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Plasminogen activator inhibitor-1 (PAI-1) is themain inhibitor of plasminogen activators, such as tissue-type plasminogen activator
(t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role
in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1
extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2
diabetes, and cancer.The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that
it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the
risk of thrombosis from a prolonged antifibrinolytic action of PAI-1.Thus, relying solely on plasma concentrations of PAI-1 without
assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions,
interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of
the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and
stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease.

1. Introduction

Plasminogen activator inhibitor-1 (PAI-1) is a member of
serine proteinase inhibitors (serpin) superfamily. Each serpin
consists of about 350–400 amino acid residues (depending
on the degree of glycosylation) with molecular masses in
the range of 38 to 70 kDa [1]. “Stressed-to-relaxed” confor-
mational change is the distinguishing feature of the serpin
protein family members that leads to considerable thermo-
dynamic stabilization and inhibitory mechanism of serpins is
based on this transition. Serpins are divided into two groups,
that is, the inhibitory serpins and the noninhibitory serpins
[2]. PAI-1 belongs to the inhibitory serpins group, that is,
the inhibitor of plasminogen activators. Two types of PAI-1,
tissue-type plasminogen activator (t-PA) and urokinase-type
plasminogen activator (u-PA), are reported [3]. Both types
of plasminogen activators are members of serine proteases.
Circulating proenzyme plasminogen is cleaved via these
serine proteases, which forms the active protease plasmin.

Lysis of fibrin in a blood clot and pericellular proteoly-
sis are the results of activation of plasminogen by t-PA and

u-PA, respectively. As potential check points in the regulation
of fibrinolysis, the activity of plasmin can be directly inhib-
ited by 𝛼2-antiplasmin or thrombin activatable fibrinolysis
inhibitor (TAFI) or plasminogen activator inhibitors can
block the conversion of plasminogen to plasmin [4]. PAI-1
is the most important direct physiological inhibitor of t-PA
and u-PA and major regulator of the fibrinolytic system (Fig-
ure 1) [5]. Severity and unfavorable outcomes were reported
in a number of diseases due to elevated plasma levels of
PAI-1 antigen [6–9] and activity [9–11]; as a result, PAI-1 is
considered as a biomarker and potential molecular target for
therapeutics.

2. Biochemistry of PAI-1

PAI-1 is a 47 kD single chain glycoprotein consisting of 379 or
381 amino acids depending on heterogeneity of N-terminal
caused by two possible cleavage sites for signal peptidases
[12] and there is no cysteine in the PAI-1 molecule. PAI-1
is a globular protein with 3 beta-sheets (A, B, and C) and 9
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Figure 1: Role of PAI-1 in fibrinolytic system.

alpha-helices (hA–hI) [13]. An exposed peptide loop of PAI-1
reactive centre loop (RCL) has significant importance for the
inhibitory mechanism [14].

Purification of human PAI-1 to apparent homogene-
ity and monoclonal antibodies against human PAI-1 were
reported in 1984 [15] and 1986 [16, 17], respectively. The iso-
lation of full length cDNA encoding human PAI-1 was
described independently by four groups in 1986 (NCBI acces-
sion number M16006) [18–21].

The cDNAs encoding PAI-1 from rat [22], bovine [23],
mouse [24], rabbit [25], porcine [26], and vervet monkey [27]
have been cloned and these studies revealed 81 to 97% nucleic
acid identity and 78 to 97% amino acid identity with human
PAI-1 [28].

The human PAI-1 gene is located on chromosome 7
(q21.3–q22) (Figure 2), spans approximately 12200 base pairs,
and consists of nine exons and eight introns [29]. Several
groups have analyzed and sequenced the whole PAI-1 gene
[29–33]. Several agents including dexamethasone, endotoxin,
lipopolysaccharide, growth factor, thrombin, interleukin-1,
tumor necrosis factor, insulin, very low-density lipoprotein
(VLDL), low-density lipoprotein (LDL), and lipoprotein
stimulate the synthesis and secretion of PAI-1 [34, 35].

