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The microvasculature plays a vital part in the cardiovascular system. Any

impairment to its function can lead to significant pathophysiological effects,

particularly in organs such as the brain where there is a very tight coupling

between structure and function. However, it is extremely difficult to quantify

the health of the microvasculature in vivo, other than by assessing perfusion,

using techniques such as arterial spin labelling. Recent work has suggested

that the flow distribution within a voxel could also be a valuable measure.

This can also be measured clinically, but as yet has not been related to the

properties of the microvasculature due to the difficulties in modelling and

characterizing these strongly inter-connected networks. In this paper, we

present a new technique for characterizing an existing physiologically accu-

rate model of the cerebral microvasculature in terms of its residue function.

A new analytical mathematical framework for calculation of the residue

function, based on the mass transport equation, of any arbitrary network

is presented together with results from simulations. We then present a

method for characterizing this function, which can be directly related to

clinical data, and show how the resulting parameters are affected under con-

ditions of both reduced perfusion and reduced network density. It is found

that the residue function parameters are affected in different ways by these

two effects, opening up the possibility of using such parameters, when

acquired from clinical data, to infer information about both the network

properties and the perfusion distribution. These results open up the possi-

bility of obtaining valuable clinical information about the health of the

microvasculature in vivo, providing additional tools to clinicians working

in cerebrovascular diseases, such as stroke and dementia.
1. Introduction
Cerebrovascular disease is one of the most significant problems in clinical medi-

cine. With an increasingly ageing population, the incidence of these diseases,

including stroke and vascular dementia, is set to rise significantly [1]. Cerebral

perfusion plays a critical role as the supply of blood to regions of tissue must be

maintained at a continuous level at all times, with even short interruptions to

this supply leading potentially to localized regions of tissue damage and

death. The cerebral microvasculature thus plays a vital role in the matching

of demand and supply of nutrients to regions of brain tissue. Clinical measure-

ments of perfusion are very widely used. Several techniques are available to

measure perfusion, including computed ultrasound and magnetic resonance

imaging (MRI). Two common MRI techniques for the quantification of cerebral

perfusion are dynamic susceptibility contrast MRI and arterial spin labelling,

which are widely used as research tools. These techniques yield important

information such as cerebral blood flow (CBF), vascular mean transit time

(MTT) and flow heterogeneity. CBF and MTT are well-established tracer-kinetic

parameters that are independent of the imaging technique employed; they are
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Figure 1. Block diagram of the model overview.
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Figure 2. CBF map, using arbitrary units, of a healthy subject (a) and an
ischaemic stroke patient (b) taken from Mehndiratta et al. [6]. The white
arrow in (b) represents the infarct region.
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thus of particular interest, since they can be acquired in a var-

iety of modalities. CBF has been used to delineate the

penumbra, tissue at risk but still viable, in ischaemic stroke

patients; the threshold values from the different perfusion

imaging studies, however, vary significantly and this varia-

bility raises the question of accuracy [2]. MTT is commonly

used to interrogate the efficacy of flow delivery and often

provides complementary information to CBF. Most recently,

flow heterogeneity has been investigated and related to cer-

ebral metabolism, with the hypothesis that the degree of

heterogeneity, owing to the multiple capillary pathways,

may play a major role in brain function [3].

Accurate measurements of the above quantities are

desired to improve our understanding of ischaemic stroke.

Current techniques to obtain CBF, MTT, residue function

and flow heterogeneity are mainly based on deconvolving

the arterial input function (AIF) with the concentration of

the tracer in the volume of interest [3–5], measured using

MRI, although this information can be obtained from other

imaging modalities. Figure 1 shows a model overview with

an AIF into the capillary network and sample plots of some

of the results that can be obtained, such as residue function

and transit time distribution.

