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Abstract: Aspirin resistance (AR) is a pressing problem in current ischemic stroke care. Although
the role of genetic variations is widely considered, the data still remain controversial. Our aim
was to investigate the contribution of genetic features to laboratory AR measured through platelet
aggregation with arachidonic acid (AA) and adenosine diphosphate (ADP) in ischemic stroke patients.
A total of 461 patients were enrolled. Platelet aggregation was measured via light transmission
aggregometry. Eighteen single-nucleotide polymorphisms (SNPs) in ITGB3, GPIBA, TBXA2R, ITGA2,
PLA2G7, HMOX1, PTGS1, PTGS2, ADRA2A, ABCB1 and PEAR1 genes and the intergenic 9p21.3
region were determined using low-density biochips. We found an association of rs1330344 in the
PTGS1 gene with AR and AA-induced platelet aggregation. Rs4311994 in ADRA2A gene also
affected AA-induced aggregation, and rs4523 in the TBXA2R gene and rs12041331 in the PEAR1 gene
influenced ADP-induced aggregation. Furthermore, the effect of rs1062535 in the ITGA2 gene on
NIHSS dynamics during 10 days of treatment was found. The best machine learning (ML) model for
AR based on clinical and genetic factors was characterized by AUC = 0.665 and F1-score = 0.628. In
conclusion, the association study showed that PTGS1, ADRA2A, TBXA2R and PEAR1 polymorphisms
may affect laboratory AR. However, the ML model demonstrated the predominant influence of
clinical features.

Keywords: aspirin resistance; genetic markers; genetics; machine learning; CatBoost; ischemic stroke;
SNP; pharmacogenetics; platelet aggregation; biochip

1. Introduction

Aspirin is a key drug widely used for ischemic stroke patients as antiplatelet therapy
to prevent recurrent ischemic events [1]. This drug acts by irreversibly blocking the
activity of the cyclooxygenases (COX)-1 and -2 also known as prostaglandin G/H synthases
1 and 2 (PTGS1 and PTGS2), respectively [2]. While the COX-1 enzyme is produced
constitutively, the COX-2 form is highly inducible, mainly by inflammation. The COX-
1 enzyme is expressed in mature platelets and catalyzes the conversion of arachidonic
acid (AA) to prostaglandins G2 and H2, with a subsequent production of thromboxane
A2 (TXA2) [3,4]. Thromboxane A2 is released into the bloodstream and binds to TXA2
receptors on the surface of neighboring platelets, causing their activation. Additionally,
TXA2 acts synergistically with other substances released by activated platelets (adenosine
diphosphate (ADP), fibrinogen, factor V) to increase the process. The main antithrombotic
effect of low-dose (75–125 mg) aspirin is mediated by selective inhibition of COX-1 [5]. As
a result of aspirin action, the production of TXA2, which is the main compound in platelet
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activation and aggregation, is suppressed for the lifetime of the platelet (7–10 days) [2]. The
pathway of TXA2 production and the antiplatelet effect of aspirin are shown in Figure S1.

The response to aspirin varies between individuals, and up to 57% of patients show
the so-called aspirin resistance (AR) [6]. AR is classified into clinical and laboratory
resistance. Clinical AR is established by the inability of aspirin to prevent the subsequent
acute vascular events [7]. Laboratory AR can be defined as ex vivo high on-treatment
platelet reactivity (HTPR) such as the insufficient antiplatelet effect of aspirin measured
by different laboratory tests [7,8]. Tests measure inactive metabolites of TXA2 in serum or
urine [9,10] or analyze platelet aggregation and adhesion. Among the assays that determine
platelet function, light transmission aggregometry (LTA) is considered as the gold standard
in platelet function testing [11]. Automated (point-of-care) assays such as VerifyNow®,
PFA-100®, Multiplate®, Plateletworks® and others are widely used for monitoring platelet
response to antiplatelet agents including aspirin [6,12,13]. HTPR was shown to increase
the risk of recurrent vascular events and long-term clinical outcomes for patients with
cerebrovascular pathology [14–17]. Nevertheless, platelet function tests differ in their
ability to predict the risk of cardiovascular outcomes [12].

AR seems to be a complex phenomenon with a number of factors potentially con-
tributing to it, but its causes and mechanisms are still unclear [18]. One of these factors
that might underlie AR is heredity, having a profound impact on the variability in residual
platelet function during aspirin therapy [19]. Genes encoding key platelet aggregation
proteins are under the most intense scrutiny.

