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Spina bifida (SB) is a debilitating birth defect caused by multiple
gene and environment interactions. Though SB shows non-
Mendelian inheritance, genetic factors contribute to an estimated
70% of cases. Nevertheless, identifying human mutations confer-
ring SB risk is challenging due to its relative rarity, genetic hetero-
geneity, incomplete penetrance, and environmental influences
that hamper genome-wide association studies approaches to
untargeted discovery. Thus, SB genetic studies may suffer from
population substructure and/or selection bias introduced by typi-
cal candidate gene searches. We report a population based,
ancestry-matched whole-genome sequence analysis of SB genetic
predisposition using a systems biology strategy to interrogate 298
case-control subject genomes (149 pairs). Genes that were
enriched in likely gene disrupting (LGD), rare protein-coding var-
iants were subjected to machine learning analysis to identify
genes in which LGD variants occur with a different frequency in
cases versus controls and so discriminate between these groups.
Those genes with high discriminatory potential for SB significantly
enriched pathways pertaining to carbon metabolism, inflamma-
tion, innate immunity, cytoskeletal regulation, and essential tran-
scriptional regulation consistent with their having impact on the
pathogenesis of human SB. Additionally, an interrogation of con-
served noncoding sequences identified robust variant enrichment
in regulatory regions of several transcription factors critical to
embryonic development. This genome-wide perspective offers an
effective approach to the interrogation of coding and noncoding
sequence variant contributions to rare complex genetic disorders.

neural tube defects j myelomeningocele j whole-genome sequence j rare
variant enrichment j pathway analysis

The neural tube defect (NTD) spina bifida (SB), among the
debilitating but survivable malformations in live births, is

due to failed embryonic neural tube closure. Together, SB and
the nonviable NTD anencephaly have a global prevalence rang-
ing from one in 3,000 to one in 100 (1). Decades of clinical and
animal model investigations have indicated that SB comprises a
complex genetic disorder, requiring at least one (and probably
several) of many genetic alterations or gene–environment inter-
actions for neurulation to fail (2, 3). NTD-causing mutations
have been reported in more than 250 mouse genes (4, 5), which
has since grown to over 400 mutant genes currently listed in the
Mouse Genome Informatics database, further underscoring the
complex genetic origins of the disorder. Genetic heritability of
human SB, or the proportion of cases that are attributable to
genetic alteration, is estimated to be as much as 70% (6).

Maternal periconceptional supplementation with folic acid
(vitamin B9) can reduce the occurrence of SB in offspring by as
much as 70% in some populations (7–9). Despite folate supple-
mentation campaigns and fortification of the US food supply
since 1998, SB prevalence rates have only dropped 30%, sug-
gesting that most benefits from folic acid have been achieved.
Other agents such as vitamin B12, methionine, or inositol show
some promise for effective prevention (10). However, the mech-
anisms through which these agents influence SB occurrence
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remains elusive, and based on mouse models, responses to
supplements like folic acid vary with the genetic context (3,
11–14). Although powerful, the mouse is an imperfect surro-
gate for humans on several counts, among them intergenic
regions that differ significantly from the human genome, with
less species conservation than protein-coding regions. At pre-
sent, it is not possible to identify maternal–fetal genotypes
that indicate vulnerability to a teratogenic drug or toxin or to
predict which preventive therapy will best ensure healthy
pregnancy outcomes for individual couples. There is a press-
ing need to identify patterns of human SB genetic predisposi-
tion that could lead to better understanding individual prog-
nosis, improved care of SB-afflicted children, and enhanced
capabilities for birth defect prevention.

Next-generation sequencing offers increasing insight into
risk factors for common complex genetic disorders including
type II diabetes (1 in 10 in the United States) (15), schizophre-
nia (1 in 100) (16, 17), and autism spectrum disorders (1 in 59)

(18, 19). However, less prevalent complex genetic disorders are
particularly challenging, as they affect relatively small and glob-
ally diverse populations [e.g., in the United States, 1 in 3,000
for NTDs, 1 in 700 for orofacial clefts (20), and 1 in 140 for
congenital heart disease (CHD) (21)], which requires pooling
genetically diverse cohorts that may confound downstream
analyses. Genetic studies (including genome-wide association
studies, GWAS) of the more prevalent structural birth defects
such as CHD have indicated that, while sequence variants that
are common in human populations probably contribute to birth
defects, they account for only a small proportion of genetic risk
(21) so that GWAS will require thousands of subjects to identify
common variants that increase risk for structural birth defects.
Nevertheless, NTD cases display significant enrichment in rare
variants (22, 23), suggesting that genes bearing rare variants
will have stronger associations (greater effect sizes) and may be
identifiable in smaller cohorts. Taking an approach distinct
from a GWAS, this is a multicenter SB case-control study that

Fig. 1. WGS analysis overview. (A) The admixture composition of the ethnically diverse cohort of 149 SB cases and 149 ancestry-matched controls used in
the analysis. For brevity, the nine gene pools were collapsed by continent. (B) The strategy used to interrogate WGS data. (C) The proportion of variants
found in the cohort by type.
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mounts a comprehensive, ancestry-matched whole-genome
sequence (WGS) analysis from a systems biology perspective.
This study seeks to identify pathways and biological functions that
are disrupted in SB as reflected in their enrichment with genes or
regulatory regions harboring rare, likely damaging mutations.

