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Abstract
Cryostorage is of immense interest in biomedical research, especially for stem cell-based

therapies and fertility preservation. Several protocols have been developed for efficient

cryopreservation of cells and tissues, and a combination of dimethyl sulfoxide (DMSO) and

fetal bovine serum (FBS) is commonly used. However, there is a need for an alternative to

FBS because of ethical reasons, high cost, and risk of contamination with blood-borne dis-

eases. The objective of the present study was to examine the possibility of using buffalo

(Bubalus bubalis) ocular fluid (BuOF) to replace FBS in cryomedia. Frozen–thawed cells,

which were cryopreserved in a cryomedia with BuOF, were assessed for viability, early and

late apoptosis, and proliferation. Three cell lines (CHO, HEK, and C18-4), mouse embryonic

stem (mES) cells, and primary cells, such as mouse embryonic fibroblast (MEF) cells,

human peripheral blood mononuclear cells (hPBMCs), and mouse bone marrow cells

(mBMCs), were cryopreserved in cryomedia containing 10% DMSO (D10) with 20% FBS

(D10S20) or D10 with 20% BuOF (D10O20). For all three cell lines and mES cells cryopre-

served in either D10S20 or D10O20, thawed cells showed no difference in cell viability or

cell recovery. Western blot analysis of frozen–thawed-cultured cells revealed that the

expression of Annexin V and proliferating cell nuclear antigen (PCNA) proteins, and the

ratio of BAX/BCL2 proteins were similar in all three cell lines, mES cells, and hPBMCs cryo-

preserved in D10S20 and D10O20. However, initial cell viability, cell recovery after culture,

and PCNA expression were significantly lower in MEF cells, and the BAX/BCL2 protein

ratio was elevated in mBMCs cryopreserved in D10O20. Biochemical and proteomic analy-

sis of BuOF showed the presence of several components that may have roles in imparting

the cryoprotective property of BuOF. These results encourage further research to develop

an efficient serum-free cryomedia for several cell types using BuOF.

Introduction
Cryopreservation is a technique that enables preservation of structure and function of cells and
tissues by preventing or minimizing damage. Cryopreserved cells and tissues can be stored for
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prolonged periods in limited space at ultra-low temperatures and require less maintenance [1].
Stem cells are used in transplantation and cell-based therapies, which makes these cells a prom-
ising tool for regenerative and biomedical research. However, stem cells have a limited lifespan
[2], and with increase in the number of passages, their proliferative capacity and differentiation
decrease [3, 4]. Embryonic stem (ES) cells are derived from the inner cell mass of blastocyst-
stage embryoswith the potential to self-renew and differentiate into different cell lineages [5].
Mouse ES cells are used in various research applications including gene targeting, which help-
sgeneratetarget mutant mouse models for functional genomic studies and thereputic applica-
tions [6]. Spermatogonial stem cells (SSCs)isolated from donor mice repopulated and
produced mature spermatozoa in recipient mouse testes [7]. Maintenance of proliferative and
differentiation capacity of ES cells and SSCs when subjected to cryopreservation could extend
their applications for regenerative therapy and restoration of fertility in cancer patients who
are rendered infertile because of the gonadotoxic effects of chemotherapy and radiotherapy [6].

Several established cell lines of different origins are routinely used for drug assays and gene
expression analyses [8]. Various primary cells are also routinely used in biological research.
Mouse embryonic fibroblast (MEF) cells are used as feeder cells to maintain ES cells and
induced pluripotent stem (iPS) cells in the undifferentiated state [9, 10]. Peripheral blood
mononuclear cells (PBMCs) are commonly used for prospective phenotypic and functional
analyses in a wide range of infectious disease and clinical vaccine studies [11]. PBMCs are used
to develop effective human immunodeficiency virus1 vaccines and infer effector function and
cellular or humoral immune responses [12]. Mouse bone marrow cells (mBMCs) are used to
study angiogenesis inhibitor drugs in cancer treatment [13, 14]. These cells have potential
applications in hematopoietic stem cell transplantation research [15] and regenerative medi-
cine [16]. Each cell type differs in structure and cell membrane composition because they
respond differently to cryopreservation. Culture age at the time of freezing and cultivation pro-
cedures may also impact freezing success [17]. Current widespread increase in the application
of cell culture methods to various areas of biology and medicine emphasizes the need for con-
tamination-free and efficient cell cryopreservation.