A number of genetic markers have already been studied to assess their possible contri-
bution to AR [6,20]. First, single-nucleotide polymorphisms (SNPs) in the genes encoding
COX enzymes (PTGS1 and PTGS2) were found to influence AR [21–28]. Polymorphisms
in the TBXA2R gene, encoding the specific TXA2 receptor, were associated with the effect
of aspirin in a number of studies [29–31]. The genes involved in the COX-independent
platelet activation pathways as well as platelet glycoprotein genes might also be involved
in AR. The effect of polymorphisms in the genes HMOX1 [24], PLA2G7 [30], ADRA2A [30],
ITGB3 [22,32], GPIBA [33], ITGA2 [34] and PEAR1 [35–37] on inter-individual variations in
the aspirin response has been discussed. A locus on chromosome 9p21.3, associated with
CVD and ischemic stroke, was also connected with AR [30,38]. P-glycoprotein (also known
as MDR1) plays a crucial role in the intestinal epithelial cell permeability to aspirin [39] and
might be involved in aspirin absorption. The TT rs1045642 genotype in the gene ABCB1
encoding P-glycoprotein was shown to protect against AR [29]. Therefore, the molecular
changes in the pathways involving various genes appear to influence the AR development.
However, the impact of genetic markers on the risk for an individual patient is poorly
understood. Implementing the identified genetic risk factors to predict aspirin failure in
clinical practice still remains challenging.

One problem lies in the inconsistency of the results from genetic studies. This may
be explained by the differences in the diagnoses (ischemic stroke, cardiovascular disease,
diabetes mellitus), ethnic groups, platelet function tests, sample sizes, etc. [6]. There is a
noticeable lack of replication studies analyzing AR genetic background in patients with
ischemic stroke from the Eastern European populations.

Another problem is the multiplicity of influencing factors that determine the ultimate
success or failure of aspirin therapy. The clinical features of the disease, comorbidities,
co-medications and non-modifiable risk factors such as age should be taken into account [6].
Moreover, the interaction of genetic polymorphisms as well as clinical factors may influence
sensitivity to aspirin [40]. Over the past several years, machine learning (ML) models have
been proven to be able to solve various problems in the medical and biological fields,
including pharmacogenetics [41,42]. One of the key advantages of the ML approaches lies
in their ability to find unobvious relationships and make inferences from the complex data.

The purpose of this study was to investigate genetic features associated with laboratory
AR in a cohort of patients with ischemic stroke taking aspirin as antiplatelet therapy to be
used in pharmacogenetic testing. We have developed a biochip assay to identify 18 SNPs
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previously described as markers affecting AR. To establish the connection between the
patients’ clinical data, genotype and laboratory response to aspirin treatment, we applied
the multiple ML approaches.

2. Materials and Methods
2.1. Patients

The study included 461 Caucasian patients with primary ischemic stroke treated in
the Stroke Center of City Clinical Hospital No.1 named N.I. Pirogov. The inclusion criterion
was a verified ischemic stroke. Exclusion criteria comprised hemorrhagic transformation,
cancer and severe liver disease, as well as other diseases and conditions affecting the
parameters of platelet hemostasis. The pathogenetic variant of stroke was established
according to the TOAST criteria [43] based on the clinical data, computed tomography and
magnetic resonance imaging of the brain, Doppler ultrasound of the cerebral arteries and
electrocardiography. The study population included 109 patients with cardioembolism,
98 patients with large artery atherosclerosis (LAA, ≥50% stenosis) and 250 patients with
undetermined etiology (of which 53 had both LAA and cardioembolism, 197 had neither
LAA nor cardioembolism). All patients received the antiplatelet, lipid-lowering, antihyper-
tensive or anticoagulant therapy according to the clinical guidelines. For early prevention
of recurrent stroke, all patients took aspirin at a dose of 125 mg daily, starting within 24 h of
the stroke onset. Patients with cardioembolic stroke received the anticoagulant treatment
starting on day 3, 6 or 12 depending on the stroke severity [44]. Dynamics of the NIHSS
score estimated at admission and after 10 days of aspirin therapy was considered as the
short-term clinical outcome.

The study was approved by the local ethics committee of the Pirogov Russian National
Research Medical University (protocol no. 181 dated 28 January 2019). All participants
provided a written informed consent. The study adhered to the World Medical Association
Declaration of Helsinki. With a 95% confidence level, a standard deviation of 0.5 and
a confidence interval (margin of error) of ±5%, the sample size was estimated to be
391 patients.