There are two deconvolving methods, the transform

approach and the algebraic approach. The former considers

a Laplace or Fourier transform while the latter is based on

discretizing the variables leading to a matrix problem. The

discretizing approach is generally an ill-posed problem

requiring the use of singular value decomposition (SVD) to

estimate the impulse response, where the impulse response

is proportional to the residue function, the fraction of tracer

present in the capillary network at a specific time. SVD, as

well as the variations of the SVD approach, however, leads

to underestimation of CBF as well as oscillations in the resi-

due function which makes estimation of related properties

difficult. A vascular model composed of a major artery feed-

ing arterioles in parallel was proposed to improve the

limitations of solely using the SVD method [3,4]: however,

this relies on a pre-defined variability in the pathway transit

times. Recently, a novel convolution algorithm was presented

by Mehndiratta et al. [6] where the residue function is pre-

sented by control points, each with a certain degree of

freedom, followed by a cubic spline interpolation through
these control points. This method has been shown to improve

the accuracy of the estimated CBF when compared with the

actual CBF. Figure 2 shows a sample CBF image, plotted in

arbitrary units, of a healthy subject and an ischaemic stroke

patient obtained from Mehndiratta et al. [6].
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The recent improvements in estimating residue function

opens up the possibility of relating this function to the under-

lying capillary network properties. The work by Jespersen &

Østergaard [7] shows how the transit time distribution is

directly related to the residue function; however, they con-

sidered a non-physiological network of parallel pathways

with different transit times set by an underlying distribution.

Using this approach, it is not possible to relate changes in the

residue function to the properties of the network. In order to

compare results obtained from mathematical models with in
vivo results, a physiologically accurate model is required.

Many vascular network models are available in the literature

ranging from cerebrovascular networks created using a

specific algorithm [8–10] to accurate arterial network

models consisting of only the main arteries [11]. The flow

model considered in these studies depends mainly on the

size of the vessels considered. A one-dimensional area-

averaged flow model is considered for arteries with wall

deformations while a Poiseuille flow model is considered

for capillaries where wall deformations are negligible. Other

recent work [12] has shown how physiologically accurate

capillary networks that match experimental data can be gen-

erated computationally. In this paper, we unite these two

approaches by simulating the residue function in physiologi-

cally accurate capillary networks and investigating changes

in the resulting residue function under different conditions.

We also propose a new multi-scale mathematical framework

for estimating the residue function for any arbitrary network

and a new characterization of this function that can be used

both for model simulations and clinical data. This approach

thus enables us to show how additional clinical information

can be extracted from existing perfusion measurements,

which has significant potential clinical value.
2. Theory
2.1. Single-vessel residue function
The residue function, R(t), can be obtained via the following

equation where the concentration of the tracer in the capil-

laries, �CtðtÞ, is proportional to the convolution of the

concentration at the input, CinðtÞ, with R(t)

�CtðtÞ ¼ CBF

ðt

0

CinðtÞRðt� tÞdt; ð2:1Þ

where CBF is the constant of proportionality measured

in per unit second. To obtain the concentration in the

capillaries, the mass transport equation is solved for each

vessel; the one-dimensional mass transport equation can be

expressed as

@Cðx; tÞ
@t

þUðx; tÞ @Cðx; tÞ
@x

¼ D
@2Cðx; tÞ
@x2

þ G; ð2:2Þ

where C is the concentration, x is the axial coordinate, U is the

axial velocity of blood, D is the diffusion coefficient and G is a

generation term. In order to simplify the problem at hand, a

passive transport is considered, hence the tracer stays within

the vessel and thus there is no generation of the tracer, with

the diffusion term ignored since the convective term is

much more significant and a Poiseuille flow is assumed.

These assumptions will be examined later. Taking the

Laplace transform of both the residue function equation for

a single vessel and the convection driven one-dimensional
mass transport equation and taking into consideration that

C(x,0) ¼ 0 gives

�CðsÞ ¼ CBF CinðsÞRðsÞ ð2:3Þ

and

sCðx; sÞ þU
@Cðx; sÞ
@x

¼ 0; ð2:4Þ

respectively. From the latter equation, the concentration in

the s-domain can thus be expressed as

Cðx; sÞ ¼ CinðsÞe�ðs=UÞx; ð2:5Þ

where Cin(s) is the concentration at the inlet of the vessel.