During cryopreservation, cellular injury primarily occurs when water, which is an important
cell constituent, freezes at ultralow temperatures. Cellular injury can be minimized by adding
cryoprotective agents (CPAs). Dimethyl sulfoxide (DMSO) is a widely used permeable CPAs
in cell and tissue cryopreservation because of its low toxicity [18]. Fetal bovine serum (FBS) is a
commonly used non-permeable CPA that is combined with DMSO for several cell lines and
tissues because it supports better cell recovery. However, there is a need to find a replacement
for FBS as a cryopreservative because it is expensive. Furthermore, the methods for harvesting
blood are inhumane because FBS is harvested from bovine fetuses taken from pregnant cows
during slaughter by means of cardiac puncture without any anesthesia [19, 20]. Use of animal
serum is also associated with a risk of contamination with viruses [21] and prions as well as
possible disease transmission [22], some of which are impossible to remove from serum. Some
of these infectious agents, such as bacteria and viruses, are even capable of surviving at low
temperatures that are routinely used for cell stock storage (-160°C) [23, 24]. Although FBS is
indispensable in biomedical research, FBS-free cryomedia would benefit researchers by con-
forming to good laboratory practices.

Several alternatives to serum in cryomedia have been considered. Sericin is a protein hydro-
lysate that is rich in serine and obtained from raw silk during the degumming process. Expres-
sion of sericin in Escherichia coli has been shown to prevent freezing stress and promote cell
viability [25]. A medium that contained sericin-cryopreserved Chinese-hamster ovary (CHO)
and P3UI myeloma cells was as efficient as the conventional FBS-containing medium and
superior to several commercial serum-free freezing media[26]. Similarly, replacement of FBS
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with bovine serum albumin (BSA) in cryomedia showed no significant difference in cell recov-
ery and viability of peripheral blood mononuclear cells [27]. However, the extremely high costs
of sericin and BSA limit their use, especially in developing countries.

Bovine ocular fluid (BOF) alone and in combination with sheep plasma and human serum
albumin has been evaluated as a serum replacement for different cells [28]. BOF has several
active components that promote cell growth, such as vascular endothelial growth factor [29],
the 21-KDa acidic-Ca-binding protein [30], insulin like growth factor, hypoxanthine, and
fibronectin [31]; however, it does not support cell growth on its own. In addition, ocular fluid
has several proteins, including albumin [32], which may act as non-permeable CPAs. Collec-
tion of buffalo ocular fluid (BuOF) is feasible in India because there is no religious taboo
regarding buffalo slaughter, and buffalo eyes are available in abundance as a slaughter house
by-product. The price of BuOF is approximately 7–8-fold lower than that of FBS (in Indian
scenario), and aseptic collection of BuOF is possible because eyes are enclosed organs. How-
ever, the effect of BuOF on cell cryopreservation has not been evaluated to date.

The aim of the present study was to evaluate if BuOF can replace FBS for cell cryopreserva-
tion. We also evaluated the composition of BuOF to identify the component(s) that may play a
key role in imparting cryoprotective ability.

Materials and Methods

Collection of BuOF
All animal procedures were approved by the Institute Animal Ethics Committee (IAEC) of
Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India. Intact eyeballs from
healthy Murrah male calves (n = 12; age, 6–8 months) were collected from the Municipal
Slaughter House, Hyderabad, India and transported in phosphate buffered saline (PBS; Invitro-
gen) on ice. After arrival to the laboratory within 1 h of slaughter, ocular muscles and the optic
nerve were trimmed from the eyeballs. After rinsing with ice cold 50% alcohol and PBS several
times, the cornea of the eyeball was carefully punctured with a 22-gauge needle, and aqueous
humor was collected. The posterior chamber of the eyeball was then cut open using a sterile
surgical blade, and the vitreous humor was collected using a 10-ml syringe. Collected aqueous
and vitreous humor were pooled from all animals in a given trial (n = 3), centrifuged at 775 × g
(15 min at 4°C), and then filtered through 0.45-μm and 0.22-μm filters. The sterile BuOF was
aliquoted into cryovials (Nunc) and stored at -30°C until use.

Biochemical analysis of BuOF and FBS
Differences in biochemical composition of BuOF and FBS were determined by a medical diag-
nostic agency (Vijaya Diagnostics; www.vijayadiagnostic.com). A total of three samples each
for FBS (Gibco; origin, United States; lot numbers; 494515, 816712, and 835987 respectively)
and pooled BuOF were used for analysis. The mean value for each analyzed biochemical and
the methods used for analysis are listed in Table 1.