2.2. Platelet Aggregation

Blood samples from the vein of the non-paretic limb were collected in the morning of
the third day of aspirin intake. The region of the cubital fossa was usually selected as the
venipuncture area. A tourniquet was applied to the middle third of the shoulder, while
the pulse was taken on the nearest radial artery. After that, the patient clenched the hand
into a fist and unclenched it several times. The skin in the venipuncture area was stretched,
fixing the vein. Next, the skin was pierced next to the vein; the needle was moved 1.5
cm deep into the subcutaneous fat, and the vein was punctured. A total of 9 mL of blood
was collected in the 14 mL plastic test tubes “Greiner” with 1 mL of 3.8% trisubstituted
sodium citrate using 21 G × 1 1/2”/0.8 × 40 mm needles. The blood in the tube was
mixed immediately. Stabilized blood was stored at room temperature for no more than
30 min prior to centrifugation. The samples were centrifuged at 200× g for 7 min. Then,
2.5 mL of the supernatant containing platelet-rich plasma was carefully taken for analysis
in the aggregometer. Platelet aggregation was measured by LTA using the laser analyzer
of platelet aggregation ALAT-2 (Biola Scientific, Moscow, Russia) based on the method of
Born and O’Brien.

To identify a group of patients with AR, we relied on the criteria proposed by
Gum et al. [45]. AR was defined as aggregation of ≥70% with 10 µm ADP and aggregation
of ≥20% with 0.5 mM AA. Aspirin semi-resistance (ASR) was defined as aggregation of
≥70% with 10 µM ADP or aggregation of ≥20% with 0.5 mM AA [45]. The patients with
AR and ASR were pooled into the AR group. Patients with ADP-induced aggregation
<70% and AA-induced aggregation <20% were considered aspirin-sensitive (AS) and were
assigned to the AS group [22].
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2.3. DNA Extraction

Genomic DNA was extracted from the blood collected into the EDTA-containing tubes
using the QIamp DNA Mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. DNA was isolated from 200 µL of the whole blood. The procedure included
cell lysis, sorption on the silica gel membrane of the column, washing and elution (in
100 µL of elution buffer). The DNA concentration was measured using the NanoDrop
1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). DNA samples
were subjected to further analysis if DNA concentration was at least 10 ng/µL and its
260/280 ratio was in the range of 1.75 to 1.95.

2.4. Selection of SNPs and Genotyping

Genetic markers in ten genes (ITGB3, GPIBA, TBXA2R, ITGA2, PLA2G7, HMOX1,
PTGS1, PTGS2, ADRA2A, ABCB1, PEAR1) and one intergenic region (9p21.3) were selected
(Table 1).

Table 1. A list of studied genetic markers.

Gene rs ID Wild-Type Allele Minor Allele Protein

ITGB3 rs5918 T C Platelet glycoprotein IIIa/Integrin subunit-Beta3
GPIBA rs2243093 T C Glycoprotein Ib platelet subunit alpha

rs6065 C T
TBXA2R rs1131882 C T Thromboxane A2 receptor

rs4523 C T
ITGA2 rs1126643 C T GPIa/IIa- Integrin alpha 2

rs1062535 G A

PLA2G7 rs1051931 C T Lipoprotein-associated phospholipase A2/
Plasma platelet-activating factor acetylhydrolase

rs7756935 A C
HMOX1 rs2071746 A T Heme oxygenase 1
PTGS1 rs10306114 A G Prostaglandin G/H synthase 1 (cyclooxygenase-1)

rs1330344 T C
PTGS2 rs20417 G C Prostaglandin G/H synthase 2 (cyclooxygenase-2)

rs689466 T C
ADRA2A rs4311994 C T Alpha-2A-adrenergic receptor

9p21.3 rs10120688 G A Intergenic
ABCB1 rs1045642 T C MDR1, ATP-binding cassette subfamily B member 1
PEAR1 rs12041331 G A Platelet endothelial aggregation receptor-1

Genotyping involved the multiplex one-step PCR followed by allele-specific hybridiza-
tion on a biochip as described before [46]. 2′-deoxyuridine 5′-triphosphate (dUTP) deriva-
tives containing the Cy7 cyanine dye were used as fluorophores [47]. The sequences of
primers and allele-specific oligonucleotide probes are listed in the Supplementary Tables
S1 and S2. The biochip scheme and an example of the hybridization picture are shown
in Figure S2. Genotyping results were verified by direct sequencing and high-resolution
melting analysis.