The concentration at the outlet, CoutðsÞ ¼ CðL; sÞ. Thus, the

transfer function, X(s) can be expressed as

XðsÞ ¼ CoutðsÞ
CinðsÞ

¼ e�sT ; ð2:6Þ

where T ¼ L/U is the time taken to travel from the inlet to the

outlet. The volume-averaged concentration in the vessel can

then be obtained from

�CðsÞ ¼ 1

L

ðL

0

Cðx; sÞdx;

¼ CinðsÞ
ð1� e�sTÞ

sT
: ð2:7Þ

The residue function in the s-domain can thus be expressed

by combining equations (2.3) and (2.7) as

CBF � RðsÞ ¼ 1� e�sT

sT
: ð2:8Þ

To separate CBF and R(s), it is conventionally assumed that

R(t ¼ 0) ¼ 1. Using the initial value theorem, this can be

expressed as

lim
s!1

sRðsÞ ¼ 1: ð2:9Þ

Thus,

RðsÞ ¼ 1� e�sT

s
; ð2:10Þ

which converted back to the time domain can be represented as

RðtÞ ¼ uðtÞ � uðt� TÞ; ð2:11Þ

where u is a unit step. Hence R(t) is a simple rectangular function

with width equal to the transit time of the vessel.

The transit time distribution, h(t), can then be obtained

directly from R(t) [3] using

hðtÞ ¼ �dRðtÞ
dt

: ð2:12Þ

The transit time in s-domain can be expressed as h(s) ¼ exp(–

sT) and in the time domain as

hðtÞ ¼ dðt� TÞ; ð2:13Þ

where d is the Kronecker delta. Having obtained the residue

function and transit time distribution for a single vessel

we now proceed to consider these for an arbitrary network

of vessels.
2.2. Network residue function
The concentration of a tracer in a network, �CðsÞ, can be solved

by taking the sum of the product of the individual vessel

average concentration and volume and dividing this by the
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Figure 3. Plot of a randomly created network.
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total vessel volume

�CðsÞ ¼
P

i;j
�CijðsÞVijP
i;j Vij

; ð2:14Þ

where the subscript ij refers to a vessel connected between nodes i
and j, Vij is the volume and �Cij is the average concentration in

vessel ij. If nodes i and j are connected, then both the volume

and average concentration will have a value assigned, otherwise

they will be zero. To solve for the vessel concentrations in the net-

work the concentration at the nodes need to be known to set the

inlet concentration for each vessel. This is calculated for each node

j from a flow rate weighted sum of all supply vessels

CjðsÞ ¼
P

i
�CijðsÞQijP

i Qij
; ð2:15Þ

where Cj is the concentration at nodes j and Qij is the flow from

nodes i to nodes j, where only nodes i will be considered if

nodes i and j are connected. The ratio of the average concentration

in a vessel to the input can thus be expressed as

�CijðsÞ
CinðsÞ

¼ YiðsÞ
1� e�sTij

sTij
; ð2:16Þ

where

YiðsÞ ¼
X

i

Yi

m;n
XmnðsÞCnðsÞ; ð2:17Þ

where Xmn(s) is the transfer function for any vessel connected

between nodes m and n defined in equation (2.6). Yi(s) then con-

siders all the possible pathways from the input to the inlet node, i,
of the vessel being considered. Substituting equation (2.16) into