Several genetic variations have been described in the
PAI-1 gene. PAI-1 polymorphisms include two dinucleotide
(CA) repeats in the promoter and in the intron 4, a Hind
III restriction fragment length polymorphism (RFLP) and an
insertion (5G)/deletion (4G) polymorphism at position −675
of the PAI-1 promoter, a T-to-G substitution at position +11
053, two G-to-A substitutions at positions −844 and +9785 in
the intron 7, a deletion of nine nucleotides from a threefold
repeated sequence between nucleotides +11 320 and +11 345,
and a G +12 078A polymorphism in the 3 untranslated
region [36]. Homozygosity for 4G in the 4G/5G polymor-
phism has been correlated with elevated PAI-1 protein levels,
increased risk of thrombosis, and impaired fibrinolysis [37].

3. Physiological Function of PAI-1

PAI-1 can be synthesized in various tissues and cell types such
as liver, spleen, adipocytes, hepatocytes, platelets, megakary-
ocytes, macrophages, smooth muscle cells, placenta, and
endothelial cells [38]. PAI-1 forms a covalent bond with both
t-PA and u-PA (1 : 1 molar ratio) and blocks degradation of

active fibrin by preventing the generation of plasmin (pro-
tease of fibrinolysis) from the inactive precursor plasminogen
[39, 40]. PAI-1 has a significant role in acute thrombotic
events such as DVT and MI, type-2 diabetes, cancer, and
fibrotic disorders including atherosclerosis and renal and
pulmonary fibrosis [39–41].

Tissue plasminogen activator (t-PA) and plasminogen
activator inhibitor-1 (PAI-1) directly influence thrombus for-
mation and degradation and thus risk for arterial thrombosis.
PAI-1 is a procoagulant, proinflammatory, and profibrotic
molecule [39, 40]. PAI-1 is frequently expressed in injured
tissues including myocardium and brain and the PAI-1/tissue
plasminogen activator (tPA) ratio is indicative of a patient’s
fibrinolytic balance which can indicate thrombus and stroke
risk. Studies indicate evidence for the endothelial activation
in small vessel brain injury, associated with low levels of PAI-
1. Prior studies associate high levels of t-PA and differences in
activity of components of the fibrinolytic system with white
matter lesion development [42].

Atherosclerosis is an inflammatory process that results
in lipid accumulation at arterial wall. Adaptive and innate
immunity have active roles in atherosclerotic process.Mainly,
monocytes give rise to macrophages and they become foam
cells in the arterial intima, which is the hallmark of the
arterial fatty streak. Mast cells, platelets, and T and B cells
also play role in atherogenesis [43]. The major event behind
atherosclerosis is inhibition of fibrinolysis due to increased
plasminogen activator inhibitor-1 (PAI-1) levels, indicator
of ineffective fibrinolysis. This leads to increased thrombus
formation [44] and makes the plaque unstable. High serum
glucose concentration also has been shown to be associated
with elevated PAI-1 levels. Increased PAI-1 levels have been
encountered inmany disease conditions, includingmetabolic
syndrome [45], diabetes [44], and obesity. Recent studies
showed that PAI-1 also has role in adipose tissue development
and in the control of insulin signaling in adipocytes [45].

Thrombolytics are the major agents in the management
of acute thrombotic vascular events. PAI-1 is the primary
inhibitor of both tissue-type and urokinase-type plasmino-
gen activators, which inhibits fibrinolysis and has causal
relationship with various vascular complications [40]. Addi-
tionally, PAI-1 also has pivotal role in the innate immunity by
regulating cell migration and phagocytosis. PAI-1 stimulated
the migration of monocytes and macrophages by interacting
with LRP or tPA. PAI-1 also promoted the migration of
lymphocytes and neutrophils into inflammatory sites [46].
PAI-1 is spontaneously converted into a thermodynamically
stable latent form and has a short half-life (𝑡

1/2
) of around 2 h

[47]. Plasminogen activators (PA) and PA inhibitors (PAI) are
balanced in blood and regulate the conversion of plasmino-
gen to plasmin [40]. Plasmin exerts proteolytic activity on a
wide range of proteins including matrix metalloproteinases
(MMPs), transforming growth factor (TGF-b1), laminin,
type IV collagen, and fibronectin. Plasma concentration of
PAI-1 antigen and activity levels of PAI-1 exert prominent
differences even in normal populations [48].