2.5. Statistical Analysis

The online service SNPStats (https://www.snpstats.net/ (accessed on 26 April 2022)) [48]
was used to evaluate the association of genotypes with aspirin resistance and aggregation
with AA and ADP as well as the NIHSS score dynamics (adjusted by clinical variables). We
used individual SNPs’ data for co-dominant, dominant, recessive and log-additive models.
Comparison of baseline characteristics in groups with different genotypes was performed
using the Kruskal–Wallis test and the chi-square test. Allele frequencies between AS and
AR groups were compared using the two-sided Fisher exact test. Statistical analysis was
performed in R (version 4.1.1; R Foundation for Statistical Computing, Vienna, Austria). The
differences were considered statistically significant if the p-value was below 0.05. The boxplots

https://www.snpstats.net/
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display the median, two hinges which correspond to the first and third quartiles and two
whiskers. The upper and lower whiskers extend from the hinges to the largest value no
further than 1.5×IQR from the corresponding hinge (where IQR is the inter-quartile range).
Points beyond the whiskers indicate the outliers.

2.6. Machine Learning

To build a predictive machine learning model, several approaches have been tested using
the following Python 3.8 libraries: sklearn.linear_model.LogisticRegression, sklearn.svm.SVC,
sklearn.ensemble.RandomForestClassifier [49], XGBoost [50] and CatBoost [51]. All models
were trained in a five-fold cross validation (CV) setting with folds stratified to keep the
proportion of studies similar to the whole data set. Each model parameter was optimized
in order to increase the classification metrics: accuracy, AUC and F1-score, paying the most
attention to the latter metric. The array of features consisted of all 16 genetic markers along
with the age, gender, NHISS score at admission, body mass index (BMI), atrial fibrillation (AF),
stenosis, high-density lipoproteins (HDLs), low-density lipoproteins (LDLs), cholesterol and
triglycerides. Feature importance ranking was obtained using Shapley additive explanations
(SHAP) values, a game theoretic approach to explain the output of any machine learning
model [52]. The sequence of the ML procedure pipeline is shown in Figure 1.
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3. Results
3.1. Baseline Characteristics of AR and AS Patients

The baseline clinical characteristics of patients are shown in Table 2. A total of 461 pa-
tients were included in the analysis. Full AR and ASR were established in 28 patients (6.1%)
and 192 patients (41.6%), respectively, and these two groups were pooled into one AR
group. Another 241 patients (52.3%) were AS.
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Table 2. The clinical characteristics and laboratory parameters in the AS and AR groups.

Characteristics AS Group (n = 241) AR Group (n = 220) p-Value

Age, (mean ± sd) 68.72 ± 14.56 73.21 ± 14.52 <0.001
Sex, n (%)

women 117 (48.5%) 119 (54.1%) 0.235
Type of stroke according to TOAST criteria, n (%):

LAA 55 (12.04%) 43 (9.41%) 0.0859
Cardioembolism 49 (10.72%) 60 (13.13%)

Undetermined etiology (with LAA and Cardioembolism) 22 (4.81%) 31 (6.78%)
Undetermined etiology (without LAA and Cardioembolism) 113 (24.73%) 84 (18.38%)

NHISS score at admission, (mean ± sd) 10.45 ± 6.49 12.35 ± 6.67 <0.001
AF, n (%) 71 (29.58%) 91 (41.74%) 0.0088

Stenosis, % (mean ± sd) 11.53 ± 7.18 12.01 ± 7.15 0.5408
BMI, mmol/L (mean ± sd) 27.64 ± 4.83 28.17 ± 4.99 0.2219
HDL, mmol/L (mean ± sd) 1.18 ± 0.34 1.15 ± 0.35 0.3584
LDL, mmol/L (mean ± sd) 2.96 ± 0.97 2.98 ± 0.99 0.9437

Cholesterol, mmol/L (mean ± sd) 4.84 ± 1.24 4.84 ± 1.32 0.9882
Triglycerides, mmol/L (mean ± sd) 1.52 ± 1.15 1.47 ± 0.85 0.4851
Atherogenic coefficient (mean ± sd) 3.22 ± 1.1 3.37 ± 1.24 0.2309

AF—atrial fibrillation, BMI—body mass index, HDL—high-density lipoproteins, LDL—low-density lipoproteins,
LAA—large artery atherosclerosis, sd—standard deviation.

The AS and AR groups differed in some clinical parameters (Table 2). AR patients
were significantly older: the mean age of 73.21 years in the AR group vs. 68.72 years in
the AS group (p < 0.001). AR patients had a more severe stroke: the mean NHISS score at
admission was 12.35 and 10.45 in the AR and AS group, respectively (p < 0.001). Moreover,
atrial fibrillation was more frequent in the AR group (41.74%) compared to the AS group
(29.58%) (p = 0.0088).