equation (2.14), and since Q¼ V/T, the ratio of the averaged con-

centration in the vessel network, �CðsÞ, to the input, i.e. the tissue

response function, can be expressed as

�CðsÞ
CinðsÞ

¼ CBF � RðsÞ ¼
P

i;j YiðsÞQijð1� e�sTijÞ
s
P

i;j Vij
: ð2:18Þ

Using the initial value theorem again yields

CBF ¼ QinP
i;j Vij

; ð2:19Þ

where Qin is the flow at the input. The residue function can thus

finally be expressed as

RðsÞ ¼ 1

Qin

X
i;j

YiðsÞQij
1� e�sTij

s
: ð2:20Þ

Taking the inverse Laplace transform, the residue

function in the time domain can thus be expressed as

RðtÞ ¼ 1

Qin

X
i;j

Qij

�
Yi

m;n

QmnP
m Qmn

fuðt� Tin;iÞ � uðt� Tin;jÞg
" #

; ð2:21Þ

where Tin,i and Tin,j are the transit times from the input to nodes i
and j, respectively. Equation (2.21) represents the sum of contri-

butions from all vessels, each of which is a product of all

pathways to it, and hence the residue function is a sum of

rectangular functions characterized by a width, a time delay

and a magnitude. The width is dependent on the transit time of

the vessel being considered, whereas the time delay is dependent

on the transit time from the input of the network to the inlet of the
vessel and the magnitude is dependent on the product of

the inflow ratios at each node that it has passed through

from the inlet of the network to the inlet of the vessel. It is thus

only necessary to know all the possible pathways from the

input to each node within the network as well as the flow in

each vessel. Equation (2.21) then provides an explicit expression

enabling the residue function to be calculated knowing only the

vessel flows and transit times, and the pathways to each vessel.

2.3. Capillary network residue function
We now consider a physiological network, that of capillary

vessels in the human brain. It would clearly be ideal to gener-

ate microvascular structures from real brain tissue and to run

simulations on such networks. This process, however, is extre-

mely complex and time consuming as it involves sample

preparation, scanning and image processing as well as being

very difficult to do in vivo. Thus, a previously developed net-

work creation algorithm [12] is considered here to generate

artificial networks matching statistical data obtained from

human cerebral tissue samples [13] and to solve for the flow

fields in these networks. An advantage of this model is that

statistical variations in network properties can be investigated

in terms of their effects on the residue functions.

The approach proposed by Su et al. [12] uses Prim’s algor-

ithm to obtain a minimum spanning tree by connecting nodes

created at random coordinates in a cube. Vessels of specific

lengths are then added and removed to match the length dis-

tribution of the capillaries with experimental data obtained by

Cassot et al. [13] and the radius of the vessels likewise. Once

the network is created, the flow is solved as outlined in Su

et al. [12]. This flow model is based on a Poiseuille flow with

individual vessel viscosity calculated based on vessel diameter

and assuming a constant haematocrit of 0.45, using the

relationship proposed by Pries et al. [14]. The resulting

equations are written in matrix form and solved. A constant

haematocrit is assumed here to simplify the flow model: this

assumption will be relaxed in future work. For full details of

the networks analysed here, the reader is referred to Su et al.
[12], where all such information is given. Figure 3 shows a

sample capillary network created using this algorithm.

2.4. Characterization
Some kind of distribution is required to characterize the sol-

ution. Four conditions must be satisfied by any chosen



Table 1. Mean and s.d. of morphological parameters compared with experimental data (M1 and M2).

M1 M2 artificial network

vessel density (1/mm3) 8817 7219 7718

connectivity 3.11 3.16 3.22

length (mm) 57.37 + 50.98 63.26 + 53.73 59.71 + 51.61

diameter (mm) 6.91 + 3.85 5.91 + 1.30 6.24 + 1.30
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Figure 4. Plot of R(t) for a randomly chosen sample capillary network for a
normal (solid line) condition and for a 20% (dashed line) blockage.
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function, these being the residue starting at one and decaying

towards zero with time and the transit time starting at zero

and heading towards zero as time goes to infinity. Several

studies have considered a single gamma distribution to

model h(t), for example [3,4,7], such that

hðtÞ ¼ ta�1

baG ðaÞ e
�t=b; a;b . 0; ð2:22Þ

where a and b are parameters that define the distribution.