Results
We obtained WGS data of 310 individuals encompassing 157
SB cases and 153 controls. After quality control screening,
which included the extent of genomic regions sequenced and
average depth of coverage (30× for over 80% of the genome),
the remaining samples were analyzed to identify the population
substructure and optimize the case-control pairing to minimize
stratification. For that, genetic ancestry was identified using a
mixed admixture model, and only ancestry paired-matched
cases and controls with paired-matched ancestry were included
for further analysis (see Materials and Methods for details). The
admixture proportions of the selected individual pairs are
shown in Fig. 1A. Downstream computations were carried out
on 298 individuals, including 149 cases and 149 nonmalformed
controls. The mean sequencing depth of the samples was >30×
regardless of their origin (i.e., venipuncture or newborn blood
spots) (SI Appendix, Fig. S1). Variants were called using a stan-
dard pipeline (see Materials and Methods).

Decades of clinical and animal model investigations underlie
the consensus that rare variants likely lead to SB (show higher
penetrance) more often than common ones, and only a few
examples are cited here (10, 24–27). Among the reasons, if com-
mon alleles were the main driver of SB occurrence, the condition
should be more highly prevalent in the population. However,
common variants do not necessarily equate with common pheno-
types, and relatively common alleles may contribute to SB genetic
risk. We therefore used a somewhat relaxed definition of rare,
including for further analysis those variants with an allele fre-
quency (AF) < 0.01 in any population from 1,000 Genomes (28),
National Heart, Lung, and Blood Institute (NHLBI) and the
Exome Sequencing Project (ESP) (29), and the Genome Aggre-
gation Database (gnomAD) (30). Hence, from a total of
41,005,720 variants at the cohort level, 22,502,019 variants were
retained for subsequent analyses. No statistically significant dif-
ference was found in the variant distributions between cases and
controls (two-tailed Student’s t test P value = 0.7197, SI
Appendix, Fig. S2). Fig. 1B outlines the workflow for the genome-
wide analyses carried out on the ancestry-matched samples
reported in this manuscript. Fig. 1C provides a breakdown of the
different types of variants found in the study cohort.

Coding Variant Analysis Supports Existing Literature and Identifies
Pathways Involving Inflammation, Innate Immunity, and Cytoskeletal
Regulation. We previously reported an increased burden of nonre-
current, private, loss-of-function variants in genomes of NTD
patients compared to controls, which was consistent across three
cohorts with different ancestry (22). Herein, we extended the
analysis of coding regions to include all rare likely gene disrupt-
ing (LGD) protein-coding variants (i.e., frameshift, nonsense,
splice donor/acceptor, stop gain/loss, and missense predicted del-
eterious). Thus, of the 22.5 million rare variants in our cases and
controls, 56,210 met criteria as LGD single-nucleotide variants
(SNVs) and insertions-deletions (InDels) and were included in
the current analysis. No statistically significant difference was
found in the rare LGD variant distributions between cases and
controls (two-tailed Student’s t test P value = 0.6547, SI
Appendix, Fig. S2). Traditional GWAS approaches typically
involve finding an association between a variant and the disorder.
However, with a limited sample size, this study is underpowered
to carry out even a rare variant association analysis, which
involves aggregating the effect of rare variants within a gene.

Assuming minor allele frequencies (MAF) of 5%, over 3,000
cases will be required to reach statistical significance at the gene
level at 80% power (see Materials and Methods). Unsurprisingly,
rare variant aggregate association tests such as SNV-set
(Sequence) Kernel Association Test (31) did not render any sta-
tistically significant results at the single-gene level after multiple
testing correction.

Considering the complex genetic nature of SB and its relatively
low prevalence, systems biology approaches are more appropriate
to find statistically significant results after correcting for multiple
hypothesis testing. Since the rare (or even private), potentially del-
eterious variants found in cases are likely to affect different genes
within several common pathways or biological processes and func-
tions, we surmised that a machine learning approach can help
reduce the genomic search space. A total of 13,526 genes har-
bored the 56,210 LGD variants identified in our cohort, and these
genes were further analyzed to determine which ones allowed dis-
tinguishing cases from controls (i.e., had high discriminatory
potential). Embedded feature selection was employed to perform
this process; thus, we selected a machine learning algorithm that
pinpointed relevant genes during the learning process. Random
Forest (RF) (32)—a machine learning technique which uses
numerous decision trees—was employed to build a predictive
model of SB utilizing the 13,526 genes that harbored LGD var-
iants as input. The best, most optimized model was selected by
comparing cross-validation results, and additionally, a completely
separate subset of the data (hold-out dataset) was utilized to esti-
mate the generalization error. Method performance was assessed
by calculating the area under the receiver operating characteristic
curve (AUROC) (33) (see Materials and Methods). The selected
RF model, which encompassed 100 trees, was able to achieve an
AUROC of 0.78 on the hold-out dataset, indicating that the
model performs well on new, unseen data (SI Appendix, Fig. S3).
A list of 439 genes were identified as relevant to distinguish cases
from controls by this technique (Dataset S1). This gene list was
then used for enrichment analyses in order to identify pathways,
biological processes, molecular functions, and cellular components
that were overrepresented.