3.2. The Association of SNPs with Aspirin Resistance in Whole Cohort of Patients

A total of 461 samples were genotyped for selected SNPs (Table 3). Genotype frequen-
cies in the total sample, AR and AS groups conformed to the Hardy–Weinberg equilib-
rium (data not shown). The rs1126643 and rs1062535 markers in the ITGA2 gene as well
as rs1051931 and rs7756935 in the PLA2G7 gene were in strong linkage disequilibrium
(D’ = 1.0, R2 = 1.0), and only one of them in each pair was included in the analysis.

Table 3. Genotype and allele frequencies in the AS and AR groups.

AS Group AR Group

Gene rs ID wt, n het,
n

mut,
n

Wild-Type
Allele, %

Minor Allele,
% wt, n het, n mut, n Wild-Type

Allele, %
Minor Allele,

% p-Value *

ITGB3 rs5918 164 68 9 82 18 148 63 9 82 18 0.864
GPIba rs2243093 167 68 6 83 17 154 61 5 84 16 0.859
GPIba rs6065 211 29 1 94 6 182 37 1 91 9 0.173

TBXA2R rs1131882 162 72 7 82 18 164 50 6 86 14 0.127
TBXA2R rs4523 92 114 35 62 38 91 99 30 64 36 0.54
ITGA2 rs1062535 87 114 40 60 40 84 109 27 63 37 0.343

PLA2G7 rs1051931 159 75 6 82 18 150 64 6 83 17 0.795
HMOX1 rs2071746 74 120 47 56 44 57 115 48 52 48 0.29
PTGS1 rs10306114 213 28 0 94 6 195 24 1 94 6 1
PTGS1 rs1330344 147 85 8 79 21 119 84 17 73 27 0.044 **
PTGS2 rs20417 166 67 8 83 17 150 62 8 82 18 0.862
PTGS2 rs689466 176 58 7 85 15 163 54 3 86 14 0.638

ADRA2A rs4311994 188 2 51 78 22 174 41 5 88 12 1
9p21.3 rs10120688 65 131 45 54 46 68 115 37 57 43 0.389
ABCB1 rs1045642 64 120 57 51 49 61 106 53 52 48 0.947
PEAR1 rs12041331 202 37 2 91 9 179 39 2 90 10 0.567

* p-value for comparison of alleles between the AS and AR groups; ** p-value < 0.05

Allele and genotype frequencies for sixteen SNPs in the AS and AR groups are listed
in Table 3. The frequency of the minor allele C for rs1330344 PTGS1 was significantly higher
in the AR group than in the AS group (27% vs. 21%, p = 0.044).
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The association of genotypes with the response to aspirin was investigated using
the SNPStats online service. We included age, AF and the NHISS score at admission as
covariates in the analysis, since they showed a different distribution between AR and AS
groups (Table 2). The results for all studied markers are in Supplementary Table S1 (for AR
and AS groups) and Supplementary Table S2 (for AA- and ADP-induced aggregation). We
revealed the following associations.

The CC genotype of rs1330344 in the PTGS1 gene was more frequent in the AR group
than in the AS group (OR = 2.75, 95% CI = 1.14–6.63, p = 0.019). Data are shown in
Supplementary Table S3.

We compared the association of different genotypes with AA- and ADP-induced
aggregation. For PTGS1 rs1330344, mean AA-induced aggregation was 40.5% higher in
the CC genotype compared to the TT + CT genotypes (p = 0.038). For rs4311994 in the
ADRA2A gene, mean AA-induced aggregation was 72.7% higher in patients with the TT
genotype compared to the CC + CT genotypes (p = 0.043). Data are shown in Figure 2 and
in Supplementary Table S4.
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Mean ADP-induced aggregation was 9.2% higher in the TT + CT genotypes of TBXA2R
rs4523 compared to the CC genotype (p = 0.043). For rs12041331 in the PEAR1 gene, mean
ADP-induced aggregation was 59.5% lower in AA homozygotes compared to the GG + GA
genotypes (p = 0.017). Data are shown in Figure 3 and in Supplementary Table S2.

3.3. The Association of SNPs with AR and Platelet Reactivity in Patients with Noncardioembolic
Ischemic Stroke

In total, 296 patients had noncardioembolic ischemic stroke, with 127 (43%) and
169 (57%) patients being assigned to the AR and AS groups, respectively. We analyzed the
frequency of different genotypes for sixteen SNPs in the AR and AS groups. Although
the CC genotype of rs1330344 in the PTGS1 gene was more frequent in the AR group
than in the AS group (OR = 2.48, 95% CI = 0.93–6.60, p = 0.062), the difference is not
statistically significant.