The mean of this distribution, m ¼ ab, thus represents MTT

by definition. The corresponding variance, s2 ¼ ab2. The

residue function in the s-domain becomes

RðsÞ ¼ 1

s
1� 1

baðsþ 1=bÞa
� �

: ð2:23Þ

The gamma distribution satisfies all the boundary con-

ditions previously stated as long as a . 1. This can be

extended to provide a more general distribution for h(t) as

a sum of gamma distributions:

hðtÞ ¼
XN

i¼1

kitai�1

bai
i GðaiÞ

e�t=bi ; ai . 1;bi . 0; ð2:24Þ

and hence

RðsÞ ¼ 1

s

XN

i¼1

1� 1

bai
i ðsþ 1=biÞai

� �
; ð2:25Þ

where ki is the weighting of each gamma distribution. In order

to satisfy the boundary conditions
P

i ki ¼ 1 and ai . 1.
3. Results
The initial conditions to solve for the flow are set such that

the pressure difference between the arteriole–capillary and

capillary–venule junctions is 1000 Pa. This value was

chosen so that the average CBF for the capillary networks

considered here was around 50–60 ml/100 ml min21, which

is a common range of values obtained in a healthy human

brain [15]. The network cube has an edge length of 250 mm

and an arteriole–capillary and capillary–venule junction

density matching that obtained from experimental results

[16], in this case three and two, respectively. This method

will be applied to 20 different networks with equivalent con-

ditions, thus allowing statistical analysis to be performed,

followed by varying the flow and network conditions to

quantify the effects of such changes on the residue function.

Table 1 shows details of the morphology of the created net-

works averaged over the 20 networks. These values are

compared with experimental results (M1 and M2) obtained

by Cassot et al. [13]. Note that changing the initial pressure

difference condition keeping the same network structure

changes CBF, which in turn changes the transit time. Since
the ratio of the flows at the nodes are the same, the residue

function plot will retain its shape but with different time

scales. This time scale is linearly dependent with CBF, thus

changes in pressure difference will not affect the residue

function plot with a CBF normalized time scale.

Figure 4 shows a sample plot of the residue function in

our base cube for one capillary network. The residue function

is composed of many rectangular functions, with a time delay

from the inlet of the capillaries, and decays gradually with

time due to the decrease in the magnitude of the rectangular

functions downstream. A sharp decay is initially observed

with a 90 per cent drop in the residue function during the

first few seconds followed by a slow decay where the remain-

ing 10 per cent drops. The fast and slow decays seem to

represent the ‘shorter’ and ‘longer’ pathways available,

respectively, from the arteriole–capillary junctions to the

capillary–venule junctions; this will be discussed in more

detail later.

The next case considered is when 20 per cent of the

vessels in the capillary networks are randomly blocked.

Figure 4 shows a sample plot of the residue function with

the vessels blocked. Once more, a decay in the residue func-

tion is observed, but this is slower as more vessels are

blocked. This is due to there being fewer pathways available

and it is thus expected for the contrast agent to take longer to

be flushed out of the system. A sharp initial decay is still

observed, in this case a 90 per cent drop in the residue func-

tion during the first few seconds followed by a slow decay

where the remaining 10 per cent drops. Note that the

change from the fast decay to the slow decay is more gradual

than for the normal case.

In order to compare the two conditions, a bigamma distri-

bution is now considered to characterize the residue function.
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Figure 5. Plot of a characterized h(t) for a randomly chosen sample capillary
network for a normal (solid line) condition and for a 20% (dashed line) blockage.

Table 2. Mean and s.d. of RSS for the different cases considered.

monogamma bigamma

normal 3.76 + 2.03 0.67 + 0.31

20% 5.10 + 4.48 1.11 + 0.65
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This particular distribution, which was considered for all the

20 generated networks, is chosen here due to its simplicity as

well as its ability to capture the shape of the residue function.