Cell lines, derivation of primary cells, and cell culture
Derivation of cells from mice was approved by IAEC (permit numbers IAEC 52/2014 and 4/
2015). For isolation of human peripheral blood mononuclear cells (hPBMCs), approval was
obtained from Institution Ethics Committee (IEC) of CCMB, Hyderabad, India (permit num-
ber IEC 35/2015). All reagents were purchased from Invitrogen unless otherwise specified. Cell
lines including Chinese hamster ovary cells (CHO-K1ATCC, CCL-61), mouse embryonic stem
(mES) cells-R1 (ATCC, SCRC-1011), and human embryonic kidney cells (HEK-293T/
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17ATCC, CRL-11268) were purchased from American Type Culture Collection (ATCC). The
immortalized C18-4 mouse type-A spermatogonia cell line [33] was a gift from Dr. Marie-
Claude Hofmann (The University of Texas MD Anderson Cancer Center, Houston, TX, USA).
Human PBMCs were isolated as previously described [27] from the blood collected from
healthy volunteers of either sex after obtaining written consent (n = 9). Both the MEF cells [34]
and mBMCs [35] were derived from C57BL/6 mice (n = 6) as previously described. All adher-
ent cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with high glucose and
suspension cells in Roswell Park Memorial Institute (RPMI) 1640 medium. Both media were
supplemented with10% heat-inactivated FBS, 1 × non-essential amino acid solution, and
1 × antibiotic–antimycotic solution, and cells were cultured in a 5% CO2 environment at 37°C.
Fresh confluent adherent cells after 24 h culture and fresh suspension cells after 72 h culture
were considered as the control group.

Cell cryopreservation
The uncontrolled slow freezing protocol was used for cell cryopreservation. Cryomedia for
freezing consisted of DMEM/F12-HEPES that contained 10% DMSO (Sigma) alone (D10) and
with 20% FBS (v/v) (D10S20) or 20% BuOF (v/v) (D10O20). In each 2-ml cryovial, cell suspen-
sion (1×107cells) was added to 1ml of cryomedium and equilibrated for 30 min on ice. The
cryovials were placed in an isopropyl alcohol container (Mr. Frosty Freezing Container;
Thermo Scientific) and kept in a -80°C freezer (Thermo Scientific). Cells were cooled at an
uncontrolled rate of approximately 1°C/min following the manufacturer’s protocols. After 24
h, cryovials were transferred to liquid nitrogen for storage.

Cell thawing
After 1month, the cells were thawed by swirling the cryovials in a 37°C water bath until the
contents were completely melted. The thawed content was transferred to a15-ml tube that con-
tained 10-ml DMEM/F12-HEPES supplemented with 10% FBS. The content in the tube was
gently mixed, centrifuged at 200 × g for 5 min, and the cell pellet was either suspended in
DMEM/high glucose or RPMI 1640 medium with 10% FBS depending on cell type. Cell viabil-
ity was determined before seeding the cells for culture.

Table 1. Comparative biochemical analysis of BuOF and FBS.

Parameters (mg/dl) Method used for analysis BuOF FBS

1 Total Protein Biuret 0.5 ± 0.03 3.25 ± 0.23

2 Albumin Bromocresol green (BCG) 0.2 ± 0.09 1.85 ± 0.32

3 Globulin Biuret and BCG 0.3 ± 0.01 1.4 ± 0.2

4 Lipoprotein A Particle enhanced Immunoturbidimetry 1.8 ± 0.1 2.5 ± 0.2

5 Triglycerides Glycerol-3-phosphate oxidase- phenol aminophenazone (GPO-PAP)colorimetry 13 ± 0.9 61 ± 1.4

6 Total Cholesterol (Cholesterol oxidase- peroxidase enzyme) isotope dilution (CHO-POD) IDMS mass spectroscopy 22.5 ± 1 27.5 ± 1.02

7 LDL Cholesterol Enzymatic immunoinhibition 14 ± 0.9 8 ± 0.8

8 HDL Cholesterol (Total cholesterol)–(HDL + VLDL cholesterol) 6 ± 0.7 8 ± 0.6

9 VLDL Cholesterol (TG /5) 2.6 ± 0.5 12.5 ± 0.8

10 Glucose Hexokinase 56.5 ± 2.3 77 ± 4.1

11 Ascorbic acid Spectrophotometry 7.27 ± 0.7 1.13 ± 0.2

Values are represent in mean ± SEM.

doi:10.1371/journal.pone.0131291.t001
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Cell viability and cell recovery assay
Cell viability was assessed immediately after thawing and after 24 h of culture (adherent cells)
and 72 h culture (suspension cells). Cell viability was determined by trypan blue dye (Sigma)
exclusion analysis. Microscopic evaluation was carried out no later than 10 min after the end of
incubation. Approximately 500 cells/group were counted for cell viability analysis.

For cell recovery assay, the cells were seeded according to the post-thaw viability in each
group. Adherent cells were cultured in 100-mm culture dishes and suspension cells in 75-mm2

culture flasks (both from TPP) at a density of 2 × 105 live cells/cm2 using the above-mentioned
medium and culture conditions. After 24 h, the adhered cells were washed twice with PBS, and
the cells were harvested by trypsin (0.25%) digestion. The suspension cells were collected after
72 h of culture by pelleting down at 200 × g for 5 min. The recovered cells were assessed for via-
bility and counted to estimate cell recovery [27] in each cryopreservation group.

