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Comparisons of quantitative 
approaches for assessing microglial 
morphology reveal inconsistencies, 
ecological fallacy, and a need 
for standardization
Tabitha R. F. Green1,2, Sean M. Murphy1 & Rachel K. Rowe1,2*

Microglial morphology is used to measure neuroinflammation and pathology. For reliable inference, it 
is critical that microglial morphology is accurately quantified and that results can be easily interpreted 
and compared across studies and laboratories. The process through which microglial morphology 
is quantified is a key methodological choice and little is known about how this choice may bias 
conclusions. We applied five of the most commonly used ImageJ-based methods for quantifying 
the microglial morphological response to a stimulus to identical photomicrographs and individual 
microglial cells isolated from these photomicrographs, which allowed for direct comparisons of results 
generated using these approaches. We found a lack of comparability across methods that analyzed 
full photomicrographs, with significant discrepancies in results among the five methods. Quantitative 
methods to analyze microglial morphology should be selected based on several criteria, and 
combinations of these methods may give the most biologically accurate representation of microglial 
morphology.

Microglia are immune cells exclusive to the central nervous  system1. Actively, microglia sample the microenvi-
ronment and respond to injury or  infection2,3. Microglia have a distinctive morphology that changes based on 
their reactivity and  function4. Under non-inflammatory conditions, microglia have a highly ramified morphol-
ogy with many sinuous branches stemming from a small cell body. After detection of a pathological stimulus, 
microglia rapidly change their morphology by shortening their processes and enlarging their cell  body5–7. This 
morphological change occurs on a continuum and the extent of de-ramification is associated with the severity 
of the pathological  stimulus5.

Morphological changes in microglia are associated with pathology severity; thus, immunohistochemical anal-
yses that investigate microglial morphology are powerful methods for assessing the level of inflammation caused 
by an insult. Techniques frequently used to quantitatively assess changes in microglial morphology either obtain 
averaged measurements across photomicrographs or examine individual isolated microglial cells. However, it 
remains unclear if these differing approaches produce comparable results and, consequently, whether associated 
inferences are reliable and/or accurate. Indeed, a lack of standardization of data-generating, data collection, and 
analytical methods is among the primary contributors to the reproducibility crisis and translational failures in 
 neuroscience8,9. Preclinical neuroscience research using animal models is particularly susceptible to reproduc-
ibility  issues10,11. Although environmental variability across laboratories cannot be fully controlled, other factors, 
such as inadequate training in experimental design, inappropriate application of statistical analysis approaches, 
and untested ability of many of the data-generating and sampling methods used to address the same outcome 
measures, contribute to the irreproducibility of findings in translational  studies10.

Herein, we applied five of the most commonly used ImageJ-based methods for quantifying the microglial 
morphological response to a stimulus to identical photomicrographs and isolated microglial cells from these pho-
tomicrographs, which allowed for direct comparisons among methods. Ionized calcium binding adapter molecule 
1 (Iba1) is a microglial marker that is commonly used to examine microglial reactivity through morphological 
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changes. We used two ImageJ-based full photomicrograph analysis techniques; percent coverage of Iba1 stain-
ing to show how much Iba1 positive staining is present in a given photomicrograph, and full photomicrograph 
skeletal analysis which calculates an averaged number of branches, branch endpoints, and branch length among 
cells in the field of view captured in a 40×  photomicrograph6,12–14 (Fig. 1). Additionally, we used three single 
cell microglia analysis techniques that involved isolating individual, randomly selected microglial cells from a 
photomicrograph in ImageJ, and quantifying microglial morphology at a single cell level (Fig. 2). Fractal analysis 
was used to quantify the spatial complexity of the individually isolated microglia. Single cell skeletal analysis was 

Figure 1.  Full photomicrograph analysis techniques to assess microglial morphology in ImageJ (percent 
coverage and full photomicrograph skeletal analysis). (a) 40× photomicrograph of Iba1-stained microglia. (b) 
Iba1 photomicrograph converted to binary. (c) Iba1-binarized photomicrograph converted to a skeleton. (d) 
Tagged skeleton after the ‘analyze skeleton’ plugin. (e, f) Enlarged version of a skeletonized cell and a tagged 
skeleton from images (c and d), respectively. Scale bar = 100 µm.
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used to quantify microglial ramification and cell body size. Sholl analysis, which uses intercepts on concentric 
circles around the cell body, was applied to determine the extent of branching an individual microglia  has15. All 
five methods were applied to identify alterations in microglial morphology or percent coverage between a control 
group and a treatment group that had pharmacologically manipulated microglia.