Genes were classified into broad annotation categories as an
overview of the biological processes that were affected (shown in
SI Appendix, Fig. S4). Interestingly, out of the 439 genes with high
discriminatory potential between cases and controls (i.e., SB dis-
criminative genes), nine were differentially expressed in a previous
transcriptome analysis of fetuses with NTDs (34). That small
study performed genome microarray–based transcription profiling

Table 1. Genes found in this machine learning strategy to have
high discriminatory potential between SB cases and controls that
were previously found to be differentially expressed in human
fetal NTD versus healthy control amniocytes

Gene Expression up/down Fold change (log2) Adjusted P value

CGAS* + 2.82 0.02
GRIN2D† + 3.15 0.00
MYH11* + 2.92 0.01
ODF3B + 2.69 0.04
IVL � 2.96 0.01
LAMC2* � 2.37 0.02
SLITRK6† � 2.69 0.02
USP2* � 2.81 0.00
ZNF750 � 2.23 0.04

Amniocyte data (log2 fold changes and adjusted P values) reported by
Nagy et al., 2006 (34).
*These differentially expressed genes are also found in significantly
overrepresented pathways obtained in our analysis.
†These differentially expressed genes have been associated with neuronal
synapse assembly and axon pathfinding.
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of human fetal amniocyte-derived messenger RNA (mRNA)
from pregnant women at 17 to 19 wk gestation, comprising seven
NTD-affected pregnancies compared to five healthy controls (34)
(Table 1). Next, we sought to determine whether any of the fetal
cortical clusters of genes (“gene modules”) identified in a previ-
ously published analysis based on human midgestational (weeks
14 to 21) RNA sequence data (35) were enriched in SB discrimi-
native genes (see Materials and Methods). We found that the
human fetal gene expression cluster referred to as the “turquoise
module” by Walker et al. was the only one of six modules that
was significantly enriched in genes with high discriminatory poten-
tial in our SB cases (adjusted P < 0.02) (Fig. 2A). This turquoise
module was described (35) as enriched for specific brain cell types
or brain-relevant Gene Ontology (GO) terms involving mitotic
progenitors and cell division and therefore represents an early
progenitor class.

A total of 20 relevant pathways were overrepresented in
genes with the potential to discriminate between SB cases and
controls (Table 2). Importantly, the pathways with greatest sig-
nificance were those related to central metabolism (Carbon
Metabolism and Cobalamin Transport and Metabolism,
adjusted P value < 0.001). The variant-enriched genes within
these pathways suggest lipid (fatty acid) and glucose metabo-
lism as the aspects most affected in our cohort. This is particu-
larly interesting in that the epidemiological data accumulating
post-introduction of folic acid fortification into the US food
supply indicates that the persistent risks for NTD may be
largely attributable to the rise in obesity and diabetes (36–38).
This finding provides strong evidence that the proposed
approach is pinpointing relevant pathways.

Additional pathways associated with human SB encompass
genes linked to innate immunity and inflammatory response

Fig. 2. The genes with the greatest potential to discriminate between SB cases and non-SB controls and their relationships in pathways. (A) The genes
with high discriminatory potential to distinguish SB cases and controls significantly enrich an early progenitor class, gene coexpression module identified
in a transcriptome WGCNA study of midgestation human cortex (35). The modules most highly enriched in rare variants found in individuals with devel-
opmental delay (DD, neuronal regulation module) or autism spectrum disorder (ASD, neuronal regulation and neurobehavior modules) (Walker et al.)
are distinct from SB (this study, early neural progenitor proliferation module). (B) The pathways related to immunity are enriched with genes that contain
LGD mutations in SB cases and impact the interferon arm of the HSV-1 pathway. (C) SB risk genes affect cytoskeletal regulation. The genes enriched with
LGD variants in SB cases disrupt RhoGDI signaling and actin-myosin components of the cytoskeleton. Red stars in B and C indicate LGD-enriched genes.
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cascades. For example, the herpes simplex virus 1 (HSV-1) infec-
tion pathway (Table 2, adjusted P = 0.00685 and Fig. 2B) includes
Cyclic GMP–AMP Synthase (CGAS), whose expression was
increased in fetal cells from human NTD cases (Table 1). Interest-
ingly, this gene is interferon inducible and part of innate immunity
(39). The rare LGD variants of the analysis cohort also impact
genes associated with three critical cascades: RIG-I–like receptor
signaling, JAK–STAT signaling, and p53 signaling (Fig. 2B).
Another relevant pathway implicated in human SB is associated
with the response to DNA damage (adjusted P = 0.00885) and
includes Ubiquitin Specific Peptidase 2 (USP2), which is required
for Tumor Necrosis Factor alpha (TNF-alpha)–induced Nuclear
Factor kappa B (NF-κB) signaling. USP2 was also differentially
expressed in the fetal cells from NTD cases shown in Table 1.
Together, these pathways are consistent with previous data impli-
cating immune responses in SB pathogenesis (40) and suggest
fetal contributions beyond maternal factors in utero produce SB.

The extracellular matrix (ECM)–receptor interaction (Table 2,
adjusted P = 0.01062), cytoskeletal regulation (Rho GDP-dissoci-
ation inhibitor [RhoGDI] pathway, Table 2, adjusted P = 0.01321

and Fig. 2C), and cell–cell signaling (Sertoli–Sertoli Cell Junction
Dynamics, Table 2, adjusted P = 0.01605) pathways were also sig-
nificantly impacted by rare, LGD variant–enriched genes in SB
cases. Among these cascades, genes such as Laminin Subunit
Gamma 2 (LAMC2) and Myosin Heavy Chain 11 (MYH11)
were also found to be differentially expressed in NTD fetal cells
(Table 1).