Through the regulation of the urokinase-type and tissue-
type plasminogen activators, PAI-1 takes role in such physi-
ological processes as wound healing and tissue remodeling.
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1 ATGCAGATGTCTCCAGCCCTCACCTGCCTAGTCCTGGGCCTGGCCCTTGTCTTTGGTGAAGGGTCTGCTG
71 TGCACCATCCCCCATCCTACGTGGCCCACCTGGCCTCAGACTTCGGGGTGAGGGTGTTTCAGCAGGTGGC

141 GCAGGCCTCCAAGGACCGCAACGTGGTTTTCTCACCCTATGGGGTGGCCTCGGTGTTGGCCATGCTCCAG
211 CTGACAACAGGAGGAGAAACCCAGCAGCAGATTCAAGCAGCTATGGGATTCAAGATTGATGACAAGGGCA
281 TGGCCCCCGCCCTCCGGCATCTGTACAAGGAGCTCATGGGGCCATGGAACAAGGATGAGATCAGCACCAC
351 AGACGCGATCTTCGTCCAGCGGGATCTGAAGCTGGTCCAGGGCTTCATGCCCCACTTCTTCAGGCTGTTC
421 CGGAGCACGGTCAAGCAAGTGGACTTTTCAGAGGTGGAGAGAGCCAGATTCATCATCAATGACTGGGTGA
491 AGACACACACAAAAGGTATGATCAGCAACTTGCTTGGGAAAGGAGCCGTGGACCAGCTGACACGGCTGGT
561 GCTGGTGAATGCCCTCTACTTCAACGGCCAGTGGAAGACTCCCTTCCCCGACTCCAGCACCCACCGCCGC
631 CTCTTCCACAAATCAGACGGCAGCACTGTCTCTGTGCCCATGATGGCTCAGACCAACAAGTTCAACTATA
701 CTGAGTTCACCACGCCCGATGGCCATTACTACGACATCCTGGAACTGCCCTACCACGGGGACACCCTCAG
771 CATGTTCATTGCTGCCCCTTATGAAAAAGAGGTGCCTCTCTCTGCCCTCACCAACATTCTGAGTGCCCAG
841 CTCATCAGCCACTGGAAAGGCAACATGACCAGGCTGCCCCGCCTCCTGGTTCTGCCCAAGTTCTCCCTGG
911 AGACTGAAGTCGACCTCAGGAAGCCCCTAGAGAACCTGGGAATGACCGACATGTTCAGACAGTTTCAGGC
981 TGACTTCACGAGTCTTTCAGACCAAGAGCCTCTCCACGTCGCGCAGGCGCTGCAGAAAGTGAAGATCGAG

1051 GTGAACGAGAGTGGCACGGTGGCCTCCTCATCCACAGCTGTCATAGTCTCAGCCCGCATGGCCCCCGAGG
1121 AGATCATCATGGACAGACCCTTCCTCTTTGTGGTCCGGCACAACCCCACAGGAACAGTCCTTTTCATGGG
1191 CCAAGTGATGGAACCCTGA
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Figure 2: Genetic loci and protein structure of PAI-1.

This key role gives great importance to PAI-1 in many patho-
physiological conditions including cardiovascular diseases
and cancer metastasis and spread [1, 49].

PAI-1 deficiency in experimental animal models was
associated with protective effects against L-NAME-induced
perivascular fibrosis, kidney fibrosis, and bleomycin-induced
lung fibrosis [50, 51].