The CC homozygotes of PTGS1 rs1330344 had 55.4% higher mean AA-induced aggre-
gation compared to the TT + CT genotypes (p = 0.026). Mean ADP-induced aggregation
was 14.8% higher in the TT + CT genotypes of rs4523 TBXA2R than in the CC genotypes
(p = 0.031) and 11.6% lower in the AA + GA genotypes of ITGA2 rs1062535 comparing to
GG homozygotes (p = 0.051).

Note that p-values are given before the correction for multiple comparisons; after the
Bonferroni correction, all p-values were >0.05.
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3.4. Clinical Outcome Evaluation

We evaluated the clinical outcomes of patients with noncardioembolic ischemic stroke
within the first 10 days after admission and their association with aspirin resistance. Five
patients died and were excluded from the analysis. The NIHSS score on day 10 was
compared with the admission NIHSS score. We found no statistically significant association
of the NIHSS score dynamics analyzed with the groups of AR and AS patients.

Furthermore, the NIHSS score dynamics was evaluated in patients with different
genotypes adjusted by age and the NIHSS score at admission. The AA + GA genotypes of
rs1062535 in the ITGA2 gene had worse dynamics in the NIHSS score compared to the GG
genotype (5.3 vs. 6.57, p = 0.0008).

3.5. Machine Learning Model

To investigate the contribution of clinical and genetic features to AR, we created ML
models. The overall best performance was achieved after utilizing CatBoost algorithm, high-
performance open-source library for gradient boosting on decision trees. The parameters
of the model that showed best performance in CV are listed in the Appendix A. For ML
model generation, the total cohort of patients with ischemic stroke was included.

The ML models did not have enough predictive power if they were based only on
genetic features. To overcome this limitation, we included anthropometric and clinical data
in the model.

After training several models in a five-fold cross-validation setting, we compared the
output metrics in order to choose the classification method with the best performance. As
expected, the gradient boosting on the decision tree algorithm, CatBoost, outperformed
logistic regression, the support vector machine and random forest classifiers since it was
designed to leverage the information gained from categorical features. The average values
of classification metrics were as follows: AUC = 0.665, F1-score = 0.628, specificity = 0.773,
sensitivity = 0.60, precision = 0.63. The ML model is in the Supplementary Files (Model S1).

To assess the impact of each feature on the model performance and identify the most
important factors, we conducted the Shapley additive explanations analysis (Figure 4),
which allowed us to study the relationships between variables for the predicted case and
their contribution to the final score. Shapley values indicate the importance of a feature by
comparing model predictions with and without this feature.
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4. Discussion

In the present study, we used a biochip-based assay to analyze 18 SNPs in patients with
acute ischemic stroke and variable response to aspirin treatment. The SNPs were selected
based on the literature data. All of them are involved in platelet activation and aggregation,
and their contribution to aspirin resistance is discussed in numerous studies [6,21–37]. We
evaluated the distribution of 16 genetic markers in the AS and AR groups in a cohort of 461
patients with acute ischemic stroke.

The aspirin resistance was associated with the following clinical parameters: age, the
NIHSS score at admission and atrial fibrillation (Table 2). Aging is known to be associated
with an elevated platelet activity [53] as well as aspirin resistance [45,54], which is consis-
tent with our results. The initial NIHSS score was also higher in the AR patients [55]. In
several studies concerning AR, ischemic stroke patients with atrial fibrillation (cardioem-
bolism) were excluded from the analysis since they had anticoagulant therapy prescribed
earlier [21,22]. In our study, all patients with all stroke variants received aspirin at least for
the first 3 days, while laboratory AR was estimated during this period. This allowed us
to enroll all the patients in the study, which aimed at identifying the associations between
genetic markers and aspirin non-sensitivity. In addition, we performed the association
studies in a cohort of non-embolic patients and evaluated clinical recovery for 10 days
based on the NIHSS score dynamics. Determining the prognostic genetic markers of AR in
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this group can be very helpful given that the long-term aspirin treatment is recommended
for these patients.

Among 16 SNPs studied, four genetic variants showed a significant association with
aspirin non-sensitivity in the whole cohort: PTGS1 (rs1330344), ADRA2A (rs4311994),
TBXA2R (rs4523) and PEAR1 (rs12041331).