GO enrichment analysis identified biological processes to be
statistically significant (Dataset S2). Among these are processes
related to cellular/molecular transport (Intraciliary Antero-
grade Transport, adjusted P = 0.00008; Amino Acid Transmem-
brane Transport, adjusted P = 0.00612), cell migration and
morphogenesis (Lateral Motor Column Neuron Migration,
Positive Regulation of Trophoblast Cell Migration and Auditory
Receptor Cell Morphogenesis, adjusted P < 0.01), the response
to stress (EiF2alpha Phosphorylation in Response to Endoplas-
mic Reticulum Stress, adjusted P = 0.00081; Negative Regula-
tion of Translational Initiation in Response to Stress, adjusted
P = 0.00315), mitochondrial and nuclear DNA (Mitochondrial
DNA Repair and Mitochondrial DNA Metabolic Process,

Table 2. Pathways enriched with genes of high discriminatory potential between SB cases and healthy controls

Pathway Adjusted P value Genes

Carbon metabolism 0.00081 ADPGK, EHHADH, ACAT2, ASNS, ENO4,
MDH2, H6PD, MMUT, PGD, TKTL2

Cobalamin (Cbl, vitamin B12) transport and
metabolism

0.00099 ABCD4, CTRB2, MMUT, TCN1

Glyoxylate and dicarboxylate metabolism 0.00358 ACAT2, HYI, MDH2, MMUT
Propanoate metabolism 0.00449 EHHADH, ACAT2, LDHAL6B, MMUT
Herpes simplex virus 1 infection 0.00685 HLA-A, EIF2AK3, EIF2AK4, ZNF439, CGAS,

ZNF283, ZNF160, ZNF616, ZNF8, ZNF790,
ZNF233, ZNF850, TP53, ZNF708, ZNF273,

ZNF682, ZNF814, ZNF562, ZNF736
DNA damage 0.00885 CIP2A, CAD, CDT1, BRCA1, PKMYT1, CCP110,

POLR2A, MUTYH, CENPF, USP2, TTK, TDP1,
TP53

ECM–receptor interaction 0.01062 FREM2, COL18A1, LAMC2, SV2C, ITGA8, TNR,
RELN

RhoGDI pathway 0.01321 FGFR3, MYO3A, MYH11, MYH15, MYO1C,
MYH4, MYO9B, MYO1D, PARP1

Codeine and morphine metabolism 0.01358 ABCC2, CYP2D6, SLCO1B3
Sertoli-Sertoli cell junction dynamics 0.01605 EPN3, MYO3A, MYH11, MYH15, MYO1C,

MYH4, NPR1, SPTBN1, STX5, MYO9B, ITGA8,
MYO1D, CGN, SPTB, CLDN6

Homologous DNA pairing and strand
exchange

0.01793 EXO1, BRCA1, POLD3, RAD51D, RAD9B

NAD metabolism, sirtuins, and aging 0.02171 FOXO1, PARP1
Pentose phosphate pathway 0.02427 H6PD, PGD, TKTL2
PERK regulates gene expression 0.02427 EXOSC5, ASNS, EIF2AK3
Interaction between L1 and ankyrins 0.02427 SPTBN1, SCN5A, SPTB
Cell cycle checkpoints 0.02468 EXO1, BRCA1, PKMYT1, PSMA8, MCM10,

RAD9B, MCM6, HIST3H3, TP53
Valine, leucine, and isoleucine degradation 0.02575 ACSF3, EHHADH, ACAT2, MMUT
Amino acid transport across the plasma

membrane
0.02638 SLC7A7, SLC6A6, SLC6A12

Aurora A signaling 0.02638 DLGAP5, BRCA1, TP53
Oncogene-induced senescence 0.02860 ETS2, TNRC6B, TP53

Table 3. TF genes whose regulatory regions are significantly enriched with rare variants

TF Full name Adjusted P value Coordinates

ZNF274 Zinc finger protein 274 1.64E-11 GeneHancer
RFX5 Regulatory factor X5 5.25E-05, 7.56E-08 hESC CTCF loops (naïve and primed)
MAX MYC associated factor X 6.37E-05, 0.018 CTCF loop conserved across tissues and hESC (naïve)
JUND JunD proto-oncogene, AP-1 TF 0.026 hESC CTCF loops (primed)
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DNA Replication, and Regulation of DNA-dependent DNA
Replication Initiation, adjusted P < 0.005), metabolism (Cobala-
min Metabolic Process, adjusted P = 0.00099) and one-carbon
metabolism (Response to Methotrexate [a folate analog],
adjusted P = 0.00486). Additional results can be found for GO
enrichment analysis of cellular components and molecular func-
tions (Datasets S3 and S4). LGD variant–enriched genes related
to the ciliary base were overrepresented (adjusted P = 0.03580,
SI Appendix, Table S4), consistent with our previous identification
of SB-associated variants in the primary ciliary G Protein-
Coupled Receptor 161 (GPR161) that caused a mislocalization of
the receptor and disrupted downstream signaling (41).

Noncoding Variant Analysis Points to Perturbed Core Signaling
Pathways because of the Dysregulation of Transcription Factor
Genes. When assessing the impact of rare variants in intergenic,
nonprotein-coding regions, it is critical to identify those variants
likely to have a deleterious impact on gene regulation as well as
to determine which gene(s) may exhibit altered expression.
Enhancers are cis-regulatory elements well known to modulate
gene expression by binding transcription factors (TFs) to facili-
tate or suppress transcription. Within these enhancer regions,
transcription factor–binding sites (TFBSs)—short motifs dem-
onstrated to bind TFs—can be affected by single-nucleotide
changes (42). Nevertheless, when bound by TFs, enhancers can
loop long distances to contact and regulate specific genes;
therefore, it cannot be assumed that a rare SNV in a specific
enhancer will impact the closest gene. Recent studies elucidate
the constraints that restrict each of the ∼one million docu-
mented enhancers in the human genome to specific target-gene
interactions (43, 44). Several studies have observed that chro-
matin loops mediated by CTC-Factor (CTCF) and cohesin
bound on both anchors at the loop ends isolate genes from
active enhancers, thus leading to a dysregulation of gene

transcription units partially or fully within the loop when dis-
rupted (44–48).