4. Clinical Implications of PAI-1

PAI-1 is principal inhibitor of plasminogen activation and,
thus, has been of particular focus in cardiovascular disease.
Studies display a strong correlation between serum PAI-1
levels and cardiovascular risk in different clinical settings.
For instance, elevated serum PAI-1 is associated with risk for
myocardial infarction (MI), recurrent MI, angina pectoris,
and atherosclerosis [52–56]. In addition to its modula-
tory role in the fibrinolytic system, plasminogen activator
inhibitor-1 (PAI-1) is a well-characterized regulator of matrix
remodeling. Experimental and clinical evidences suggest that
PAI-1 not only is a biomarker but also is in fact a pivotal
mediator of vascular disease, cancer, asthma, insulin resis-
tance, and obesity [57–59]. The native plasminogen activator
inhibitor-1 (PAI-1) represents an active conformation that
spontaneously converts to an inactive latent form. PAI-1 has
a short span of activity with a half-life (𝑡

1/2
) around 2 hours

followed by spontaneous conversion into a latent form [60,
61]. Enhanced stability of PAI-1 is associated with biological
changes across multiple systems. Transgenic expression of a
conformationally stabilized active human PAI-1 is associated
with a number of phenotypic abnormalities including age-
dependent spontaneous coronary arterial thrombosis and
alopecia areata [62]. We observed markedly enhanced func-
tional stability of PAI-1 in patients with a rare thrombotic skin
condition: livedoid vasculopathy [41]. Similarly, we reported
nearly 50-fold increase in stability of PAI-1 in a family with
extensive cardiovascular disease and vitiligo [47]. Sequencing
of PAI-1 gene was performed in three subjects with the

highest functional stability levels; however, results did not
display any discerning alterations in the gene sequence [47].
While the exact mechanism of increased stability of PAI-
1 activity is not known, it may be due to posttranslational
modifications or increased binding affinity for a stabilizing
cofactor. Thus, these findings suggest that the increased
stability of PAI-1 activity may contribute to the commonality
across multiple systems and disease phenotypes.

5. Conformational Structure of PAI-1

PAI-1 has three interconvertible conformations: active, latent,
and substrate forms [63, 64]. The first structure of a serpin
(cleaved𝛼1-antitrypsin) was solved in 1984 [65]. In 1992,Mot-
tonen et al. [66] characterized the first PAI-1 (latent) confor-
mation structurally. Subsequently, two other groups clarified
a structure of PAI-1 in the latent conformation [67]. Since the
exposed RCL is not in its most stable conformation, native
forms of serpins are called “metastable,” that is, the unique
feature of serpin family. The mobility of the RCL guides
the inhibitory activity of serpins, and the RCL becomes
inserted easily into the central 𝛽-sheet upon cleavage by
proteases and formation of a covalent acyl-intermediate. The
driving force for this conformational change is thermody-
namic, yielding a more stable and more extensive central 𝛽-
sheet.

At first, interaction between serpin and protease gives rise
to a noncovalent Michaelis complex formation in which the
P1–P1 bond in the RCL docks into the active site. Then, the
cleavage of P1–P1 bond causes covalent linkage of P1 residue
to the active site serine of the protease by an ester bond. After
that, the N-terminal residues of the RCL becomes inserted
into 𝛽-sheet A, whereas translocation of the protease occurs
to the opposite pole of the serpin and trapped in an inactive
form with a distorted active site [68]. Serpins have common
motifs that are also shared by the tertiary structure of active
PAI-1. One of the motifs that is shared is the solvent-exposed
RCL of about 20 amino acids long (designated P16 through
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P80, including the bait peptide bondArg346–Met347 (P1–P10))
[66]. In its active conformation, protease reacts with P1–P10
reactive center bond and cleaves this bond; then, the amino
terminal part of the RCL has inserted RCL into 𝛽-sheet A;
as a result, the protease has been relocated to the opposite
pole of PAI-1 [69]. Finally, a 1 : 1 SDS-stable acyl-enzyme
complex has been formed [70]. The protease is inhibited as
a consequence of distortion of the active site of the protease
during this remarkable conformational change [68]. In the
case of hampering of RCL insertion through cleavage in one
way or another, release of PAI-1 from the protease is more
likely and hence PAI-1 acts only as a substrate of the protease
and not as an inhibitor [63, 69].Mutations in the hinge region
[60, 71, 72] as well as changes in external conditions [2, 73–76]
or the addition of monoclonal antibodies [77–81] can induce
substrate behavior of PAI-1.

