result of the optimization over ∈l 1. These two optimisations thus allow us to compare the initial 
estimate with that in the opposite direction, and then with delays in a local neighbourhood. While the optimisa-
tions do increase the computation required, our restriction to local perturbations minimises the additional com-
putation while improving the estimate in the presence of noise.

Sensitivity and specificity of DynOmics compared to other studies. We compared DynOmics performance with 
current available methods (DTW4Omics24, Pearson and lagged Pearson correlation) using measures of sensitivity 
and specificity while identifying associations in simulated data. The threshold for correlation measurement was 
> 0.9 and p-values <  0.05 after FDR correction for multiple testing. The simulated data were generated based on 
similar scenarios to25 with different parameters. We simulated different expression patterns with different delays 
(− 2, 1, 0, 1, 2) as well as different noise levels σ σ = . . . .(0, ); 0 1, 0 2, 0 3, 0 52 . We also simulated different num-
ber of time points (7 and 14 times points). A number of 7 times points characterises best conventional ‘omics’ 
time course experiments.

We observed that for the simulated scenario with 7 time points, DynOmics increased sensitivity compared 
to commonly used methods by at least 8%, while still remaining highly specific (> 0.9). With 14 time points, all 
methods performed similarly, including DynOmics. Pearson correlation which does not take time delays into 
account performed the worst in terms of sensitivity in all scenarios, demonstrating that ordinary correlation 
measures are not sufficient to detect associations when trajectories are delayed. A detailed description of the 
simulation study and the results is provided in the Supporting Material Section A.

Implementation and computation time. DynOmics is implemented in R and uses the FFT implemented in the 
function fft() from the stats R package47 for the decomposition of the time series. DynOmics utilises the 
R package parallel to perform calculation on CPUs in parallel where possible. DynOmics’ computation time was 
tested and compared to DTW4Omics on simulated datasets with seven time points and the Lung Organogenesis 
study described below with 14 time points. On simulated data with one reference and 100 queries DynOmics 
required two seconds, while DTW4Omics required 30 seconds. On the Lung Organogenesis study the association 
of 50 references and 50 queries took DynOmics four seconds compared to 600 seconds for DTW4Omics.

Case studies
Lung Organogenesis. Description of the study. The study of Dong et al.34 investigated the dynamic regu-
lation of miRNAs in mouse lung organogenesis by measuring the expression of 516 miRNAs and 45, 105 mRNAs 
on two biological replicates at seven time points (embryo day 12, 14, 16, 18; postnatal day 2, 10, 30) in lungs 
(GSE21053, Affymetrix Mouse Genome 430 2.0 Array). The data we analysed were pre-processed in the origi-
nal study. Subsequently, a linear mixed effect model splines (LMMS) modelling approach developed previously3 
was used to obtain representative trajectories over 14 equally spaced time points between embryo day 12 and 
postnatal day 30. In addition to allowing interpolation to even out spacing between time points, LMMS can 
handle unbalanced designs - when the number of observations per time point is unequal, or if there are missing 
data. Smoothing prior to analysis will also help reducing the noise in the data and will prevent the detection of 
high-frequency random noise. We further filtered the data to retain only miRNAs and mRNAs declared as differ-
entially expressed over time using lmmsDE3 (FDR ≤  0.05). The final dataset analysed with DynOmics included 
105 miRNAs and 11,326 mRNAs.

Analysis strategy. We compared associations detected between miRNA and mRNA pairs for both raw and 
LMMS modelled trajectories, using either classical Pearson correlation (on raw and LMMS modelled data) or 
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DynOmics (on LMMS modelled data). MiRNAs are known to be able to target transcription regulators and 
therefore lead to the indirect expression of many mRNAs downstream30. In this study, however, we focused on 
direct targets of miRNA, and therefore sought to identify negative correlations between miRNAs and mRNAs, i.e., 
increased miRNA expression levels associated to a decreased (inhibited) mRNA expression levels, or vice versa. 
Associations were declared for all miRNA-mRNA pairs whose Pearson correlation coefficient was < − 0.9. The 
mRNAs associated to a given miRNA were compared with miRNA targets predicted from sequence similarity 
from http://www.microrna.orgmicroRNA.org (GoodmirSVRscore, Conserved miRNA, release August 2010)49, 
http://www.targetscan.org/mmu_71TargetScan (release 6.2)50 and http://mirdb.org/miRDBmiRDB (Version 5)51.  
We only compared database entries with an exact identifier match to the analysed 105 miRNAs, leaving 14 miR-
NAs for miRDB, 33 for TargetScan and 86 for microRNA.org. Pathway enrichment analysis was performed using 
QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuitywww.qia-
gen.com/ingenuity).