Western blot analysis
Frozen–thawed adherent cells cultured for 24 h and suspension cells cultured for 72 h were
assessed for the expression of apoptosis and cell proliferation-specific proteins. Total proteins
were extracted upon homogenization by sonication in a dissolving buffer (7M urea, 2M thio-
urea, 4% CHAPS [3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate], 18mM
Tris-HCl, 14mM Tris-Base, 0.2% Triton-X, and 50mM dithiothreitol). Single strength Prote-
CEASE-50, which is an ethylenediaminetetraacetic acid (EDTA)-free protease inhibitor
(G-Biosciences) was added to dissolving buffer before protein extraction. Lysed samples
(30 μg) were subjected to 12% sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophore-
sis (PAGE). The gels were transferred onto a polyvinylidenedifluoride (PVDF) membrane
(Millipore). The membranes were blocked with Starting Block (TBS) Blocking Buffer (Life
Technologies) for 1 h at room temperature. All primary and secondary antibodies were pur-
chased from Thermo Scientificunless otherwise specified. The blocked membranes were incu-
bated with the following primary antibodies to evaluate the expression of an early apoptotic
protein, Annexin V, 1:1000 (Santa Cruz Biotechnology); a cell proliferation protein, proliferat-
ing cell nuclear antigen (PCNA), 1:1000; pro-apoptotic protein, BCL2-associated X protein
(BAX), 1:200; and anti-apoptotic protein, B-cell lymphoma 2 (BCL2), 1:1000. To control pro-
tein loading on the gels, the membranes were probed with glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH), 1:1000 antibody. The membranes were then washed with TBS-T and
incubated in goat anti-mouse or goat anti-rabbit HRP-conjugated secondary antibody
(1:10000) in TBS for 1 h at room temperature. After washing with TBS-T, immune reactivity
was revealed by chemiluminescence using a C-DiGit Blot Scanner (Licor) against Super Signal
West Femto Chemiluminescent Substrate (Thermo Scientific), and the generated signal was
analyzed using a densitometer. Signal from each antibody was normalized to that of GAPDH
for each cryopreservation group.

Proteomic analysis
Total protein from BuOF and FBS samples was extracted using dissolving buffer (7M urea, 2M
thiourea, 4% CHAPS, 18mM Trizma base, 2 tablets of EDTA protease inhibitor, 0.2% Triton
X, and 50mM DTT). The extracted proteins were then quantified using the amido black assay
[36]. One hundred micrograms of each sample in 2 × lamelli buffer (20% glycerol, 4% SDS,
10% 2-mercaptoethanol, 0.004% bromophenol blue, and 0.125M Tris HCl) was subjected to
12% SDS-PAGE in duplicate. The gel was stained in CBB R-250 (Coomassie brilliant blue R-
250; Bio Rad) overnight and then de-stained and documented. Each of the electrophoresed
sample lanes were divided into five fractions, and each fraction was further processed into
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finer, 1.5-mm pieces. Each of the fractions was washed in 40mM ammonium bicarbonate in
50% acetonitrile (ACN) for 1 hand twice with water for 1 h, followed by dehydration with
100% ACN. Each fraction was then digested for 18 h with 40μl of sequencing-grade trypsin (10
ng/μl; Promega). The digested peptides (100 μl) were extracted using 0.1% trifluoroacetic acid
(TFA) in 50% ACN. The respective samples for each fraction were pooled, desalted, and then
vacuum dried. The peptides were then reconstituted in 20 μl of 5% ACN and 0.1% formic acid.
The trypsin-digested peptides were subjected to tandem mass spectrometry (MS/MS) using an
Orbitrap Nano analyzer (Thermo Scientific). The samples were run in duplicate in collision-
induced dissociation mode for 1 h each. The proteins were identified from the obtained MS/
MS peak list searched against the Bos taurus database.

Statistical analyses
Data were pooled from each trial for analysis. The results are presented as mean ± SEMof four
trials for a cell type in each group. Statistical analysis was conducted using an analysis of vari-
ance (ANOVA). Significant differences between the means were determined by analyzing the
data with the Fisher’s Least Significance Difference (LSD) test. The level of significance was set
at P< 0.05.

Results

Biochemical compositions of BuOF and FBS
The biochemical compositions of BuOF and FBS are shown in Table 1. Most of the compo-
nents were several-fold higher in FBS except for low-density lipoprotein (LDL) cholesterol and
ascorbic acid, which were higher in BuOF.

Post-thaw cell viability, cell recovery, and cell viability after culture
Viability of cells was determined by trypan blue dye exclusion immediately after thawing (Fig
1A). The post-thaw viability of cells in all three adherent cell lines, mES cells, hPBMCs,
mBMCs, and MEF cells frozen in D10 was significantly lower than that of fresh cells and cells
frozen in D10S20 and D10O20. The viability of C18-4 cells, HEK cells, mES cells, hPBMCs,
and mBMCs frozen in D10O20 was significantly lower than that of fresh cells but similar to
that of cells frozen in D10S20. However, viability of CHO cells frozen in D10O20 was similar
to that of both fresh cells and cells frozen in D10S20. Viability of MEF cells frozen in D10O20
was significantly lower than that of fresh cells and cells frozen in D10S20.