The C allele and CC genotype (rs1330344) of the PTGS1 gene encoding COX-1 were
associated with AR and a higher level of AA-induced aggregation. A similar observation
was made in the study by Li et.al. [23]. The CC genotype was associated with poor
functional outcomes in Chinese patients with a stroke during aspirin therapy [40,56].
However, the obtained results were not always consistent [24,30,57,58]. This polymorphism
is located in the regulatory region (T-1676C), and this substitution may lead to an increase
in COX-1 activity and contribute to a decreased or absent response to aspirin [6]. The
C allele was also found to be associated with an increased risk of ischemic stroke in the
Chinese population [59]. However, in our study, rs10306114 in this gene, most frequently
associated with AR [6], showed no association with AR.

Another polymorphism that demonstrated an association with AA-induced aggrega-
tion in our study, rs4311994, is also located in the regulatory region downstream (63 kb)
of the 3’ end of the ADRA2A gene; its effect may arise from the regulation of gene ex-
pression or linkage disequilibrium with the other variants. In our study, the minor allele
T of the ADRA2A gene (rs4311994) was associated with a higher level of AA-induced
aggregation. The ADRA2A gene encodes the alpha-2A-adrenergic receptor involved in
epinephrine-induced platelet aggregation and shear-dependent platelet function. This
allele was associated with increased platelet reactivity to aspirin in the population with
type 2 diabetes mellitus. [30]. However, these results were not always reproducible [60].

Notably, the alleles of the PTGS1 and ADRA2A genes, associated with AR and/or high
AA-induced aggregation in our study, correlated with a reduced risk of complications from
the gastrointestinal tract when taking aspirin in other studies [61–63]. This may indicate a
role in stimulating platelet activity in carriers of these alleles.

The TBXA2R rs4523 (T924C) affected ADP-induced aggregation: the aggregation
was higher in the TT and CT genotypes than in the CC genotype. In other studies, the
TT homozygotes also showed increased platelet reactivity [64,65]. It is a synonymous
nucleotide change that can affect splicing or mRNA stabilization and translation efficiency.
Otherwise, this SNP may be in linkage disequilibrium with other clinically relevant poly-
morphisms [64,65]. The other SNP (rs1131882) in the TBXA2R gene showed no association
with AR in our study.

The ADP-induced aggregation was affected by intronic rs12041331 in the PEAR1 gene
being lower in the AA homozygote as compared to the GG and GA genotypes. These data
are consistent with some other studies [19,37,66,67]. The PEAR1 gene encodes the type 1
membrane protein expressed in platelets and endothelial cells. Its phosphorylation appears
to promote platelet aggregation [68,69]. The rs12041331 polymorphism results in a G to
A substitution in intron 1 and was previously shown to be implicated in reducing PEAR1
expression [19]. According to Faraday et al. [19], the major G allele of rs12041331 was
associated with a higher platelet aggregation both in the presence and absence of aspirin
treatment. Thus, the influence of the PEAR1 gene may not be specific to the aspirin action.
The AA genotype of PEAR1 rs12041331 was shown to be associated with an increased
response to ticagrelor in healthy people [70]. However, some studies revealed no such
association for this SNP [71].

In patients with noncardioembolic stroke, the polymorphism PTGS1 rs1330344 showed
a significant association with AA-induced aggregation. Thus, PTGS1 rs1330344 might be
considered as the strongest predictor of laboratory AR among the analyzed SNPs, both in
the whole cohort of ischemic stroke and noncardioembolic patients. The second genetic
marker associated with laboratory AR in both cohorts was rs4523 in TBXA2R gene. The T
allele acted as a risk factor for increased ADP-induced aggregation during aspirin treatment.
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An ambiguous association for ITGA2 rs1062535 was revealed in noncardioembolic
patients. The ITGA2 gene encodes the alpha chain of the platelet collagen receptor inte-
grin α2β1 (glycoprotein IA/IIa, GPIa/IIa), which promotes an initial interaction between
platelets and collagen with further platelet activation and aggregation. The A allele of
rs1062535 was suggested to stimulate the protein expression and increase affinity to col-
lagen, which in turn facilitated platelet reactivity. The A allele of ITGA2 rs1062535 was
significantly associated with reduced post-operative bleeding after cardiac surgery [72]. In
our study, on the contrary, the AA + GA genotypes correlated with lower ADP-induced
aggregation. In contrast, in previously published data, the A allele was considered as a
possible risk factor for thromboischaemic events [73]. This suggestion is in agreement
with our findings implying a strong relationship between the A allele and negative NIHSS
dynamics in noncardioembolic patients.