Mammalian Embryonic Development. Description of the study. Xie et al.36 investigated the dynamic 
expression of human, mouse and bovine transcripts during PED. The expression levels in human (30,283 
mRNAs), mouse (19,607 mRNAs) and bovine (13,898 mRNAs) were monitored during six to eight compa-
rable cell stages (oozygote (only bovine), zygote, two-, four-, eight-, 16-cell (bovine only), morula and blasto-
cyte) in two (human, mouse) and three (bovine) embryo replicates (GSE18290, Affymetrix mircoarrays: Mouse 
Expression 430A Array, Human Genome U133 Plus 2.0, Bovine Genome Array).

Analysis strategy. We first converted the cell stages (zygote to blastocyte) into quantitative time points (one to 
seven) for input into modelling. For each organism, expression trajectories were modelled using LMMS with 14 
regularly spaced time points. Human transcripts were taken as references, with reference-query pairs restricted 
to orthologous sequences with mouse and bovine as specified in the Affymetrix file http://www.affymetrix.com/
support/technical/byproduct.affx?product= hgu133plusHG-U133_Plus_2.na26.ortholog.csv. Seven human 
transcripts did not match any identifier in the orthology file and were removed. A total of 81,966 orthologous 
transcript pairs were analysed (48,566 mouse, 33,400 bovine), where references and/or queries may have been 
included in multiple pairs. We applied DynOmics to every orthologous transcript pair to assess delays in expres-
sion levels between organisms and declared association when the absolute correlation exceeded 0.9. Pathway 
enrichment analysis was performed using IPA.

Results
Lung Organogenesis. Firstly, focusing on the miRNAs as reference trajectories, we compared the perfor-
mance of Pearson correlation on the raw and LMMS modelled data. We defined the average agreement as the 
number of associations identified in common between the two methods divided by the number of associations 
observed by one method averaged over all miRNAs (Supporting Table S3). We found that modelling represent-
ative trajectories using LMMS substantially increased the number of associations, by over 80% compared to raw 
data. This is likely due to the removal of noise when modelling the trajectories3. We next compared the perfor-
mance of Pearson correlation with DynOmics for the LMMS modelled data. DynOmics identified on average 
18% more associations, indicating that the simple correlation analysis was not sufficient to detect all delays in 
expression between miRNA and mRNA.

Secondly, we analysed the overlap of these putative miRNA targets with the miRNA targets predicted from 
sequence similarity. Supporting Tables S4–S7 summarise for each miRNA and each method the number of puta-
tive targets and the overlap with the predicted targets from TargetScan, microRNA.org and miRDB. For the raw 
data, we observed low overlap between predicted and putative targets (ranging from 0 to 0.4% miRDB, 1.8% 
microRNA.org, and 4.8% TargetScan). The number of overlaps increased for the LMMS modelled data with the 
majority of miRNA-mRNA pairs changing expression simultaneously (i.e., a delay of 0). However, the percentage 
of overlap was still small (ranging from 0 to 3% miRDB, 3.5% microRNA.org, and 4.8% TargetScan; Supporting 
Figure S5.

Finally, we investigated whether the putative delays were of biological relevance for miRNA-mRNA pairs. 
Three miRNAs in particular, mu-miR-429, mmu-let-7g, and mmu-miR-134, were associated with a large 
number of negatively delayed mRNAs, represented in Fig. 2 1–3. Analysis of these delayed mRNAs using IPA 
identified for mmu-miR-429 enrichment of the ‘Phospholipase C Signaling’ pathway (P =  1.21 ×  10−14), for 
mmu-let-7g the ‘Axonal Guidance Signaling’ pathway (P =  4.0 ×  10−11), and for mmu-miR-134 the ‘Mitotic Roles 
of Polo-Like-Kinase’ pathway (P =  1.29 ×  10−8). These pathways have been described as being involved in either 
embryonic or lung development. Phospholipase C was associated with fetal lung cell proliferation in rats52 and 
plays an important role in organogenesis and embryonic development53. Some axonal guidance molecules like 
netrins have been suspected to play a role in lung branching54, while EphrinB2 or semaphorin 3C were found to 
be involved in alveolar growth and development55,56. Finally, polo-like-kinases (PLKs) are highly conserved in 
mammals and are important for early embryonic development57. PLKs are known to regulate cell cycle progres-
sion but little is known about their role in lung development. However, over-expression of PLKs has been associ-
ated with malignancy and poor prognosis in lung cancer, and PLKs are therefore a target for therapy58.