A residual sum of squares (RSS) was considered during the

curve fitting process. RSS is a measure of the discrepancy

between the data and the estimation model, the bigamma dis-

tribution in this case. Although a gamma and a trigamma

distribution were also considered, these were discarded as

the former was over constrained, leading to a relatively

large RSS as shown in table 2, while the latter was found to

be underconstrained, leading to difficulties in fitting the

residue function.

Figure 5 shows a plot of the characterized transit time dis-

tribution for a normal and 20 per cent blocked case. Owing to

the nature of the distribution, there are two peaks in the tran-

sit time distribution plots. The peaks are further apart when

20 per cent of the vessels are blocked. The MTT can then be

obtained from the transit time distribution or from the ratio

of CBV to CBF.

Boxplots of the different parameters are presented here in

order to compare more quantitatively the normal to the

ischaemic conditions. Outliers have been ignored in all of

the following boxplots. Figure 6 shows the two shape par-

ameters, ai, the two time constants, bi, the weighting, k1,

and CBF for the two conditions considered here. For the

normal condition, the median of the two shape parameters,

~ai, have the same order of magnitude with ~a1 . ~a2. Both

shape parameter boxplots are positively skewed. The

median of the time constants, ~bi, have different orders of

magnitude. The smaller time constant, ~b1, being an order of

magnitude smaller than ~b2. The boxplots of the time con-

stants are also positively skewed. The boxplot of the

weighting, k1, is negatively skewed and the median of the
CBF being around 46 ml/100 ml min21. There are no differ-

ences in the shape of the parameter boxplots between the

20 per cent occluded and normal case. There is however, a

general increase in the median of the time constants as the

vessels are blocked. The percentage increase in the median

of the two time constant are approximately 10 per cent and

110 per cent, respectively. ~k1 also increases by approximately

25 per cent which means that ~k2 decreases. The medians

of the shape parameters and CBF drop by approximately

45 per cent, 15 per cent and 40 per cent. The drop in CBF

median is due to there being fewer collateral pathways,

which implies an increase in the net resistance and thus for

the same change in pressure from the arteriole–capillary

junctions to the capillary–venule junctions, CBF decreases.

The changes in the time constants and the weighting suggest

that the longer pathways are more significantly affected by

the blockage of the vessels. A change in pressure difference

changes both time constants, but not the shape parameters.

Table 3 shows the mean and s.d. of the different par-

ameters in the bigamma distribution for both the normal

and the ischaemic cases. Note that only k1 is tabulated since

k2 ¼ 1 2 k1. For the normal case, the mean of the two shape

parameters, �ai, have the same order of magnitude with

�a1 . �a2. The mean of the time constants, �bi, have different

orders of magnitude, �b1 being an order of magnitude smaller

than �b2. The t-test between the two time constants suggest a

significant difference in the mean since the p-value was less

than 0.05. The mean CBF is approximately 50 ml/100 ml

min21. Blocking 20 per cent of the vessels leads to a drop

in the average CBF by approximately 40 per cent with the

weighting between the two gamma distribution shifting

more towards the smaller time constant. A paired t-test

analysis is performed on the parameter data between the

normal and 20 per cent occluded case to quantify any signifi-

cance in the variation with an asterisk (*) representing those

parameters with a p-value less than 0.05. There is thus a sig-

nificant difference in the mean for the parameters b2 and CBF

between the two conditions.
4. Discussion
It has been shown here that the residue function of a single

vessel can be solved analytically as a rectangular function,

the width being dependent on the transit time of the vessel.