6. Importance of PAI-1 Level

The normal plasma concentration of PAI-1 antigen is con-
sidered to be between 6 and 80 ng/mL. One unit of PAI-1
activity is defined as the level that can neutralize one unit of
single chain tPA in 10 minutes. Activity levels range from 0 to
50U/mL with antigen levels from few to 100 ng/mL [48].

High PAI-1 levels are associated with an increased cardio-
vascular risk of atherothrombosis, dyslipidemia, hyperinsu-
linemia, and hypertension [82, 83].

In 1989, presence of significant correlation of PAI-1
levels with both total cholesterol and total triglycerides was
reported [84]. One year later, similar results were obtained by
another group [85]. These results suggest that hypertriglyc-
eridemia may be associated with increased levels of PAI-1.

Research group of Madan et al. [86] compared type-2
diabetic patients with and without microvascular complica-
tions. Increased levels of PAI-1 were found in patients with
microvascular complications. It is reported that PAI-1 levels
lead to the procoagulant state found in diabetes. Contribution
of this state to the major vessel diseases and microvascular
complications is also significant findings of the study [86].

In the study of Adly et al. [87], PAI-1 levels in chil-
dren and adolescents with type-1 diabetes were determined
and relation between PAI-1 levels and some risk factors
such as glycemic control, microvascular complications, and
carotid intima-media thickness (CIMT) for the development
of atherosclerosis was investigated. Significant difference
between patients with and without microvascular complica-
tions was found. Higher PAI-1 levels are detected in patients
with microvascular complications, microalbuminuria, or
peripheral neuropathy. Results of this study support the
potential usefulness of PAI-1 in early detection of risk of vas-
cular complications.

It is reported that increased PAI-1 expression triggers
signaling pathways that alter tumor microenvironment and
inhibit apoptosis and promotion of angiogenesis which
enhance tumor growth [88]. Moreover, Knudsen et al. [89]
reported correlation of elevated levels of PAI-1 with HIV-1-
infected patients. In this respect, Ferroni et al. [90] investi-
gated elevated plasma PAI-1 levels as a prognostic indicator
of breast cancer. Results of this study indicate that elevated

plasma PAI-1 levels were associated with increasing tumor
stage and disease relapse, which encourage future investi-
gations addressing the role of plasma PAI-1 levels in the
management of patients with breast cancer and in providing
the rationale for new therapeutic strategies.

While numerous investigations have reported increased
levels of PAI-1 and its physiological function, reports of PAI-1
deficiency are more limited. The first case was published in
1989 and reported the correlation between low levels of PAI-1
and lifelong bleeding disorder [91]. Two years later, a 36-year-
old patientwith undetectable plasminogen activator inhibitor
type-1 (PAI-1) antigen and activity was reported. This report
indicated association of a severe deficiency of PAI-1 with a
delayed type bleeding tendency and revealed the importance
of plasma PAI-1 for the stabilization of the hemostatic plug
[92]. In 1992, homozygous frame-shift mutation within the
PAI-1 gene that results in the formation of a premature stop
codon has been identified for the first time. This report
provides opportunity to assess its function in vivo because
this molecular defect results in complete loss of expression of
humanPAI-1. Results indicated that PAI-1 functions in vivo to
regulate hemostasis and take role in abnormal bleeding and
this study has accelerated further studies on PAI-1 deficiency
[93].