Frozen–thawed adherent cells 24 h and suspension cells 72 h after culture were evaluated to
determine cell recovery (Fig 1B). There was a significant decline in cell recovery from D10,
regardless of cell type; however, the cell recovery was similar in both D10S20 and D10O20 in
all three adherent cell lines, mES cells, hPBMCs, and mBMCs. The recovery of C18-4 cells fro-
zen in D10O20 was also similar to that of fresh cells. Fewer MEF cells were recovered in both
D10S20 and D10O20 compared with fresh cells, and fewer were recovered in D10O20 com-
pared with D10S20.

Cell viability of all cell types was also determined after culture (Fig 1C). Viability of C18-4,
HEK, and mES cells was similar to that of fresh cells in all cryopreserved groups including D10.
The viability of MEF cells, CHO cells, hPBMCs, and mBMCs frozen in D10 was significantly
lower than that of fresh cells and cells frozen in D10S20 and D10O20. The viability of hPBMCs
and mBMCs frozen in D10O20 was significantly lower than that of fresh cells but similar to
that of cells frozen in D10S20.
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Fig 1. Cell viability and cell recovery in fresh and frozen–thawed cells. (A) Cell viability of fresh and frozen-thawed cells as determined by trypan blue
dye exclusion immediately after thawing. (B) Percentage of cell recovery of frozen–thawed cells after 24 h (MEF, C18-4, CHO, HEK, and mES cells) and 72 h
(hPBMCs and mBMCs) of culture. (C) Cell viability as determined by trypan blue dye exclusion after 24 h (MEF, C18-4, CHO, HEK, and mES cells) and 72h
(hPBMCs and mBMCs) of culture. Data represent mean ± SEM off our trials for each cell type in each group. Bars with different letters are significantly
different at P < 0.05.

doi:10.1371/journal.pone.0131291.g001
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Western blot analysis of frozen–thawed-cultured cells
Expression levels of cell proliferation-, early apoptosis-, pro-apoptosis-, and anti-apoptosis-
specific proteins (PCNA, Annexin V, BAX, and BCL2, respectively) were analyzed in frozen–
thawed cells after culture (Fig 2A). PCNA expression in all cell types cryopreserved in D10 was
lower than that in fresh cells and cells cryopreserved in D10S20 and D10O20 (Fig 2B). PCNA
expression in CHO cells, hPBMCs, and mES cells frozen in D10O20 was similar to that of fresh
cells and cells frozen in D10S20. PCNA expression in hPBMCs and C18-4 cells frozen in
D10O20 was similar to those cells frozen in D10S20 but lower than that in fresh cells. In MEF
cells, PCNA expression was lower in cells frozen in D10O20 than in both fresh and cells cryo-
preserved in D10S20. Interestingly, PCNA expression in HEK cells frozen in D10O20 was simi-
lar to that of fresh cells but higher than that of cells frozen in D10S20.

The ratio of BAX/BCL2 proteins was significantly higher in all cell types frozen in D10 than
in fresh cells and cells cryopreserved in D10S20 and D10O20 (Fig 2C). Although the BAX/
BCL2 ratio was higher in D10O20 compared with fresh cells, it was similar to that of cells fro-
zen in D10S20 in all cell types except mBMCs. mBMCs frozen in D10O20 had higher BAX/

Fig 2. Expression of proliferation-, pro-apoptosis-, anti-apoptosis-, and early apoptosis-specific proteins in frozen-thawed cells. Expression of cell
PCNA, BAX, BCL2, and Annexin V respectively in fresh and frozen–thawed cells after 24 h (MEF, C18-4, CHO, HEK, and mES cells) and 72 h (hPBMCs and
mBMCs) of culture. Thirty-microgram aliquots of each cell extract were subjected to SDS-PAGE and western blot analysis. (A) Representative western
blotting and densitometry analysis of (B) BAX/BCL2 ratio, (C) PCNA, and (D) Annexin V expression relative to GAPDH. Data represent mean ± SEM off our
trials for a cell type in each group. Bars with different letters are significantly different at P < 0.05.

doi:10.1371/journal.pone.0131291.g002

Serum-Free Cell Cryopreservation

PLOS ONE | DOI:10.1371/journal.pone.0131291 July 2, 2015 8 / 17



BCL2 ratios compared with those frozen in D10S20. Annexin V protein expression in all seven
cell types cryopreserved in D10 was higher than in fresh cells and cells cryopreserved in
D10S20 and D10O20 (Fig 2D). Annexin V expression in MEF cells, and hPBMCs frozen in
D10O20 was similar to that of fresh cells and cells frozen in D10S20. Annexin V expression in
C18-4 cells, HEK cells, CHO cells, mES cells, and mBMCs frozen in D10O20 was similar to
that of cells frozen in D10S20 but lower than that of fresh cells.