Based on the potential of SNVs to abrogate binding of cog-
nate factors, the noncoding portion of the genome was interro-
gated, which included 17,548,500 rare noncoding SNVs at the
cohort level. Regulatory regions of 106 TF genes previously
identified as relatively conserved throughout evolution (49)
were analyzed for enrichment in rare noncoding SNVs. Two
complementary approaches were used to determine the regula-
tory region coordinates for these: a more traditional one based
on curated enhancer regions [obtained from GeneHancer data
available through GeneCards (50)] and a state-of-the-art
approach based on CTCF loops [conserved across tissues (51)
and mapped during early and later differentiation stages in
human embryonic stem cells (hESC) (44)] (see Materials and
Methods). Our use of CTCF loop maps to infer the gene being
regulated by a rare variant enriched transcription enhancer
region is a strategy that leverages critical insights into the
three-dimensional configuration of human ES genomes. This is
highly relevant to SB, as the neurulation defect arises in or
proximal to germinal epithelium within the first 30 to 40 d of
gestation within the typical staging of the maps to which we
refer.

SI Appendix, Figs. S5–S8, A show the distribution of rare var-
iants in noncoding regions for cases normalized to controls for
the coordinates corresponding to each set of coordinates. In
this analysis, we identified four TF genes that were enriched for
rare SNVs in their regulatory regions in cases compared to con-
trols (Table 3). Quantile–quantile (Q–Q) plots, cumulative dis-
tribution function (CDF) plots, and probability–probability
(P–P) plots are also included in SI Appendix (SI Appendix, Figs.
S5–S8). Fig. 3A shows a schematic of the CTCF loops and the
distribution within them of those rare noncoding SNVs present
only in cases for two TF genes: MAX (Myc-associated Factor

Fig. 3. TF genes whose regulatory regions are enriched with rare noncoding SNVs and their interactions. (A) The location of rare noncoding variants within
the CTCF loops spanning MAX and JUND in cases. (B) The pathways regulating cell processes are impacted by rare noncoding variants. The regulatory regions
of MAX and JUND are enriched in rare SNVs, impacting the JNK and p38 signaling pathways. Red stars indicate rare variant enrichment of regulatory regions
in SB cases. (C) The interaction partners of ZNF274 based on data from the Search Tool for the Retrieval of Interacting GenesProteins (STRING).
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X) and JUND (JunD Proto-Oncogene, AP-1 Transcription Fac-
tor Subunit). The CTCF loop associated with MAX contains
the cis-regulatory regions in the 30 end, including the 30
untranslated region (UTR). The disruption of the 30 UTR
could affect localization, stability, export, and translation effi-
ciency of mRNA. JUND’s CTCF loop isolates both the TF and
its regulatory regions; hence, disrupting this loop could affect
its transcription interactions. In both cases, the disruption of
regulatory loci within MAX- and JUND-specific CTCF loops
positions the variants to affect the expression of these TF
genes, which can impact the genes those TFs regulate and, ulti-
mately, the pathways in which they are involved.

Finally, pathway enrichment analysis was carried out using
the TF genes identified in the previous analysis (Table 3) as
input. The results encompassed several overrepresented signal-
ing pathways pertaining to immunity and the regulation of
essential cellular processes, such as cell growth, differentiation,
and proliferation (Dataset S5). As expected, GO enrichment
analysis involved biological processes predominantly related to
transcription (Dataset S6). Nonetheless, it is worth highlighting
that terms pertaining to the central nervous system were over-
represented (Response to Axon Injury, adjusted P = 0.00615;
Neuron Apoptotic Process adjusted P = 0.00807). Additional
results can be found for GO enrichment analysis of cellular
components and molecular functions (Datasets S7 and S8).

Discussion
This study comprises a multicenter, population-based, ancestry-
matched genome-wide analysis of SB WGS data. Because of
the multifactorial nature of SB, our genomic interrogations
were stringent, seeking rare changes that produce potentially
damaging mutations in protein-encoding sequences or noncod-
ing TF regulatory regions. The strategy pursued here has
yielded significant results that stand up to multiple testing cor-
rection. Furthermore, the validity of our analyses was
supported by two sources of transcriptomic data from human
neurodevelopment. First, nine of the genes with discriminatory
potential and found in enriched pathways in our study were
also differentially expressed in a small survey of differentially
expressed mRNAs from midgestation fetal amniocytes of
NTD-affected pregnancies. Second, using our data in a previ-
ously described gene module enrichment method (weighted
gene coexpression network analysis, WGCNA), we found that
variant enriched genes from our SB data overlapped with a
gene coexpression module from a study (35) of midgestation
human cortex, a module that was classified as representing an
early progenitor network. This result is appropriate for a struc-
tural birth defect that involves germinal epithelium over the
first gestational month and supports the relevance of the SB
associations detected here.

Among the pathways, defined by PathCards and GO, that
were most highly enriched with genes that were discriminative
for SB were “Carbon Metabolism” and “Cobalamin (Cbl, Vit
B12) Transport and Metabolism.” It is interesting that the car-
bon metabolism–related genes found to discriminate SB cases
from controls in our cohort are not core players in folate,
one-carbon metabolism but instead relate to lipid and glucose
metabolism. This is particularly relevant in that postfolate forti-
fication epidemiological data have suggested that persistent
risks for NTD may be attributable to concomitant population
increases in obesity and diabetes (36–38). Obesity, metabolic
syndrome, and diabetes are rising public health concerns both
in the US and Qatar populations (38, 52–54). This systems biol-
ogy approach may be particularly suited for the detection of
physiologically relevant pathways contributing to SB and may
be less subject to ascertainment bias than candidate gene
approaches more common in the field.