Afterwards, many studies about the correlation between
PAI-1 deficiency and bleeding diathesis have been reported
and specific genetic mutation associated with PAI-1 defi-
ciency has been published [94–103]. Mild to moderate bleed-
ing disorders are caused by PAI-1 deficiency. Incidence of
PAI-1 deficiency is quite rare since the lack of a sensitive PAI-1
activity assay obstructs diagnosis of this condition.

7. Functional Stability of PAI-1

When PAI-1 is synthesized in endothelial cells and released
into blood, it is in a functionally active form [104], which
is the native conformation, and has the inhibitory activity
towards its target proteases. Among serpins, active confor-
mation of the PAI-1 is the least stable. Spontaneous activity
loss of active form of PAI-1 with a functional half-life of 1-
2 h at 37∘C under normal conditions has been reported [61].
Interaction with the target proteases is not in use in the
nonreactive latent form of PAI-1. Partial reactivation of the
latent form can be achieved by denaturing agents and sub-
sequent refolding [105], and also in vivo reactivation of latent
PAI-1 has been observed [106]. The conversion of PAI-1
from the active to the latent conformation appears to be
unique among serpins in that it occurs spontaneously at
a relatively rapid rate [107, 108]. It is believed that latency
transition represents a regulatorymechanism that reduces the
possibility of thrombosis from a prolonged antifibrinolytic
action of PAI-1 [14].

In vitro, by the movement of the RCL into the central 𝛽-
sheet, the conformation of PAI-1 spontaneously converts
from the active state to an energetically more favorable inac-
tive latent state [66, 108, 109].

One of the major structural rearrangements identified
for a folded protein is PAI-1 latency transition that occurs
without a concomitant change in covalent structure; even so,
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how the sequence of conformational changes occurs through
latency transition remains largely unknown [110].

In order to increase the stability of active PAI-1, many
studies have been done. Eren et al. reported a number of
phenotypic abnormalities including age-dependent sponta-
neous coronary arterial thrombosis and alopecia areata in
a transgenic expression animal model of conformationally
stabilized active human PAI-1 [62].

Increased stability of PAI-1 activity may contribute to the
pathophysiology of several complex diseases. It was recently
observed that the functional stability of PAI-1 was markedly
increased (nearly 43-fold) in plasma from the patients with
thrombotic skin disorder such as livedoid vasculopathy. The
mechanism of enhancing functional stability of PAI-1 activity
is unknown.

It has been shown that environmental conditions or inter-
action with other proteins can have a considerable impact on
the stability of the PAI-1 structure. Besides, construction of a
variety of mutants has been reported in order to prolong the
half-life of PAI-1.

7.1. Environmental Conditions. Stable active PAI-1 structure
was reported in the conditions of a low pH (≈5.5), a high salt
concentration (1M NaCl), and a low temperature (4∘C) [111,
112].

The stability of PAI-1 is pH-dependent and it is reported
that PAI-1 is more stable at pH 5.5 and 37∘C; it has a half-
life of about 16 h [111]. It is thought that one or several
histidine residues contribute to the acid stabilization of PAI-
1 because a decrease in pH is accompanied by a protonation
of imidazole groups [113]. In 2000, it was demonstrated that
His364 is responsible for the pH-dependent stability of PAI-
1 [114]. Strong interactions between electronegative ions and
the partially positive nitrogen atoms of the anion binding site
increase the energy barrier for the active to latent transition
[67]. Additionally, 15-fold stability increase has been reported
in the case of arginine binding [115].

PAI-1 can be partially reactivated to the active form if it
is exposed to the high concentration of certain denaturants,
including guanidinium chloride and urea, after the refolding
in a slightly acidic dialysis buffer [105, 111, 116]. It was also
reported that phospholipids might convert latent PAI-1 to the
active form [117] and PAI-1 synthesized in bovine endothelial
cells could be reactivated by heating it to 100∘C [118].

7.2. In Vivo Stabilization. Vitronectin is a multifunctional
glycoprotein found in blood and in the extracellular matrix
and it can bind collagen, plasminogen, glycosaminoglycans,
and the urokinase-receptor. It stabilizes the inhibitory con-
formation of PAI-1 [119], decreasing its rate of spontaneous
inactivation [120, 121].