Proteomic analysis of BuOF and FBS
Proteomic analysis of BuOF and FBS was carried out by depleting the samples of abundant
proteins and subjecting the samples to MS/MS analysis. Based on MS/MS peak search in the
Bos taurus database, a total of 41 proteins in BuOF and 207 proteins in FBS were identified, out
of which 16 were common. A list of proteins identified in BuOF and their comparison with
FBS is shown in Table 2. Proteins identified in FBS are listed in S1 Table. A protein database
search and literature search revealed that BuOF contains 26% glycoproteins, 9% globular pro-
teins, 7% plasma proteins, 9% lipoproteins, and 7% cytoskeletal proteins. Out of the 16 com-
mon proteins, albumin was the major protein identified in FBS and BuOF.

Discussion
Because FBS is enriched with several growth factors and proteins, it is routinely used as a
media supplement for cell and tissue cultures. FBS is also used as a non-penetrating cryopro-
tectant to cryopreserve several cell types. High cost, ethical concerns, and the possibility of
transmission of blood-borne diseases has led to a need to find a substitute for cryopreservation
[22]. To date, many serum replacements have been introduced for cell cryopreservation [25–
27]; however, their use is limited, primarily because of their high cost and difficulty in procure-
ment. In the present study, we investigated if BuOF can replace FBS for cryopreservation of
several different cell types.

The biochemical composition of BuOF was found to be different from that of FBS. All con-
stituents except for LDL cholesterol and ascorbic acid, were found to be present in a higher
concentrations in FBS (approximately 1.8- and 6.4-fold higher in BuOF, respectively; Table 1).
LDL cholesterol contains 85–90% lipids as well as 10–15% proteins [37] and is responsible for
the gelation process in freeze–thawing [37–40]. Presence of higher LDL cholesterol content in
BuOF could be beneficial for cell cryopreservation by providing fluid stability. LDL cholesterol
protected sperm cells against cold shock by preventing the efflux of phospholipids and choles-
terol from the sperm cell membrane [41]. Egg yolk, which is rich in LDL cholesterol, has been
proven to be an effective cryopreservative for spermatozoa of bulls [42, 43], stallions [44], rams
[45], and dogs [46].

Ascorbic acid is a micronutrient that prevents both membrane depolarization and cyto-
chrome C release events that occur during apoptosis [47]. Lane et al. observed a significant
decrease in the levels of lactate dehydrogenase in mouse embryos cryopreserved with ascorbic
acid [48]. Presence of a high concentration of ascorbic acid in BuOF could have a role in pre-
venting damage by free radicals, which is one of the reasons implicated in loss of viability dur-
ing or immediately after cell freezing [49]. Thus, viability of different cell lines was maintained
in this study. Furthermore, a high concentration of ascorbic acid in BuOF could be responsible
for the similarity in Annexin V expression and BAX/BCL2 ratio in cell lines and hPBMCs cryo-
preserved in BuOF and FBS. However, it remains unclear if the effect was exclusively because
of ascorbic acid or some other components in BuOF.

Annexin V expression has been used to evaluate early apoptotic cells [50], whereas the ratio
of BAX (pro-apoptotic) to BCL2 (anti-apoptotic) gene expression indicates susceptibility of
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Table 2. Proteomic analysis of BuOF and comparison with FBS.

Name of the protein Molecular
weight (kDa)

Type of protein/role Whether present
or absent in FBS

1 Apolipoprotein A-I precursor 30.3 High density lipoprotein/promotes proliferation and inhibits
apoptosis of cells [77]

Present

2 Fibronectin variable region 20.4 Glycoprotein/induces cell proliferation, inhibits apoptosis
[83], and helps improve fertility rate of cryopreserved sperm
[84]

Present

3 Transthyretin precursor 15.7 Thyroxine binding prealbumin Present

4 Serum albumin 53.9 Globular protein/replaces serum in efficient
cryopreservation of PBMCcells [27]

Present

5 Alpha-1-B glycoprotein precursor 53.5 Glycoprotein Present

6 Gelsolin 80.7 Lysophosphatidic acid transport protein/anti-oxidant
properties [73] andinvolved in both the control and
execution of apoptosis [72]

Present

7 Complement component 3 187.1 Glycoprotein Present

8 Keratin 5, type II 62.6 Cytoskeletal protein Present

9 Inter-alpha-trypsin inhibitor heavy chain H2
precursor

106.1 Carrier protein Present

10 Albumin 69.2 Globular protein/replace sserum in efficient
cryopreservation of PBMC cells [27]

Present

11 Complement factor B precursor 85.3 Circulatory protein Present

12 Keratin 7, type II 50 Cytoskeletal protein Present

13 Transferrin isoform X1 77.6 Glycoprotein/major anti-oxidant protein andprotects
spermatozoa against oxidative damage during freeze–
thawstress [69]