However, to solve for the residue function in the capillary

network requires a computational approach due to the

large number of vessels as well as the interconnection

between the vessels, which makes it complex to find all the

different possible pathways from the arteriole–capillary junc-

tions to the capillary–venule junctions. Our solutions show

that the residue function exhibit an initial fast decay where

approximately 90 per cent of the drop can be observed in

the first few seconds followed by a slow decay of the remaining

10 per cent, which seems to represent the ‘shorter’ and ‘longer’

pathways, respectively. A similar observation was made by

Mehndiratta et al. [6], when solving for the residue function

from images of a human brain using their novel control point

interpolation method. This suggests that the residue function

of such networks with a large number of different pathways

can be characterized relatively simply by a combined short

and long pathway solution. The two methods also agree in

the approximate time for which the residue function decays to



Table 3. Mean and s.d. of ki, ai, bi and CBF for the different cases considered.

k1 a1 a2 b1 b2 (*) CBF (*)

normal 0.53 + 0.28 9.68 + 12.08 2.29 + 2.56 0.41 + 0.43 2.14 + 1.09 50.00 + 9.46

20% 0.68 + 0.25 10.99 + 20.64 3.55 + 3.95 0.44 + 0.45 4.96 + 4.18 32.40 + 12.45
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Figure 6. Boxplot comparing the gamma distribution parameters between the normal and 20% occluded case.
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close to zero, this being between 10 and 20 s for the healthy case

and above 20 s for the ischaemic case. Note that the residue

function obtained here is closer to an exponential shape for

the healthy case and to a box-car shape for the ischaemic case,

thus also agreeing, at least qualitatively, with the findings

previously stated by Mouridsen et al. [4].

As a result, the gamma distribution seems to be the most

suitable function for characterization of the residue function,

as it matches both experimental data and numerical simu-

lations well and provides the flexibility to model both

healthy and ischaemic behaviour. This is in agreement with

previous studies [3,4,7]: we also note that it satisfies the necess-

ary boundary conditions, which other distributions do

not. We found that a two component gamma distribution

works well, with a higher order series of gamma distribu-

tions providing little additional accuracy. The finding that

there appear to be two characteristic pathways and associated

time constants is an interesting one and one that should be

investigated further under a wider range of conditions.

This two component model also shows interesting behav-

iour when conditions are changed. The analysis presented

here shows that a change in pressure affects both time con-

stants equally (due to the scaling of the residue function)

while blocking 20 per cent of vessels only affects the larger

time constant significantly. In both cases, there is a change in

CBF, but the resulting residue function changes differently.

Since the residue function retains its shape with changes in

pressure, the shape parameter is unaffected by pressure.

Twenty per cent blockage also has no significant effect on the

shape parameter. The magnitude of the parameters generally

increase as the number of vessels blocked increase, and thus
increasing the mean values of the two gamma distributions.

The fact that different conditions affect the residue function in

different ways implies that changes in these conditions could

be inferred from clinical data. Since perfusion is estimated

independently of residue function, this means that perfusion

imaging contains significantly more information than is

currently used. This is potentially very significant clinically.

Additionally, the recent work by Jespersen & Østergaard

et al. [7] has proposed that the capillary transit time heterogen-

eity (CTTH) defined as the s.d. of capillary transit times, could

be a valuable measure of the health of the microvasculature.

Even with equal net blood flows and numbers of parallel capil-

lary paths, a homogeneous flow distribution leads to a higher

oxygen extraction fraction than a heterogeneous flow distri-

bution. Their hypothesis is thus that homogeneous flow

distribution occurs during ischaemia [3,4], hence attempting

to protect the tissue during limited flow conditions by maxi-

mizing oxygen delivery. However, their capillary model is

not based on physiological data. The model proposed here

has overcome this limitation. The mean and standard deviation

of CTTH for the normal and 20 per cent blocked cases are

found to be 2.35 + 0.52 and 3.33 + 1.19, respectively, here.

Hence, blocking of the vessels increases CTTH and thus the

flow becomes more heterogeneous. Although only an initial

result, this is not in agreement with the proposed hypothesis.

This could be for a number of reasons, in particular that

there are mechanisms that locally control blood flow, such

as pericytes, which could have a strong influence. Since we

have only investigated a purely passive network, further inves-

tigation will be required to identify whether the hypothesis

is indeed valid. One particularly interesting potential
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avenue for exploration will also be the role of adaptation or

remodelling in microvascular networks following ischaemia.