Mammalian Pre-implantation Embryonic Development. We applied DynOmics to identify delays 
in orthologous transcript expression of mouse and bovine relative to human during PED. For an absolute cor-
relation threshold of 0.9, we identified 32,329 (67%) orthologous pairs as being associated between human and 
mouse, and 26,769 (80%) between human and bovine, summarised in Table 1 with respect to the different types 
of delay. Of the transcripts displaying association, we observed that the majority of the mouse (56%) and bovine 
(67%) transcripts were not delayed compared to the orthologous human transcripts. Interestingly, 20% of mouse 
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transcripts (compared to 10% in bovine) changed expression prior to the human orthologous transcript. This 
could reflect timing differences in the zygote genome activation of mouse PED at the gene expression level36,37.

Pathway analysis using IPA was performed on the human orthologs for the three types of delay (negative, no 
delay and positive) relative to mouse or bovine orthologs. Table 2 lists the top three canonical pathways identified 
as enriched for each type of delay and organism. The majority of trajectories whose expression levels changed in 
mouse prior to human were involved in EIF2 Signaling (P =  7.94 ×  10−18), mTOR Signaling (P =  5.64 ×  10−12) and 
regulation of eIF4 and p70S6K Signaling (P =  5.72 ×  10−11). EIF2 Signaling and eIF4 and p70S6K Signaling play 
an important role in translation regulation and mTOR Signaling is an important pathway in embryonic devel-
opment59. These same pathways were also highlighted in a recent study using RNA-Sequencing technologies60 
on human during early embryonic development (4-cell, 8-cell, morula, and blastocyte stages). EIF2 Signaling 
(P =  1.75 ×  10−25) and the regulation of eIF4 (P =  3.48 ×  10−0.9) were also found to be enriched in bovine; how-
ever, the genes involved in these pathways changed expression after human expression changes.

As an illustrative example we display the trajectories of the orthologous transcripts involved in EIF2 Signaling 
in human and mouse with respect to the type of delay (Fig. 3).

We also performed enrichment analyses for human orthologs for all transcripts identified as associated, across 
all three types of delay. We highlight the conserved process of Acetyl-CoA Biosynthesis I, since it has not occurred 
in the enrichment looking at the delayed orthologs individually. Acetyl-CoA levels were found to play a role in 
the acetylation of proteins and may play a role in regulation of embryogenesis61. Using DynOmics, we identified 
different response dynamics across organisms for four out of six transcripts (dihydrolipoamide branched chain 
transacylase (DBT), dihydrolipoamide s-acetyltransferase (DLAT), dihydrolipoamide dehydrogenase (DLD) and 
pyruvate dehydrogenase (Lipoamide) beta (PDHB)) that are conserved and involved in this process (Table 3).
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Figure 2. MiRNA and mRNA expression associations in Lung Organogenesis study. Scaled LMMS 
modelled expression levels (y-axis) are depicted over time in 14 equally spaced time units from embryo day 12 
to postnatal day 30 (x-axis) for the miRNAs mmu-miR-429, mmu-let-7g, and mmu-miR-134 (red lines). Solid 
lines depict actual scaled expression levels, while dashed lines depict inverted scaled expression levels to account 
for the negative correlation with mRNA. Modelled expression levels of the mRNAs identified as associated with 
each miRNA using DynOmics are displayed (DynOmics correlation < − 0.9, delay  <  0) (a) before and (b) after 
shifting the trajectories using the DynOmics estimated delay. The blue color gradient reflects the amount of 
delay.

Delay Mouse vs Human (%) Bovine vs Human (%)

0 6,582 (20) 2,766 (10)

0 18,065 (56) 17,906 (67)

< 0 7,682 (24) 6,097 (23)

Total 32,329 26,769

Table 1.  Orthologous transcripts identified as associated by DynOmics. Number (percentage) of mouse 
and bovine transcripts identified as associated with orthologous human transcripts at an absolute correlation 
threshold of 0.9. The number of associations are divided according to different types of delay, indicating whether 
changes in expression levels of the mouse and bovine transcripts occurred prior to (delay > 0), simultaneously 
to (delay =  0), or after (delay < 0) expression changes of the orthologous human transcript.
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Discussion
To date, very few methods have been developed to integrate time course ‘omics’ data that are robust to delays in 
expression between co-expressed molecules. The integration task is particularly challenging as the data are often 
characterised by a high level of noise and measured on a small number of time points. Our algorithm DynOmics 
addresses these challenges by modelling time course trajectories, identifying delays and re-aligning trajectories to 
determine the degree of mutual dependency between reference and query trajectories.