Present

14 Keratin 42, type 1 like isoform X3 50.3 Cytoskeletal protein Present

15 Serpin peptidase inhibitor, clade A (alpha-1
antiproteinase, antitrypsin), member 1 isoform
X1

46.1 Enzyme/inhibit sapoptosis by inhibitingcaspase-3 [75] Present

16 Crystal structure of BSA chain b 66.4 Globular protein/replaces serum in efficient
cryopreservation of PBMCcells [27]

Present

17 Alpha-2-HS-glycoprotein precursor 38.4 Glycoprotein Absent

18 Serpin peptidase inhibitor, clade A (alpha-1
antiproteinase, antitrypsin), member 3

22.7 Globulin glycoprotein/inhibits apoptosis by inhibiting
caspase-3 [75]

Absent

19 Regucalcin 33.3 Calcium binding protein/maintains cell homeostasis and
playa role as a suppressor protein in cell signaling systems
in many cell types [81]

Absent

20 Crystal structure of bovine factor Vai, chain A 34.7 Inactivated form of factor Va Absent

21 Endopin 2C 46.7 Type of serpin/inhibits cysteine proteases and elastase-like
serine proteases therefore eventually inhibit apoptosis [85]

Absent

22 Fetuin B precursor 42.6 Glycoprotein/anti-oxidant and helps maintain sperm
morphology by increasing ROS scavenging enzymes [82]

Absent

23 Fibrinogen alpha chain 18.1 Glycoprotein Absent

24 Apolipoprotein E 27.1 Lipoprotein Absent

25 C-type lectin domain family 3, member B
precursor

22.1 Plasminogen binding protein Absent

26 Adiponectin 26.1 Hormone(cytokine) Absent

27 Transferrin precursor 77.7 Glycoprotein/major anti-oxidant protein andprotects
spermatozoa against oxidative damage during freeze–thaw
stress [69]

Absent

28 Inter-alpha-trypsin inhibitor heavy chain 1
precursor

101.2 Serine protease inhibitor Absent

29 keratin 25, type I like 49.3 Intermediate filament Absent

(Continued)
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cryopreserved cells to apoptosis [51]. Previous study revealed that Annexin V assay can be
used to detect membrane integrity of frozen–thawed human spermatozoa [52]. Moreover, the
BAX/BCL2 ratio is used to determine the quality of embryos and oocytes in different stages of
in vitro culture [53]. The relative Annexin V expression and BAX/BCL2 ratio were similar in
all cell types cryopreserved in either D10S20 or D10O20except mBMCs and in cells frozen in
D10. These findings indicate that both FBS and BuOF have similar ability to inhibit apoptosis
in most cell types cryopreserved in this study. Although in mouse primary suspension cells
such as mBMCs frozen in D10O20, the BAX/BCL2 ratio was similar to that of cells frozen in
D10. Nevertheless, Annexin V expression in mBMCs cryopreserved in either group was not
different. These findings indicate that unlike BuOF, FBS was beneficial for preventing late apo-
ptosis in mBMCs. Interestingly, Annexin V expression and BAX/BCL2 ratio in human primary
cells (hPBMCs) was similar in both groups. These results suggest that mBMCs are rather sus-
ceptible to apoptosis during cryopreservation, unlike hPBMCs. The components of the p53
pathway that control late cellular apoptosis in response to DNA damage are reported to be
more active in mouse cells than in human cells [54, 55]. This could potentially explain the ele-
vated BAX/BCL2 ratio in mouse primary cells.

Recovery of viable cells from cryogenic storage is a major concern [56]. Initially, viability of
all cell types was estimated immediately after thawing to compare BuOF and FBS cryopreserva-
tion abilities, as reported in earlier studies [26, 27, 57]. Although viability of MEF cells frozen
in D10O20 immediately after thawing was low, expression of Annexin V and BAX/BCL2 ratio
in cultured cells were not different from cells frozen in D10S20. These findings suggest that
though BuOF could not preserve the initial viability nevertheless, it could prevent both early
and late apoptosis of frozen-thawed MEF cells. On the contrary, all cells types frozen in D10
not only had lower cell viability immediately after thawing but also had elevated Annexin V
and BAX/BCL2 ratio in cultured cells. These findings indicate that presence of FBS or BuOF in
cryomedia significantly enhances cell survival and prevented apoptosis. Interestingly, the cell
viability of few cultured adherent cells such as C18-4, HEK and mES cells that were frozen in
D10 did not differ from cells frozen in other groups, but the Annexin V and BAX/BCL2 ratio

Table 2. (Continued)