Results
Lipopolysaccharide (LPS) was given in this study as an inflammatory trigger to induce robust microglial reactiv-
ity, see “Methods” for experimental design. In the treatment group, microglia were depleted prior to LPS exposure 
and then repopulated before tissue collection. In the control group, microglia remained intact. Microglial reac-
tivity was assessed using full photomicrograph skeletal analysis (Fig. 1) and at the single cell level using fractal 
analysis, individual skeletal analysis, and Sholl analysis (Fig. 2).

Averaging among photomicrographs masked a significant difference in percent coverage of 
Iba1 between groups, whereas retaining individual photomicrographs detected the differ-
ence. There was no difference between groups when the percent coverage of Iba1 per photomicrograph was 
calculated and the data from the 9 photomicrographs per mouse were averaged (p-value = 0.35, Mean ∆ = 1.2%, 
d = 0.0006; Fig. 3a). In contrast, significantly more Iba1 staining existed in the Iba1 images from the treatment 
group (microglia that had repopulated after depletion using PLX5622) compared to controls (intact microglia 

Figure 2.  Single cell methods to assess microglial morphology in ImageJ. (a) Photomicrograph of Iba1-
stained microglia. (b) Photomicrograph of Iba1-stained microglia in binary. Boxes indicate microglia that were 
randomly selected for isolation. (c) Binary isolated microglia. (d) For fractal analysis, isolated microglia were 
converted to outlines and analyzed using the FracLac plugin. (e) For individual skeletal analysis, microglia were 
skeletonized and analyzed using the skeletal analysis plugin. (f) Cell body area and perimeter were measured 
using the multipoint area selection tool. (g) Sholl analysis was performed to measure cell branching using 
concentric circles. Scale bar = 100 µm, applied in (a, b).
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Figure 3.  Full photomicrograph analyses of microglial morphology were not sensitive to differences between 
control and treatments groups. Photomicrograph-averaged Iba1 percent coverage masked a difference between 
control and treatment groups that photomicrograph-specific percent coverage detected. 3 brain slices per 
mouse and 3 photomicrographs per brain slice were used. (a) Mean percent coverage of Iba1 staining per 
animal. Treatment n = 12 mice, Control n = 13 mice. (b) Percent coverage of Iba1 staining, where individual 
data points (gray dots) were not averaged. Full photomicrograph skeletal analysis detected that microglia from 
the treatment group had fewer endpoints than the controls but did not detect differences in branch number or 
branch length. (c) Mean microglial branch length; (d) mean number of endpoints per cell per photomicrograph; 
(e) mean number of microglial cells per photomicrograph; and (f) mean number of microglial branches per 
cell per image. Individual data points are presented as gray dots. (d–f) Treatment n = 108 images (12 mice, 9 
images/mouse), Control n = 117 images (13 mice, 9 images/mouse). Results are presented as point estimates 
with 95% confidence intervals, which were estimated from mixed effects models with a negative-binomial error 
distribution.
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with no PLX5622 treatment) when the individual photomicrographs were retained as separate datapoints per 
mouse (p-value = 0.006, Mean ∆ = 3.5%, d = 0.002; Fig. 3b).

Full photomicrograph skeletal analysis only detected that microglia in the treatment group 
had fewer endpoints than controls. Mean microglial branch length was calculated by averaging the 
total length of branches in the photomicrograph by the total number of microglia in the photomicrograph. 
Full photomicrograph skeletal analysis did not detect differences in mean microglial branch length between 
photomicrographs from the treatment groups (p-value = 0.40, Mean ∆ = 28 µm, d = 0.002 Fig. 3c). Photomicro-
graphs from the treatment group indicated that microglia had fewer mean endpoints than control microglia 
(p-value = 0.002, Mean ∆ = 18, d = 0.01; Fig. 3d). A difference in mean number of microglia per photomicro-
graph between the treatment groups was not detected (p-value = 0.60, Mean ∆ = 0, d = 0.01; Fig. 3e). A differ-
ence in mean microglial branches per cell per photomicrograph between treatment groups was not detected 
(p-value = 0.08, Mean ∆ = 13, d = 0.005; Fig. 3f).