Modelling time course trajectories is an important step in this process, as most methods developed to inte-
grate time course data, such as DTW4Omics24 and HMMs25 require as input only a single value per time point. 
In this study we used a data-driven modelling approach based on linear mixed model splines3 to summarise the 
time course data appropriately, reduce noise, and interpolate additional time points within the time course. We 
found that while the modelling step may remove some associations between reference and query trajectories, e.g., 
in the Lung Organogenesis case study, it ultimately increased the number of findings by considerably reducing the 
amount of noise in the data. In addition, modelling each trajectory as a noisy function of time allows integration 
of datasets with different time intervals or numbers of time points, as we demonstrated in the mammalian embry-
onic development case study. An additional analytical challenge may occur when the time series has temporal 
or cyclic changes and increases or decreases constantly over time. Time dependent trends are rarely observed in 
biological time course experiments, as those often lack the sampling resolution to observe such trends. If a time 
dependent trend were to be observed it should be removed prior to DynOmics analysis, for example by extracting 
residuals from a linear regression analysis of the expression values against time.

The selection of an appropriate threshold to define associations between co-expression trajectories is not triv-
ial, and depends on the characteristics of the data themselves. For our analyses, we specified a correlation thresh-
old of 0.9, as we were only interested in highly concordant expression trajectories.

The role of miRNAs as gene expression regulators is an exciting new subject of study, as it is estimated that 
they control one-third of the expression of the human genome62. Moreover, since miRNAs appear to be the 
master switch in biological processes, they are the target of future therapeutic development31,32. In the Lung 
Organogenesis study, the miRNA-mRNA associations that we identified with DynOmics largely did not agree 
with the predictions from the databases TargetScan, microRNA.org and miRDB. One possible reason for the 
general lack of agreement could be that the predicted targets were not expressed in the experiment, or were not 
targeted at all. Those mRNA that did agree represented subtle delays between miRNA and mRNA trajectories that 
may indicate high sequence affinities. The other associations, which included larger delays that were not identified 
by standard correlation analysis34, may not be as similar in sequence and hence were not predicted as miRNA 
targets in the databases49–51. Indeed, our results suggest that sequence information alone may not suffice to deter-
mine whether miRNAs are expressed and regulate specific mRNA under certain conditions. Alternately, the large 

Delay compared to human Organism Pathway (# Transcripts identified/# Transcripts in pathway) P value

> 0 Mouse EIF2 Signaling (79/173) 7.94 ×  10−18

mTOR Signaling (71/183) 5.64 ×  10−12

Regulation of eIF4 and p70S6K Signaling (60/143) 5.72 ×  10−11

Bovine Protein Ubiquitination Pathway (54/254) 6.28 ×  10−09

Amyloid Processing (19/50) 4.36 ×  10−08

Glucocorticoid Receptor Signaling (51/272) 1.03 ×  10−06

0 Mouse Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid 
Arthritis (196/286) 1.84 ×  10−31

Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 
(149/213) 6.88 ×  10−27

Axonal Guidance Signaling (115/157) 1.29 ×  10−22

Bovine Protein Kinase A Signaling (199/370) 7.11 ×  10−16

Thrombin Signaling (116/187) 1.44 ×  10−15

Acute Phase Response Signaling (106/168) 4.51 ×  10−15

< 0 Mouse Ephrin Receptor Signaling (76/172) 8.39 ×  10−13

Molecular Mechanism of Cancer (128/359) 5.26 ×  10−12

B Cell Receptor Signaling (71/171) 1.54 ×  10−10

Bovine EIF2 Signaling (91/173) 1.75 ×  10−25

Regulation of eIF4 (55/143) 3.48 ×  10−09

Protein Ubiquitination Pathway (83/254) 5.11 ×  10−09

> 0, 0, < 0 Mouse, EIF2 Signaling (32/173) 1.59 ×  10−17

Bovine Regulation of eIF4 (21/143) 5.25 ×  10−10

Acetyl-CoA Biosynthesis I (Pyruvate Dehydrogenase Complex) (4/6) 8.71 ×  10−06

Table 2.  IPA enrichment analysis of human orthologs for three types of delay relative to mouse/bovine 
transcripts. The top three IPA enriched pathways are listed. Associated transcripts were analysed separately 
with respect to the delay: positive (negative) delay indicates that the mouse or bovine ortholog’s expression 
changes occurred prior to (after) the human expression changes. No delay indicates that all expression changes 
occurred simultaneously. P values were obtained from a right tailed Fisher’s Exact Test as implemented by IPA.
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number of miRNA-mRNA associations identified by DynOmics may represent mRNAs which are indirect targets 
of miRNAs. Determining whether these mRNAs are truly direct targets of miRNAs will require further experi-
mental validation, but the enrichment analysis showed that the mRNAs were involved in meaningful biological 
processes related to Lung Organogenesis, e.g., lung cell proliferation, lung branching and alveolar development. 
Thus, in this context, DynOmics has the potential to identify novel targets of miRNAs to aid in therapeutic devel-
opment. Our study emphasises the importance of jointly studying miRNA and mRNA expression to understand 
the mechanisms of miRNA regulation.