Plasma binding protein vitronectin stabilizes the PAI-1
molecule at least two to threefold by binding to it [67, 114].
PAI-1 and vitronectin are believed to be colocalized in the
extracellularmatrix [121, 122]. Half-life of PAI-1 is about 2 h at
37∘Candneutral pH in the absence of vitronectin, but twofold
increase in the half-life has been reported in the presence
of vitronectin [123]. 𝛼1-acid glycoprotein is another ligand

that can stabilize the PAI-1 activity. However, the stabilizing
effect of 𝛼1-acid glycoprotein is not pronounced as well as
vitronectin [124].

7.3.Mutagenesis. Several studies on PAI-1 have been reported
where either site-directed mutagenesis or random mutage-
nesis has increased its functional stability [60, 61, 73]. It is
reported that random mutagenesis of large number of resi-
dues in different parts of the PAI-1 gives rise to clones with
increased stability of PAI-1.

Using a random mutagenesis approach, Berkenpas et al.
[61] identified a set of mutations that had considerable
stabilizing effects on the PAI-1 stability. Exceptional stability
was displayed by few single mutations and, significantly, 9-
fold stabilization of the PAI-1 activity (𝑡

1/2
≈ 18 hours) was

detected in the mutation of the isoleucine residue to a leucine
at position 91. On the other hand, combination of several
changes gives rise to about 150 h half-life. However, several
changes in combination give rise to PAI-1 molecule with a
half-life of about 150 h [61]. The most stable variant they
identified was a quadruple mutant (N150H, K154T, Q319L,
and M354I) with a half-life of approximately 145 hours at
37∘C, with a 72-fold stabilization in comparison to human
PAI-1 wild-type.

A few years later, addition of a fifth mutation, Q301P, to
this quadruple mutant was reported by Vleugels et al. [125]
and very similar properties were observed in both cases.

It is reported that the mutations at positions 154, 319, and
354 contribute the most to the stabilization in these stable
variants [125, 126]. In further studies, it has been demon-
strated that the combination of mutations at positions 50, 56,
61, 70, 94, 150, 222, 223, 264, and 331 increased the half-life
of PAI-1 245-fold [127] and a disulfide mutant with a more
than 350-fold increased stability was reported in 2003 [128].
Results are summarized in Table 1.

7.4. Glycosylation. Glycosylation pattern analysis of natural
human PAI-1 showed that different glycosylation patterns
are present in different cell sources that support presence of
tissue-specific glycosylation pattern [129].

Most biochemical and structural studies have been per-
formed with nonglycosylated PAI-1 produced in Escherichia
coli. However, in natural cell lines and eukaryotic cells, glyco-
sylated PAI-1 is present. Although biochemical properties of
proteins are influenced significantly by glycosylation, minor
differences were reported for nonglycosylated and glycosy-
lated PAI-1 [76, 130, 131]. Three potential N-glycosylation
sites, Asn209, Asn265, and Asn329, have been identified in
human PAI-1 [132, 133].

It was demonstrated that human PAI-1 displays a het-
erogeneous glycosylation pattern of asparagines Asn209 and
Asn265, while Asn329 is not utilized [133].The latent transition
of nonglycosylated PAI-1 was more easily enhanced by a
nonionic detergent when compared with glycosylated PAI-1
[134].

It is confirmed that only two N-linked glycosylation
sites are actually used when glycosylation pattern of natural
human PAI-1 was analysed in different cell sources. However,
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Table 1: Random mutagenesis approach to the stability of PAI-1.