Fractal analysis detected that microglia from the treatment group had a less complex branch-
ing pattern than controls. Fractal analysis performed on isolated microglia detected that microglia from 
the treatment group had a less complex branching pattern (fractal dimension) than controls (p-value < 0.0001, 
Mean ∆ = 0.05, d = 0.65; Fig. 4a). However, differences in lacunarity (p-value = 0.72, Mean ∆ = 0.013, d = 0.004), 
circularity (p-value = 0.08, Mean ∆ = 0.013, d = 0.003), span ratio (p-value = 0.33, Mean ∆ = 0.03, d = 0.10), and 
density (p-value = 0.22, Mean ∆ = 0.004, d = 0.0001) between treatment groups were not detected (Fig. 4b–e).

Single cell skeletal analysis detected that microglia from the treatment group had larger cell 
bodies, fewer and shorter branches, and fewer endpoints than controls. Microglia from the 
treatment group had a larger cell body perimeter (p-value = 0.002, Mean ∆ = 14 µm, d = 0.01; Fig. 4f) and area 
(p-value = 0.01, Mean ∆ = 148 µm2, d = 0.02; Fig. 4g) than controls. Microglia from the treatment group had fewer 
branches per cell (p-value = 0.002, Mean ∆ = 52, d = 0.04; Fig. 4h), shorter branch length (p-value < 0.0001, Mean 
∆ = 315 µm, d = 0.03; Fig. 4i), and fewer endpoints per cell (p-value = 0.001, Mean ∆ = 23, d = 0.03; Fig. 4j) than 
controls.

Sholl analysis detected that microglia from the treatment group had fewer and less expansive 
branches than controls. Microglia from the treatment group had fewer branches intersecting the Sholl 
analysis circles than controls (p-value = 0.002, Mean ∆ = 2.29 intersections, d = 0.003; Fig. 4k).

Discussion
The diverse range of microglial morphology is often used to measure physiological states in the  brain16,17; thus, 
it is critical that microglial morphology is accurately quantified. We compared commonly used methods for 
examining microglial morphology and found multiple inconsistencies among the approaches (Table 1).

Immunohistochemical data are easily compromised by mishandling and over processing of tissue samples and 
photomicrographs. Many immunohistochemical analyses rely on photomicrograph pre-processing. We demon-
strated how changing photomicrograph parameters can change the output data and lead to inaccurate inferences 
(Fig. 5). For example, the percent coverage method is based on the principle that reactive microglia express 
higher levels of  Iba118,19. Figure 5a shows a low-quality photomicrograph (included for demonstrative purposes) 
that, when converted to binary (Fig. 5b), yields high percent coverage because of substantial background stain-
ing and image artifact. Consequently, photomicrographs with large amounts of background staining skew the 
data and result in overrepresentation of Iba1 expression. This overrepresentation is subsequently interpreted by 
researchers as a higher level of microglial reactivity which may not represent a true biological effect. If researchers 
attempt to account for the high background by manipulating the photomicrograph (i.e., threshold adjustments), 
microglial branches are removed, which yields lower percent coverage and fewer branches with shorter lengths 
per microglial cell (Fig. 5c). This skews the data in the opposite direction, and data are interpreted as having 
lower Iba1 expression, less ramification, and reactivity. In full photomicrograph skeletal analysis of branches, 
background manipulations can also make microglia appear less ramified (more reactive). Clearly, photomicro-
graph manipulations can change the data and result in erroneous conclusions that are not representative of true 
biological effects. Percent coverage data obtained from different staining methods and protocols, should not be 
compared within or among morphological studies. This has been shown in neurons, whereby different staining 
methods resulted in substantially different morphological  measurements20.

Although full photomicrograph techniques are quick to perform, our findings suggest that this may be at 
the expense of critical morphological details. Although percent coverage techniques can show differences in the 
overall amount of staining, they do not provide any morphological information. For example, a highly ramified 
microglia with a small cell body covering 5.6% of the total image is shown in Fig. 5d. Yet, the cell shown in Fig. 5e 
also covers 5.6% of the total image despite having a larger cell body and shorter branches, representing a reac-
tive morphology. Together, these images demonstrate that percent coverage alone does not provide information 
about microglial morphology/reactivity and instead simply reflects the amount of staining in a photomicrograph.