Thus, the role of genetic factors underlying the inter-individual differences in aspirin
action is of immense interest, but further research is required to understand how genetic
data can be efficiently applied to personalized therapy. Different approaches, such as gen-
eral multifactor dimensionality reduction (GMDR), were employed to study the potential
contribution of multiple genetic factors along with the single-locus analysis [22].

We applied the ML method to predict the risk of AR development using clinical and
genetic factors. This is the first attempt to bring in the ML approach to the analysis of
genetics of AR. We obtained an AUC = 0.665 for our best model (Model S1, Figure 4). On the
one hand, this value seems to be modest, but on the other hand, it is in agreement with the
parameters of other models based on ML for multifactorial processes. For example, similar
sensitivity and specificity values were obtained for antidepressants [74,75]. However, in
those studies, these parameters were obtained only from the genetic factors, whereas in
our study they mainly depended on clinical factors. The developed ML model may be
considered as a first approximation aimed at dealing with the problem of AR prediction.
The relevance of the developed model for clinical practice is still to be confirmed. We
assume that further studies involving larger and more clinically uniform cohorts of patients
are required to shed light on the genetic background contributing to the resistance to
aspirin treatment. Another approach relies on searching for more relevant genetic markers
utilizing throughput methods of genetic analysis such as the next-generation sequencing.
The assessment of polygenic risk score might prove promising as well.

As there is an alternative to aspirin for secondary stroke prevention, such as dual
antiplatelet therapy or ticagrelor [76], identifying patients with a predisposition to AR
can be used for personalized therapy to reduce the risk of adverse events. However, it is
possible that the risk alleles for AR might also be associated with platelet aggregation when
taking other antiplatelet drugs requiring special attention for such patients.

The current study has several limitations. First, when choosing genetic polymor-
phisms, we relied on the published studies focusing on certain candidate genetic markers.
Searching for more relevant genetic markers using such high-throughput methods of ge-
netic analysis as next-generation sequencing may prove promising. Moreover, given the
complex nature of aspirin resistance, the polygenic risk score may be introduced for identi-
fying patients with a high risk of aspirin treatment failure. The second limitation is related
to the size of the studied population. It seems to be large enough compared with other
studies in the field [21,24–34]. However, clarifying the genetic background of aspirin treat-
ment failure, which is affected by numerous clinical parameters and studied SNPs, requires
further studies including larger and more clinically uniform cohorts of patients. The third
limitation may be related to clinical outcome assessment. A number of studies confirmed
an increased risk of adverse outcomes in patients with laboratory AR [14–17]. However,
the underlying mechanism of a poor response to aspirin is still unclear. The ex vivo platelet
reactivity tests do not always clearly correlate with the therapeutic effect of the drug [77].
Our study focused on analyzing laboratory AR, but the most important results can be
obtained from the long-term follow-up of patients and assessing the influence of genetic
and clinical factors and laboratory measurements of AR on clinical outcomes. Finally, in
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our study, we were not always able to take into account the potential impact of other drugs
used by our patients, such as anticoagulants or statins, which are usually prescribed for the
secondary prevention of a stroke. The drug–drug interactions as well as malabsorption or
renal dysfunction could also affect aspirin pharmacokinetics or pharmacodynamics and
thus lead to a number of subsequent pharmacological effects [78,79].

5. Conclusions

Early detection of aspirin resistance in ischemic stroke patients is important for timely
prescription of other antiaggregant drugs when possible. Therefore, searching for predictive
markers of aspirin treatment failure is of great importance. In our study, we revealed the
association between clinical parameters (age, NIHSS score, atrial fibrillation), as well as
SNPs in the PTGS1, ADRA2A, TBXA2R and PEAR1 genes, and laboratory indicators of
platelet activity in ischemic stroke patients taking aspirin for secondary stroke prevention.
The ML model of AR in the studied cohort of patients showed the prevailing contribution
of clinical parameters. However, we assume that the genetic factors are a promising
predictor of aspirin resistance. The ML approach revealed the prospective future directions
of predicting the risk of AR development. Further replication studies including more
homogeneous groups of patients, the implementation of high-throughput genotyping
technologies and development of risk-predictive models based both on clinical and genetic
features may be considered as key steps towards better understanding aspirin resistance in
patients with an ischemic stroke.
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Appendix A Parameters of the Best-Performing Model
loss_function = ‘Logloss’
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od_type = ‘IncToDec’
od_pval = 0.05
od_wait = 10
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