Another intriguing pathway emerging in this study highlights
processes of innate immunity (HSV-1 infection and DNA dam-
age). Among their SB-discriminatory genes, CGAS is known to
encode a sensor of viral double strand RNA (dsRNA) and
DNA-damaged double strand DNA (dsDNA), participates in
the RIGI-like signaling pathway, and was differentially
expressed in NTD-affected human fetal amniocytes (34). Path-
ways involving ECM and cytoskeletal regulation mechanisms
may illuminate folate resistant mechanisms at work in human
NTD, as Frem2 mutant mice are not protected by folic acid sup-
plementation (12). The RhoGDI pathway is enriched in several
unconventional myosin family members known as regulators of
actin-based molecular motors. In particular, MYO1D is neces-
sary for the asymmetric localization of planar cell polarity
(PCP) protein VANGL1 (55). MYO1C serves as actin transport
to the leading edge of motile cells, while MYO9B is a RhoGT-
Pase activator. Along with the myosin heavy-chain MYH gene
products, these molecules regulate cell junction dynamics and
cytoskeletal contractile elements modulating cell morphologies
and so are positioned to facilitate morphogenetic changes in
neural tube cells.

This SB study reaches beyond protein coding sequences to
examine nucleotide variation in intergenic functional domains
of SB patients. The approach presented here identified four TF
genes whose regulatory regions are enriched in variants and are
likely contributors to SB risk. Among these, MAX, JUND, and
ZNF274 (zinc finger protein 274) stand out (Table 3). ZNF274
is a transcriptional repressor involved in epigenetically modified
chromatin complexes with SETB1-TRIM28 (56) [Fig. 3C (57)]
and has been associated with p75 neurotrophin-mediated sig-
naling (Dataset S5), which participates in key events in spinal
cord neuron survival and plasticity (58, 59). MAX is a bHLH
protein, a transcriptional repressor acting via the recruitment
of a chromatin remodeling complex with histone methylase
activity. Among the overrepresented pathways encompassing
multiple TF genes, the MAPK signaling pathway (Dataset S5)
is of particular interest in view of its critical role in brain func-
tion (60) and immunity (61). Mutations in either MAX or
JUND, through changes in the p38 and JNK signaling pathways
respectively, could disrupt inflammation processes as well as
cell proliferation and differentiation through the cell cycle and
induction of apoptosis (Dataset S5 and Fig. 3B).

This genome-wide search has identified significant
SB-associated pathways and regulatory regions that are hypoth-
esized to be key drivers of SB. The strength of this approach is
that it avoids cherry picking among genes and pathways already
implicated through mouse genetic studies. For example, path-
ways such as central metabolism—strongly significant here—
have been overshadowed in human genetic studies by candidate
gene searches for PCP or one-carbon metabolism genes
because of undeniably important insights from animal model
investigations. The genes highlighted here in lipid metabolism
and glycolytic pathways can be tested in genetic replication
studies and biological models. Similarly, regulatory regions for
transcription factors MAX, JUND, and ZNF274 are now pro-
posed for further scrutiny.

Toward genetic validation of these drivers, if limited to SNVs
and InDels, our results indicate WGS on some 3,300 SB cases
will be needed to establish significance for individual genes and
begin to address common variant contributions to SB. Greater
power may be gained from combining gene enrichment by dele-
terious variants along with damaging structural variation [e.g.,
CNVs (23)], demanding new computational approaches to
accomplish this task. It is unlikely that a single variant or gene
would greatly impact nonsyndromic SB risk. However, it is
entirely possible that a single pathway could be predisposing if
it contained variants affecting multiple genes in the pathway.
Furthermore, only a few LGD-containing genes may be
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necessary to result in SB in an individual, as there are examples
in the mouse of NTDs caused by digenic mutations within a
pathway. For example, NTDs have been seen in mice hetero-
zygous for mutations in pairs of PCP pathway genes Vangl2/
Ptk7 (62, 63), Cobl/Vangl2, Vangl2/Scrb, and Vangl2/Celsr1
(64), digenic mutations in cytoskeletal regulators Enah/Vasp
(65), or cell adhesion genes Itga1/Itga6 (66). A case-control
study limitation is that it can only illuminate components of
SB risk for the affected individual. Determining the recur-
rence risk for a couple will require WGS investigations of
case–parent trios, and these efforts are ongoing. Trio analyses
will enable the identification of inherited versus de novo var-
iants. Further computational approaches are needed to find
potential genetic interactions in individual cases. Also, geno-
mics will only provide one piece of the complex puzzle that
undoubtedly includes epigenetic modifications of genomic
DNA and chromatin, often in response to maternal nutrition
and/or environmental exposures. As we build population-
based genome investigations, it will be important to gather
gene-expression data from the same subjects—for example,
from amniocytes of SB-affected and control pregnancies.

Toward functional testing of SB genetic contributions, the
hypotheses generated using systems biology–based computa-
tional strategies will require biological validation, likely utilizing
genome editing of individual genes and regulatory sequences,
singly and in combination, in the mouse in vivo and human
stem cell systems (reviewed in ref. 67). These animal and
human models offer additional opportunities to test environ-
mental stressors that mimic toxic exposures and intrauterine
conditions that undoubtedly interact with the genome and
impact the epigenome to tip the epistatic load toward SB (20).
The approach demonstrated here represents an important step
toward an integrated systems biology view of genetic factors
underpinning human neural tube defects. The genomic efforts
will have to be combined with epigenetic, multiomic, and envi-
ronmental investigations to obtain a full picture required for
precision medicine (68). Importantly, the identification of
recurrence risk toward new avenues for prevention is only one
use of precision medicine. Knowledge of the genetic risk of an
individual SB infant—even which pathways are most likely
impacted in that individual—could inform prognosis and allow
for devising novel early interventions toward optimizing the
developmental potential of the child. Systems biology
approaches will enable inclusion of relatively rare, complex
genetic disorders such as SB in this future of 21st-century dis-
ease prevention and improved individualized healthcare.