Our comparisons of results from the full photomicrograph skeletal analysis, single cell skeletal analysis, and 
the percent coverage models revealed pervasive “ecological fallacy” that could lead to erroneous inferences (i.e., 
the flawed assumption that what is true at the aggregate [population] level must be true at the lower [individual] 
 level21). Specifically, we found substantial aggregation bias in the full photomicrograph skeletal analysis data 
and the mean percent coverage data that was caused by aggregating/averaging across microglia or photomicro-
graphs from the same  animal22,23. The issue was so severe in our example data that strong, statistically significant 
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treatment effects in three of four single cell skeletal analysis metrics were masked in the equivalent full pho-
tomicrograph skeletal analysis metrics. Further, a statistically significant treatment effect on percent coverage 
was masked in the photomicrograph-averaged percent coverage (sensu Simpson’s  paradox24,25). An additional 
problem with aggregating/averaging across microglia or photomicrographs to produce datasets is that the unit 
of inference can change, which researchers may be unaware of and consequently make specious conclusions. 
For example, averaging microglial endpoints in full photomicrograph skeletal analysis can result in the unit of 
inference being the field of view within which the microglia are contained rather than being the microglia where 
the effects occurred and were actually measured. Furthermore, our models revealed that considerable reductions 
of effect sizes may occur when averaging/aggregating is employed to produce morphological datasets, primarily 
because averaging/aggregating causes a substantial loss of information. For instance, the averaged metrics from 
full photomicrograph skeletal analysis (Fig. 3c,d,f) had 67–93% smaller effect sizes than the same metrics from 
the single cell skeletal analysis (Fig. 4h–j). The photomicrograph-averaged mean percent coverage (Fig. 3a) had a 
70% smaller effect size than the photomicrograph-specific percent coverage (Fig. 3b). We therefore urge research-
ers to employ caution when considering using full photomicrograph skeletal analysis and mean percent coverage 
in microglial morphological studies. We also suggest that readers consider our findings when interpreting the 
results of previously published studies that assessed microglial morphology.

Both mean percent coverage and full photomicrograph skeletal analysis are quick to perform, making them 
appealing metrics for high throughput studies. However, both approaches are affected by staining quality, photo-
micrograph manipulations, and the consequences of averaging. Single cell microglial analysis techniques are more 
laborious, but provide detailed morphological data that, when analyzed using appropriate statistical methods that 
account for clustering of observations, allow for reliable inferences. Fractal analysis assesses cell complexity using 
mathematical and geometric methods of pattern  complexity26. These detailed measures are useful to examine the 
branching patterns of microglia cells, which signifies reactivity status, but the resulting mathematical data require 
background knowledge to interpret how the results reflect microglial reactivity. Individual skeletal analysis, with 
cell body area and perimeter measures, gives a detailed account of the two hallmark morphological features of 
microglial reactivity (i.e., decreased branching and increased cell body size). Our results suggest that individual 
skeletal analysis can detect even small changes in microglial morphology, as all outcome measures showed that 
microglia from the treatment group had a more reactive morphology than controls. Another study that used cell 
body area and perimeter measurements to quantify microglial activation also found that these measures had a 
strong correlation with microglial  activation27.

Sholl analysis was also able to detect changes in microglial morphology in the treatment group compared to 
control group; although, this was likely at least partially due to our analytical approach using multilevel models 
that included random intercepts and nonlinear effects, which represent a substantial improvement over conven-
tional methods that are traditionally used for analyzing Sholl data. Nevertheless, Sholl analysis was originally 
developed for analyzing neurons, which typically have less variation in cell body shape and size than microglia; 
therefore, the first Sholl circle around the cell body of the microglia often touched a secondary branch because of 
the irregular cell body sizes, highly complex branching patterns, and considerable branch sinuosity of microglia. 
Inaccurate placement of the first circle can lead to small branches near the cell body going uncounted because 
those branches do not reach the first Sholl circle. Consequently, a tradeoff exists between prioritizing the place-
ment of the circle to surround the entire cell body and measuring all branches accurately.