1 2 3

−2

0

2

5 10 5 10 5 10
Time

E
xp

re
ss

io
n

Reference
Ref

Human

1 2 3

−2

0

2

5 10 5 10 5 10
Time

E
xp

re
ss

io
n

Delays of 
 orthologs

1

2

3

4

5

6

Mouse

a

b

Figure 3. EIF2 Signaling. Modelled transcripts expression levels (scaled for each time point for visual 
purposes, y-axis) with respect to time (x-axis) involved in EIF2 Signaling (a) in human with (b) their orthologs 
in mouse (DynOmics correlation > 0.9, delay > 0). Hierarchical clustering was performed on the human 
transcripts to extract three main expression patterns in EIF2 Signaling (a); 1–3). The three main patterns of 
expression in humans (a) were visualised in separate plots (1–3). The mouse expression profiles in (b) were 
separated by the classification of their human orthologs (1–3) and were coloured according to the DynOmics 
estimates of delay.

Gene 
name

TranscriptID 
Human TranscriptID Organism Organism

DynOmics 
Delay

Pearson 
Correlation

DBT 205369_x_at BT.18489.1.A1_AT Bovine − 2 0.99

DBT 205369_x_at 1449118_AT Mouse − 5 0.98

DLAT 211150_s_at 1426264_AT Mouse 3 0.92

DLAT 211150_s_at 1426265_X_AT Mouse 3 0.91

DLD 230426_at BT.27889.1.S1_AT Bovine 4 0.99

DLD 230426_at 1423159_AT Mouse 4 0.9

PDHB 208911_s_at BT.2973.2.S1_A_AT Bovine − 2 0.98

PDHB 208911_s_at BT.2973.3.A1_AT Bovine 3 0.97

PDHB 208911_s_at 1416090_AT Mouse 3 0.97

Table 3.  Acetyl-CoA Biosynthesis I orthologous transcripts. Orthologous transcripts identified as associated 
by DynOmics and involved in the Acetyl-CoA Biosynthesis I pathway. Gene names, transcript IDs in human, 
bovine and mouse are indicated, as well as the estimated DynOmics delay and the Pearson correlation between 
the reference trajectory and the query trajectory after shifting based on the DynOmics delay estimate.
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Model organisms present a simpler and more convenient alternative to directly study disease in humans. 
In the mammalian pre-implantation embryonic development study, we showed that DynOmics could identify 
delayed conserved expression between different organisms. This is a challenging task, as timing differences of 
expression changes can occur both in metabolic processes and across organs for different organisms37. By cor-
recting for these timing differences, DynOmics can therefore help to infer gene functions across organisms, and 
thereby integrate information in whole biological processes. Such integration may in turn identify which organ-
isms provide suitable models for human disease and drug discovery due to the conservation in processes63.

Currently, DynOmics has been used to identify associations between datasets of moderate size (~100 refer-
ences and ~10,000 queries). The computational time would increase for large data sets (~10,000 references and 
queries). One solution could be to cluster profiles prior to applying DynOmics, to identify specific patterns of 
interest over time as queries and/or references. As the algorithm is based on independent pairwise comparisons, 
parallel computing could also be used to decrease the computational burden. Alternatively, as shown in the Lung 
Organogenesis study, the DynOmics analysis can be performed on a smaller number of queries selected based on 
prior knowledge or biological assumptions.

Conclusion
Delays in molecular expression are an acknowledged and important phenomenon in many areas of biology. Here 
we demonstrated the need for and value of methods that are robust to delays, by showcasing the benefit of accu-
rate delay estimates to interpret response dynamics and identify conserved molecular mechanisms. DynOmics 
overcomes the challenge of integrating data with timing differences of expression changes and therefore presents 
an effective tool to study time-sensitive molecular expression. The integration of multiple time course ‘omics’ data 
is becoming necessary in order to understand a biological system’s formation, actions and regulation with high 
confidence. Our algorithm DynOmics provides a unique opportunity to study molecular interactions between 
multiple functional levels of a single system or multiple organisms, and paves the way to deeper biological time 
course studies analyses to investigate or unravel novel biological mechanisms.
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