Materials and Methods
Study Subjects. For this case/control study, case subjects with nonsyndromic
SB who displayed myelomeningocele were selected (69, 70). The initial cohort
comprised 310 subjects from two different countries. Of the 157 SB-affected
individuals, 85 were collected in the United States and 72 in Qatar. Among the
153 remaining controls are 45 unrelated subjects from the United States and
108 unrelated individuals living in Qatar (71).

The human subject research study protocol was approved by Institutional
Review Boards in the US (Weill Cornell Medical College-NY) and the Middle
Eastern population receiving their healthcare in Qatar (HamadMedical Corpo-
ration and Weill Cornell Medical College-Qatar). Consent documentation was
provided in both English and Arabic; all participants provided informed
consent.

We have no information regarding prenatal folate status on any of the
individuals in this study. The US food supply has been fortified with folic acid
since 1998, and Qatar began a fortification program in 2009 with a nation-
wide folate supplementation program prior to that. Case-control collections
from both countries spanned pre- and postfortification periods, with reported
NTD prevalence in both countries relatively stable over the encompassed 25 y
span at 0.5 to 1/1,000. We surmise that there is a mixture of folate statuses (at
least with respect to timing of samples collected relative to fortification

programs) across both US and Qatar cohorts, making it unlikely that the
results would be skewed in a particular direction based on folate intake.

WGS. The subject material included genomic DNA extracted specifically for
this project from deidentified infant blood spot cards collected from the Cali-
fornia Genetic Diseases Screening Program and referred from the California
Birth Defects Monitoring Program (72). Genomic DNA was also derived from
venipuncture samples collected from subjects participating in the national
Spina Bifida Clinic at the Hamad Medical Corporation. Genomic DNA was
extracted, whether from bloodspots or venipuncture samples, using the Pure-
gene DNA Extraction Kit (Qiagen). Input amounts of DNA from infant blood
spots were 200 to 500 ng, and inputs from venipuncture samples were 2 to 3
μg. All DNA samples were whole-genome sequenced using Illumina chemis-
tries (v3) on HiSeq 2500 instruments to yield short insert paired-end reads of
2 × 100 base pairs (bp).

Population Structure Analyses and Case-Control Matches. Stratification bias
occurs when the variants that distinguished the compared cohorts (cases and
controls) are recognized because of mismatching ancestries rather than varia-
tion with respect to the phenotype, and this bias is a major shortcoming of
genomic trials (73). Addressing the problem of stratification bias requires an
unbiased estimator of genomic ancestry (74) that would provide a gene pool
breakdown of the studied samples irrespective of the study cohort and a pro-
cedure that optimizes the case-control matches by their genomic ancestry. For
that, we first extracted a set of 130,000 ancestry informative markers (AIMs)
reported by Elhaik et al. (75) from the genotype data. Employing this AIMs set
was reported to improve the genomic ancestral inferences (76). Next, we cal-
culated the ancestry of each individual in relation to nine gene pools repre-
senting distinct geographic regions around the world (e.g., South Africa) (75)
using supervised ADMIXTURE (77). The output was the admixture proportions
of each individual corresponding to those global gene pools. Subsequently,
we applied the Pair Matcher (PaM) tool that matches the cases with the con-
trols by their genomic distances (78). Briefly, PaM calculates the genetic distan-
ces between every two individuals as the sum of differences between their
nine admixture proportions. The pairing assignments are then optimized to
maximize the numbers of ancestry-matched pairs and ensure that a genomi-
cally ancestry-balanced cohort is used in the analysis.

The final study cohort employed for further analysis included 298 human
subjects. Of the 149 SB-affected individuals, 77 were from the United States
and 72 from Qatar. Among the 149 ancestry-matched controls were 43 unre-
lated subjects from the United States and 72 unrelated individuals living in
Qatar. The remaining 34 controls matching the ancestry of US subjects were
selected from the Pan-Cancer Analysis of Whole Genomes study (79), all of
whichwere germline samples obtained from Caucasian subjects.

Read Mapping, Variant Calling, and Annotation. The sequence data were
processed using standard pipelines as described in the Broad Institute’s
Genome Analysis Tool Kit (GATK) Best Practices (80). Reads were aligned to
the hg38 reference provided as part of the GATK Bundle using the Burrows-
Wheeler Aligner (BWA) (81). Variant calling was performed with GATK4 (82),
and joint genotyping was carried out on the whole cohort followed by Vari-
ant Quality Score Recalibration. Quality control (following standard practices
such as obtaining sequencing metrics, per sample missing rate, and level of
heterozygosity) was done to check for DNA contamination and identify out-
liers, removing those samples with poor quality. Per-variant quality was also
assessed, and only variants with a “PASS” in the filter column were retained
and annotated utilizing Ensembl Variant Effect Predictor (VEP) v.95 (83).