Mutation Stability increase 𝑡
1/2

Reference
I91L 9-fold 18 h [61]
N150H, K154T, Q319L, and M354I 72-fold 145 h [125]
N150H, K154T, Q319L, M354I, and Q301P 75-fold 150 h [126]
Combination of mutations at positions 50, 56, 61, 70, 94, 150, 222, 223, 264, and 331 122-fold 245 h [127]
Disulfide mutant 350-fold 700 h [128]

heterogeneous, tissue-specific glycosylation pattern was also
observed [129]. It is hypothesized that PAI-1 circulates in both
glycosylated and nonglycosylated states in vivo, depending
on the cell type that expresses the protein [129, 135]. Despite
the fact that glycosylation of PAI-1 is not a prerequisite for
its activity [130], glycosylation status of PAI-1 is critically
significant in the development of PAI-1 inhibitors [12, 28].
Research of van de Craen et al. [12] indicated that targeting
glycosylated PAI-1 can be efficient therapeutic approach to
control PAI-1 levels in vivo.

Bager et al. found that single glycosylation site is present
in PAI-1 frombony fish. In the same study, recombinant PAI-1
of zebrafish (Danio rerio) PAI-1 (zfPAI-1) was produced [136].

Interestingly, slow latency transition was detected in a
zfPAI-1 produced in a glycosylated form, whereas rapid con-
version to latent statewas observed in nonglycosylated zfPAI-
1. This effect can be explained by simple steric hindrance
during transition to the latent state.

When compared with human PAI-1, 5-fold slower latency
transition of glycosylated zfPAI-1 has been demonstrated.
When fish PAI-1 compared with human PAI-1, a single N-
linked glycan at Asn185 in the gate region was detected (RCL
passes through this region in the period of latency transition).

It is known that deglycosylation has no effect during the
latency transition of human PAI-1; on the other hand, 50-
fold faster latency transition was observed for deglycosylated
zebrafish PAI-1 (zfPAI-1) in contrast to the glycosylated
zfPAI-1. Moreover, deglycosylated zebrafish PAI-1 (zfPAI-1)
is about 25-fold faster than nonglycosylated human PAI-1.
Presence of anN-linked glycan in the gate region and absence
of glycan-induced structural changes were confirmed when
glycosylated fish PAI-1 was analyzed based on X-ray crystal
structure [136].

Investigations on insulin-resistant old rats showed that
the high degree of PAI-1 glycosylation and activity related
to an increased cardiovascular risk associated with insulin-
resistant states [135]. Serrano et al. reported that glycosylation
determined a 10-fold higher specific activity against u-PA and
2.3 against t-PA inhibition [135]. Thus, highly glycosylated
PAI-1 form can implicate higher concentrations of active PAI-
1 and an increased cardiovascular risk in insulin-resistant old
rats.

On the other hand, there is increasing evidence that
insulin resistance abdominal obesity increases PAI-1 anti-
gen and activity levels. The likely mechanisms may involve
upregulation of PAI-1 synthesis by insulin, glucocorticoids,
angiotensin II, fatty acids, and cytokines such as tumour
necrosis factor-alpha and transforming growth factor-beta.

PAI-1 glycosylation is another potential target to modulate
the enhanced effects of PAI-1 in these patients [82, 137].

8. Future Prospects

The influence of PAI-1 on the pathophysiology of complex
diseases may depend on genetic and environmental effects
and their interactions. Furthermore, the mechanisms may
differ across the populations. Rather than single-site allelic
and genotypic associations, multilocus genotype equilibrium
and multilocus genotype and environmental risk factor
associations using bioinformaticmethodsmight be necessary
to investigate the effects of PAI-1 on disease mechanisms.
Enhanced stability of PAI-1 contributes to the pathophysiol-
ogy of a wide range of complex diseases including atheroscle-
rosis, dementia, and cancer.

A number of potential mechanisms may be associated
with the increased functional stability of PAI-1 including
point mutation(s) in the coding domain sequences (CDSs)
of PAI-1 gene, binding stabilizing cofactors, and posttrans-
lational modifications in the PAI-1 protein. Systemic or
local treatment with PAI-1 inhibitors may offer potential
treatment alternatives to the near orphan status for novel drug
development.

Moreover, PAI-1 is a potential biological marker that can
be progressively considered in the prognostic evaluation and
disease monitoring and as a treatment target of age-related
conditions in the future.
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