Other morphological quantification techniques exist that we did not include in this study. For example, 
nearest neighbor analyses are used to examine the spatial relationship between  microglia28. 3D reconstruction 
of microglial cells in Neurolucida software produces data similar to single cell skeletal analysis that includes 
branch length, branch number, and cell body  size29. Microglial reactivity can also be examined using genetic 
approaches such as RNA sequencing and NanoString gene expression analysis, which involve genetic profiling of 
isolated microglia or isolated brain  regions30,31. These genetic approaches are critical in elucidating the function 
of microglia following an inflammatory stimulus.

In summary, percent coverage of Iba1 stain, one of the most common methods to quantify microglial mor-
phology, was the least able to detect morphological differences between groups, particularly when the mean 
per animal was considered. This is, in part, due to the lack of morphological information that percent coverage 

Figure 4.  Quantitative methods that analyzed microglial morphology at a single cell level were sensitive to 
differences between control and treatment groups. Fractal analysis detected that microglia from the treatment 
group had a less complex branching pattern (fractal dimension) than controls. (a) Fractal dimension (Db) of 
microglia; (b) lacunarity of microglia; (c) circularity of microglia; (d) span ratio of microglia; and (e) pixel 
density per microglia. Individual data points are presented as gray dots. Results are presented as point estimates 
with 95% confidence intervals, which were estimated from mixed effects models with Beta, Gaussian (fractal 
dimension), or Gamma (span ratio) error distributions. Individual skeletal analysis detected that microglia from 
the treatment group had larger cell bodies and less ramification than controls. (f) Perimeter of cell bodies; (g) 
area of microglia cell bodies; (h) number of branches per microglial cell; (i) total branch length per microglial 
cell; and (j) number of branch endpoints per microglial cell. Individual data points are presented as gray dots. 
Results are presented as point estimates with 95% confidence intervals, which were estimated from mixed effects 
models with a negative-binomial error distribution. Sholl analysis detected that microglia from the treatment 
group were less ramified than controls. (k) The mean number of intersections on concentric circles every 5 µm 
from the cell body per microglial cell. Individual data points are presented as gray dots. Results are presented 
as point estimates with 95% confidence intervals, which were estimated from a mixed effects model with a 
negative-binomial error distribution. Treatment n = 324 microglia (12 mice, 27 microglia/mouse), Control 
n = 345 microglia (13 mice, 27 microglia/mouse).
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provides. Skeletal analysis on full photomicrographs was plagued by aggregation bias that masked differences 
between treatment groups at the individual level. Importantly, skeletal analysis on isolated microglia provided 
the most comprehensive morphological data, which, when analyzed with hierarchical models, also produced 
the largest effect sizes for microglial morphology changes. Thus, we conclude that single cell analyses are more 
appropriate for detailed morphological studies, whereas full photomicrograph analyses might be useful for rapid 
screenings to investigate whether a treatment altered the microglial response, though we caution that aggrega-
tion bias could produce unreliable results. Our study should provide researchers with the necessary information 
to make study design and analytical decisions that result in more appropriate characterization of microglial 
morphology. We also note that the findings of our study might be applicable to other areas of neuroscience, 
because the morphology of  neurons15,32–34 and  astrocytes12,35 are commonly assessed using the same or similar 
immunohistochemistry techniques and metrics. Quantitative methods to describe microglial morphology should 
be selected based on several criteria including the research question, immunohistochemical experience of the 
researchers, and time required to isolate individual cells versus analyze full photomicrographs. Combinations 
of these techniques should be considered as they may give the most biologically accurate representation of 
microglial morphology.

Methods
Rigor. All animal studies were approved by the internal Institutional Animal Care and Use Committee 
(IACUC) at the University of Arizona (protocol 13-460) and were conducted in accordance with the National 
Institutes of Health (NIH) guidelines for the care and use of laboratory animals. Studies are reported following 
Animal Research: Reporting In Vivo Experiments (ARRIVE) guidelines. Animals were randomly assigned to 
manipulation groups before the initiation of the study to ensure equal distribution across groups. Data collection 
was performed by investigators that were blinded to the experimental conditions.