Rare Coding Variant Analysis. Variants in coding regionswere filtered to retain
only those that are globally rare [MAX_AF < 0.01 as provided by the max_af
flag in the VEP annotation, which reports the highest AF observed in any popu-
lation from the 1,000 Genomes Project (28), NHLBI - ESP (29), and gnomAD
(84)]. Next, LGD variants were identified as SNVs and InDels, including 1) loss-of-
function variants (i.e., nonsense, frameshift, splicing, stop gain, or stop lost) and
2) missense variants predicted deleterious [by SIFT (85) and/or PolyPhen (86)].
Variants meeting the previous criteria (from now on, “qualifying variants”)
were collapsed by gene, that is, a matrix with the number of qualifying variants
per gene per subject was obtained. A power calculation for individual gene
association was performed using the Genetic Association Study Power Calcula-
tor (87). This tool was used to determine the minimum number of subjects
required to reach statistical significance at the gene level (P value = 0.0000025).
Therefore, assuming a power of 80% and an MAF of 5%, at least 3,300 cases
are necessary.

Since the sample size necessary to achieve statistically significant single-
gene association using rare variant association analysis was well above the
available number of cases, an alternative approach based onmachine learning
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(88) was proposed. The matrix of qualifying variants was used as input to a
machine learning classifier for embedded feature selection. Hence, genes
were selected as part of the learning algorithm using as class label the group
to which each individual belongs (i.e., case or control). The input data were
divided into two parts pseudorandomly to ensure proportions were main-
tained: one part encompassing 80% of the data, which was used for training
and cross-validation to select the best, most optimized model, and a second
part including the remaining 20% (hold-out dataset), which was used for fur-
ther, independent assessment of the method’s performance on new, unseen
data. RF (32)—a machine learning technique which uses numerous decision
trees—was employed to build a predictive model of SB using Python’s scikit-
learn library (89). Hyperparameter tuning was performed utilizing the random
search and grid search functions within scikit-learn. The model performance
was assessed by calculating the AUROC (33) utilizing the scikit-learn library.
Threefold cross-validation was employed to select the best model as provided
by the same library. To estimate the generalization error, the selected model
was further tested on the hold-out dataset. As an additional quality control
check, we created RF models on 10 sets that were generated by randomly
shuffling the group (case/control) labels. This analysis sought to ensure that
the model was not learning the noise existing in the data and, as a conse-
quence, would not generalizewell.

The features (i.e., the 439 genes with high discriminatory potential) were
ranked according to importance as returned by the RF classifier based on the
Gini impurity metric. Gini impurity provides a measurement of the likelihood
of incorrect classification of a new instance of a random variable (if that new
instance was randomly classified according to the distribution of class labels
from the dataset), and those with an importance value > 0 were selected for
subsequent steps. Genes were next broadly categorized based on GO Slim
usingWebGestalt (90), thus obtaining a high-level summary of biological cate-
gories based on GO terms. The same genes with high discriminatory potential
were used as input to GeneAnalytics (91) for pathway and GO enrichment
analyses. Within GeneAnalytics, P values are calculated assuming an underly-
ing binomial distribution and corrected for multiple comparison using false
discovery rate (FDR) (92). Finally, gene module enrichment was carried out as
described by Walker et al. (35). Briefly, clusters (gene modules) were obtained
by these authors as a result of applying WGCNA (93) to bulk RNA sequencing
data from the midgestational (weeks 14 to 21) human cortex. In the present
work, gene module enrichment was calculated employing the same logistic
regression model described byWalker and colleagues: is.disease∼ is.module +
gene covariates. P values were adjusted to correct for multiple testing, apply-
ing a Bonferroni correction (as described in the same publication).

Rare Noncoding Variant Analysis. Variants in noncoding regions were filtered
to retain only those SNVs that are rare (MAX_AF < 0.01 as provided by the
VEP annotation using the max_af flag) in any given population part of 1,000
Genomes, ESP, and gnomAD. Regions regulating 106 TF genes previously

identified as relatively relevant during development (49) were obtained.
These regulatory regions were defined using data pertaining to curated
enhancer GeneHancer data (50) and within CTCF loops spanning each TF gene
of interest. Three different sets of coordinates—or catalogs—were used to
determine the region coordinates for the CTCF loops, including a dataset of
conserved loops across multiple tissues (51) and loops mapped in hESCs at an
earlier (naïve) and later (primed) developmental stage (44). CTCF maps from
these sources are highly appropriate for this purpose, as many CTCF loops are
conserved across tissues and developmental stages, andwe specifically interro-
gated those that are known to be conserved. Furthermore, SB arises early in
development—before 35 d gestation—and the neural tube is a germinal epi-
thelium, so SB is closely related to hESCs at early (naïve) and more differenti-
ated (primed) progenitor stages.

The subsequent steps were performed for each catalog. First, BEDTools (94)
was employed to identify those rare noncoding SNVs that fell within regulatory
regions. Similar to the analysis of variants in protein coding exons, variants in
noncoding sequences were collapsed by regulatory regions to determine the
frequency of SNVs occurring within TF gene regulatory regions. To identify
regions with high discriminatory potential for SB, regulatory regions associated
to a TF gene were tested for enrichment in cases versus controls. For this pur-
pose, the proportion of SNVs in cases divided by controls was calculated, and
the fitdist function within the fitdistrplus R package (95) was used to determine
which regulatory regions were significantly enriched. P values were FDR
adjusted to correct for multiple comparisons.

Finally, the list of TF genes whose regulatory regions were significantly
enriched with SNVs (FDR < 0.05) in at least one of the catalogs was used as
input to pathway and GO enrichment analysis. Similar to the coding variant
analysis, this was carried out employing GeneAnalytics.

Data Availability. Genes found to have high discriminatory potential and
those that enriched pathways in this study are provided in Datasets S1–S8 in
Supplementary Information. Data pertaining to specific variants generated
during the downstream analyses, which support the findings of this study, are
available upon request to the corresponding author (MER). The whole
genome sequencing data cannot be shared in a public database, due to IRB
restrictions.
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