It should be noted that several other assumptions have

been made here in deriving the residue function. First, it

was assumed that the haematocrit was constant throughout

the capillary network, and thus viscosity was only dependent

on vessel diameter. The apparent viscosity is known to vary

strongly nonlinearly with haematocrit, which in turn would

affect the flow in the vessels. This assumption has been

made here for the purposes of simplicity, but will be relaxed

in future work when a full haematocrit model will be

included. Secondly, a Poiseuille flow was considered since

the Navier–Stokes equation is dominated by the viscous

terms, thus assuming that the velocity over time and length

was constant within the vessel. This is a reasonable assump-

tion that is widely used in such networks. Thirdly, the mass

transport equation was considered to be solely driven by con-

vection and thus the diffusion term was ignored. The Pèclet

number, which is a dimensionless quantity defined as the

ratio of convection to diffusion, is found at this length scale

to have a magnitude of the order of 10. Introducing the

diffusion term would change equation (2.4), a first-order

differential equation, to a second-order differential equation,

which could then be solved leading to an exponential decay

function, but this will introduce a limited amount of smooth-

ing to the residue function, which will become less important

as the model is scaled up to voxel size. Fourthly, this model

has a limitation in the size of the capillary network cube

being studied here, owing to limitations in computational

power, the computational cost rising very rapidly with

increased cube size. Creating an artificial network with a

volume of 1/4 mm3 and calculating the flow and thus CBF

can be determined in the order of 1 min on a standard PC

(Intel Quad Core 2.53 GHz CPU with 12 GB RAM). Obtain-

ing the pathways from the inlet to each node in the

network is more time consuming, this being in the order of

minutes. The artificial networks analysed here have a

volume of 1/4 mm3, i.e. approximately 125 vessels. A stan-

dard imaging voxel has a volume of around 5 mm3, which

is 203 times larger. There are thus around 1 million vessels

(125 � 203), which would require an extremely large compu-

tation cost and memory loading. Including the pathways

from the inlet to each node in the network would further

increase the computation cost.

Since the fundamental goal of this work, however, is

clinical applications in ischaemic stroke, to make any
comparisons with clinical data it will be necessary to increase

the size of the cube to that of an imaging voxel. To scale up the

analysis used here will require a different approach, for

example, the multi-scale approach proposed by Shipley &

Chapman [17]. This will be the subject of future work. An

inverse analysis could then be performed such that it would

be possible to determine the properties of the capillary net-

work from data acquired by imaging. Such a model would

provide potentially very valuable information and also allow

us to improve our understanding of certain post stroke effects.

For example, it is well known that stroke leads to changes in

the physiological properties of the brain tissue, which leads

to the no-reflow phenomenon [18]. Being able to predict

flow after the removal of the blockage and the effects of reper-

fusion could provide valuable clinical information for

decision-making and planning interventions. Future work

will focus on this analysis and clinical translation.
5. Conclusion
A novel mathematical technique has been developed to solve

for the residue function in a capillary network with matching

physiological topology. The residue function for a single

vessel can be expressed as a rectangular function, the width

depending on the vessel transit time, the magnitude depend-

ing on the flow and the delay depending on the transit

time from the input to the vessel. Hence only the transit time,

flow and the pathways are required to solve for the residue

function in any arbitrary network such as the cerebral

micro-vasculature. A two-component gamma distribution is

proposed here to characterize the function so that it can be

directly related to clinical data. Different condition changes

have shown different changes in the residue function: a

change in pressure scaled the residue function with time,

keeping its shape, thus affecting equally both time constants.

A 20 per cent blockage on the other hand only affected the

larger time constant, with both changes affecting CBF.

Vessel blockage also increased CTTH, hence the flow becom-

ing more heterogeneous with reduced perfusion, a finding

that needs further investigation in the light of other work.

This work was supported by the Centre of Excellence for Personal-
ized Healthcare funded by the Wellcome Trust and EPSRC under
grant no. WT 088877/Z/09/Z.
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