Experimental design. Tissue samples analyzed in this study were generated from animals used in a previ-
ous study that examined the role of microglia in sleep after an immune  challenge36. All data used in that study 
are publicly available in the Dryad digital  repository37. This tissue was selected because the animal manipula-
tions caused a robust difference in microglial ramification between treatment and control mice. Briefly, male 
C57BL/6J mice were randomly assigned to PLX (Plexxikon 5622 1200 ppm; formulated in AIN-76A rodent 
chow) diet to deplete microglia or control diet (AIN-76A rodent chow) for 21  days38. On day 21, mice were given 
an intraperitoneal lipopolysaccharide (LPS; E. coli 0111:B4, Sigma-Aldrich in sterile saline) injection at 0.4 mg/
kg in a volume of 0.05 ml to induce an inflammatory  challenge39. Four days post-LPS injection, all mice were 
returned to standard diet and were given 10 days for microglia to repopulate. After 10 days of repopulation, all 
mice were given a second LPS injection and maintained on the standard rodent chow. Brains were collected at 
7 days following the second LPS administration.

Perfusion and tissue processing. Seven days following the second LPS injection, a lethal dose of Eutha-
sol® was administered. Mice were transcardially perfused with phosphate buffered saline (PBS). Brains were drop 
fixed in 4% paraformaldehyde for 24 h and then cryoprotected in successive concentrations of sucrose (15%, 

Table 1.  Summary of comparisons among contemporary ImageJ-based methods used for quantifying 
microglial morphology.

Method Pros Cons

Percent coverage Quick to perform
Can be used to quantify many stains

No morphological data
Very sensitive to changes in stain quality, background stain-
ing, and changes to stain protocols
Averaging across photomicrographs can introduce bias

Full photomicrograph skeletal analysis Quick to perform
Provides some morphological data

Affected by changes in stain quality and background staining
Thresholding photomicrographs to correct for background 
staining trims microglial branches and alters morphological 
data
Averaging across cells in a photomicrograph can introduce 
bias

Fractal analysis
Mathematical/geometric measures of cell complexity
Can focus on specific cells closest to an area of interest, or 
other cell types

Time consuming to perform
Interpretation requires knowledge in mathematics and 
geometry

Individual skeletal analysis & cell body area/perimeter

Accurately detects morphological changes
Assesses hallmark features of microglial morphological 
reactivity (cell body size and ramification)
Quantitative measure of cell span
Can focus on specific cells closest to an area of interest, or 
other cell types
Easy to interpret

Time consuming and labor intensive to perform

Sholl analysis
Detects changes in ramification
Quantitative measure of cell span
Can focus on specific cells closest to an area of interest, or 
other cell types

Assumes circularity and Euclidean distances
Difficult to place first ring because microglial cell bodies are 
noncircular, which can result in missed primary processes, 
and secondary processes erroneously recorded as primary 
processes
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Figure 5.  Photomicrograph manipulation can easily change percent coverage and full photomicrograph skeletal 
analysis results. (a) Example of a low-quality image. (b) Low-quality photomicrograph displayed in binary with 
no manipulation. Because of high background staining, microglia are overrepresented as a percent coverage 
of Iba1 staining. (c) When the threshold in B is adjusted to remove some background, some processes on 
microglial cells are lost and the cells appear less ramified. (d) A highly ramified microglial cell with 5.6% percent 
coverage. (e) A sparsely ramified microglial cell with 5.6% percent coverage.
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30%). Using the Megabrain  technique40, brains were frozen and cryosectioned at 40 µm in the coronal plane and 
were immediately mounted onto slides.

Immunohistochemistry. Prior to staining, the slides were baked at 56 °C for 3 h. Slides underwent antigen 
retrieval (sodium citrate buffer PH 6.0 for 100 min). After washing with PBS, PAP pen was applied to slides. 
Slides were incubated in blocking solution (4% Normal horse serum [NHS], 0.1% Triton X-100 in PBS) for 
60 min, followed by incubation in primary antibody solution (rabbit anti-Iba1; WAKO cat #019919741 at 1:1000 
concentration in 1% NHS, 0.1% Triton X-100 in PBS) overnight at 4 °C. Slides were then washed in PBS and 
0.1% tween 20, and were incubated in secondary antibody solution (biotinylated horse anti-rabbit IgG (H + L); 
vector BA-1100 at 1:250 concentration in 4% NHS and 0.4% Triton X-100 in PBS) 60 min at room temperature. 
Slides were washed in PBS and endogenous peroxidases were blocked by incubation in hydrogen peroxide for 
30 min. After washing in PBS, ABC solution (Vectastain ABC kit PK-6100) was applied for 30 min, followed by a 
PBS wash. 3,3′-Diaminobenzidine [from Vector DAB peroxidase substrate kit SK-4100] was applied to the slides 
for 10 min. Slides were then placed in tap water and ethanol of increasing concentrations (70%, 90%,100%). 
After treating the tissue with Citrosolve, coverslips were applied using dibutyl phthalate polystyrene xylene 
mounting medium. Samples were stained in two batches and treatment and control samples were split evenly 
between staining batches to minimize variation in staining.

Imaging. Z-stacked photomicrographs were taken using a 40× objective lens on a Zeiss Imager A2 micro-
scope via AxioCam MRc5 digital camera and Neurolucida 360 software, with consistent microscope settings 
and Z-stack parameters. Three slices per animal were taken from between bregma and lambda and were imaged 
in the retrosplenial, somatosensory, and entorhinal cortices. A total of 669 microglia (randomly selected using 
coordinates and a random number generator) from 225 photomicrographs (345 microglia from 13 control mice, 
324 microglia from 12 treatment mice) were analyzed. All analyses used the same photomicrographs and iso-
lated microglia for direct comparison. Images with clearly visible microglial cell bodies were included in this 
study, to minimize staining/imaging artefact.

Percent coverage photomicrograph analysis. The steps followed for percent coverage calculations 
were based on previous studies that used percent or pixel coverage techniques to indicate microglial  reactivity41–47. 
Percent coverage analysis is often referred to as optical/pixel density or intensity of staining/fluorescence. Using 
Image-J, raw photomicrographs were converted to 8-bit and the ‘subtract background’ function was applied. To 
determine the rolling ball radius for the background subtraction, we took an average radius from 5 cell bodies 
and set the rolling ball radius at 50% of this radius. The same rolling ball radius of 50 pixels was used through-
out the study. Then the photomicrograph (Fig. 1a) was converted to binary and minimal adjustments to the 
threshold were made so that the binary image best represented the raw data (Fig. 1b), and any processing arti-
fact was filtered out. The percentage of the image covered by dark pixels was calculated. Data from each mouse 
included 9 cortical photomicrographs (3 brain slices per mouse, 3 photomicrographs per slice). We employed 
two approaches for generating percent coverage data: (1) The percent coverage values for the 9 photomicro-
graphs were averaged to obtain a single percent coverage value per mouse, and (2) each of the 9 separate percent 
coverage values per mouse were retained as individual data points without averaging the values.

Full photomicrograph skeletal analysis. Iba1 staining was analyzed using the skeletal analysis plugin 
following the protocol previously  published6,14,48. In brief, photomicrographs were pre-processed by converting 
to 8-bit and applying the FFT bandpass filter in ImageJ. The brightness/contrast of the photomicrograph was 
then adjusted to best visualize the branches of the microglia. The unsharp mask was then applied to further 
increase the contrast of the photomicrograph, and the despeckle function was applied to remove pixels/noise. 
The threshold was then adjusted, and the despeckle, close, and the remove outliers functions were applied. The 
binarized image was then skeletonized (Fig. 1c). Microglial cell somas were counted manually to obtain a total 
microglial count per photomicrograph. The total microglial branch length, branch endpoints, and number of 
branches were calculated across the entire image (Fig. 1d–f) and then averaged by the number of microglial cells 
per frame.

Fractal analysis. According to the previously published protocol, randomly selected microglia were isolated 
from the photomicrographs and underwent fractal  analysis6,14. In brief, this involved converting the photomi-
crograph to binary (Fig. 2a,b), creating a region of interest (ROI) that was sized to fit around all microglia in the 
study to ensure the scale of the isolated microglia was the same. Using a random number generator, coordinates 
were used to randomly select 3 microglia per image (Fig. 2c). Using the ROI, each selected cell was removed 
from the binary image. The paintbrush tool was used to remove any fragments that were not attached to the cell 
and connect any branches that became fragmented due to image processing, using the original photomicrograph 
as a reference. Once microglia were isolated, the binary image was converted to an outline. The FracLac plug-in 
was used to analyze the cells, with ‘box counting’ applied and the ‘grid design Num G’ set to 4. The convex hull 
and bounding circle of the cell (Fig. 2d) were measured. The fractal dimension (a statistical measure of pattern 
complexity), lacunarity (a geometric measure of how a pattern fills space), circularity (how circular the micro-
glial cell is), span ratio (longest length/longest width), and density (number of pixels/area) were measured.

Single cell skeletal analysis. The same cells that were isolated for fractal analysis were skeletonized and 
analyzed with the skeletal analysis plugin in ImageJ (Fig. 2e). The number of branches, the total branch length, 
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and the endpoints per microglia were calculated per isolated cell using the ‘analyze skeleton function’. The cell 
body area and perimeter were calculated using the multipoint area selection tool (Fig. 2f).

Sholl analysis. Sholl analysis was performed in ImageJ on the same isolated cells that were used for fractal 
and skeletal analysis. A radius was drawn from the center of the cell body to the end of the longest branch to 
set the upper and lower limit for concentric circle placement. The first circle was set as close to the edge of the 
cell body as possible to ensure the cell body was not counted as an intercept on the circle. The distance between 
each circle was set at 5 µm for all cells. The number of times that the microglial branches intercepted each of the 
circles was calculated (Fig. 2g).

Statistical analyses. To investigate microglial differences between the control and treatment groups, we 
fit hierarchical generalized linear mixed  models49,50. Depending on the outcome variable, different error distri-
butions were needed to accurately reflect the data scales and obtain reliable parameter estimates. Lacunarity, 
density, circularity, percentage coverage, and mean percentage coverage were all proportions or percentages 
bounded between 0 and 1, so we specified Beta error  distributions51. Number of branches, branch lengths, num-
ber of endpoints, cell area, cell perimeter, mean number of branches, mean branch lengths, mean number of 
endpoints, and mean number of cells were all overdispersed integer counts, so we specified negative-binomial 
error  distributions52,53. Fractal dimension was a continuous variable that was approximately normally distrib-
uted for which we specified a Gaussian error distribution. Although span ratio was also a continuous variable, 
it was severely left-skewed; therefore, we specified a Gamma error distribution with a log link  function12,49. For 
the Sholl analysis, the mean number of intersections outcome was an overdispersed count variable for which we 
specified a negative-binomial error distribution.

In all models for all outcomes, we included a fixed effect for treatment. In the Sholl analysis, we also included 
a fixed effect for distance from cell body as well as a two-way interaction between treatment and distance from 
cell body. Based on the results of previous studies, we expected the effect of distance from cell body on mean 
number of intersections to be nonlinear. Although to our knowledge no prior studies have explicitly modeled 
this nonlinearity, we chose to do so to improve inference reliability. We did this by including a natural cubic 
spline on distance from cell body in the  model54.

In all models for single cell outcome measures, we included random intercepts for individual animal crossed 
with random intercepts for brain region. This random effects structure appropriately accommodated the hier-
archical clustering of multiple data points from each mouse and the hierarchical clustering of data points from 
each individual within the three brain regions (n = 9 data points within each of three regions from each individual 
[n = 27 total data points from each mouse])49,50. In the models for cell-aggregated widefield outcome measures, 
we included random intercepts for individual mouse crossed with random intercepts for the binned number 
of cells that were used to obtain the outcome value (n = 9 data points from each mouse)36. This random effects 
structure accommodated hierarchical clustering of multiple aggregate data points from each mouse and the 
possibility that the number of cells used to calculate a given value might introduce unaccounted for variation. 
In the Sholl analysis model, we included only a random intercept for individual mouse to accommodate the 
hierarchical clustering of multiple data points from each mouse (n = 25 distances at which the mean number of 
intersections was calculated from each mouse).

We fit all models in the frequentist framework using the package glmmTMB in the R statistical computing 
 environment55,56. We based inferences on a combination of coefficient estimates (β) and their 95% confidence 
intervals, differences between predicted conditional means (∆), effect sizes (d)57, and p-values following Tukey’s 
adjustments for multiple  comparisons58, all of which were obtained using the package emmeans in  R59.
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