Name of the protein Molecular
weight (kDa)

Type of protein/role Whether present
or absent in FBS

30 Bovine hemoglobin chain C 15 Metalloprotein Absent

31 Hemoglobin, beta 16 Globin protein Absent

32 Apolipoprotein N 28.5 Lipoprotein Absent

34 Collagen, type III, alpha 1 137.1 Fibrous scleroprotein Absent

35 Immunoglobulin light chain 10.4 Polypeptide Absent

36 Alpha-2-macroglobulin variant 1 115.1 Plasma protein/proteinase inhibitor and anti-apoptotic
protein [86]

Absent

37 Alpha-2-macroglobulin variant 4 42.3 Plasma protein/proteinase inhibitor and anti-apoptotic
protein [86]

Absent

38 Kininogen isoform X2 44.4 Polypeptide Absent

39 Protein dimmed 39.4 Helix-loop-helix protein Absent

40 Primary amine oxidase 81.7 Copper containing enzymes/biological regulator of cell
growth and differentiationand is also involved in apoptosis
regulation by altering membranes [78]

Absent

41 Actin, alpha 2, smooth muscle, aorta 39.3 Globular protein Absent

42 Methylenetetrahydrofolate dehydrogenase
(NADP+ dependent) 1-like

81.6 Ligase Absent

doi:10.1371/journal.pone.0131291.t002
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in these cells were significantly higher. These results indicate that mere recovery of cell viability
of frozen-thawed cells cannot be a reliable indicator for the cryoprotection provided by a cryo-
preservation media [58]. Evaluation of apoptosis-specific proteins expression in frozen-thawed
cells is also essential [59]. Because different cells grow at different rates, cell recovery post-cul-
ture is an ideal method to assess their growth rate after cryopreservation. Recovery of cells can
be assessed by percentage of cell recovery [60] and expression of proliferation cell-specific pro-
teins, such as PCNA [61]. Frozen–thawed murine neural precursor cells retained their prolifer-
ative capacity, as shown by the PCNA expression [62]. Percentage of cells recovered and
PCNA expression in cells frozen in DMSO alone (D10) was significantly lower than that of
cells frozen with DMSO with FBS or BuOF in all cell types used in this study. These findings
further support the use of FBS or BuOF in cryomedia for cell cryopreservation.

However, for the MEF cells cryopreserved in D10O20, cell recovery and PCNA expression
were significantly lower than that in the cells cryopreserved in D10S20, and the viability of cul-
tured cells recovered after 24h was not different from fresh cells and cells frozen in D10S20.
This difference could be because MEF cells are primary cells and require more than 24 h for
restoration of cell growth and proliferation after cryopreservation. Another plausible explana-
tion could be presence of higher protein, lipoprotein, and triglyceride contents in FBS led to
better cryopreservation of MEF cells. Bradykinin [63], tubulin [64], heat shock protein 90 [65],
and superoxide dismutase [66] are reported to play roles in bull sperm cryopreservation. Eno-
lase, a metalloenzyme, could replace DMSO in cryopreservation of rat hepatocytes by reducing
oxidative stress and cellular toxicity [67]. Presence of these proteins exclusively in FBS could
potentially provide superior cryoprotection.

Although the protein content of BuOF was much lower than that of FBS, a comparative
proteomic analysis of BuOF and FBS was carried out to identify proteins/peptides that may be
critical for cryopreservation. A total of 41 proteins were identified in BuOF through MS/MS
analysis. The majority of proteins were glycoproteins, globular proteins, and lipoproteins. Out
of the 41 identified proteins, 16 were also present in FBS (Table 2). Transport proteins such as
albumin, serotransferrin, transthyretin, and apolipoprotein AI that were present in both FBS
and BuOF were previously reported in human vitreous humor [68], which validates the proteo-
mic approach that was followed in this study.

These proteins are biologically essential, have important roles in cell homeostasis, and act as
hormone carriers. Transferrin protects spermatozoa against oxidative damage during freeze–
thaw stress [69]. Fibronectin, which is another important glycoprotein that was identified in
BuOF, plays an important role in cell–cell aggregation, cell–substratum adhesion, attachment of
cells to extracellular matrix components, and cellular motility [70]. Gelsolin, which is an actin fil-
ament that caps and severs proteins that enhance the rate of cell migration [71], is involved in
both the control and execution of apoptosis [72]. This lysophosphatidic acid transport protein is
thought to have anti-oxidant properties [73]. The presence of these proteins in BuOF could be a
reason for lower expression of pro-apoptotic proteins in cryopreserved cell lines.

Several proteolytic enzymes have been implicated in apoptosis and associated processes. α-1
Antiproteinase (A1P1) in BuOF is a serine protease inhibitor (serpin) [74] that regulates apopto-
sis by inhibiting caspase-3 activity [75]. Many proteins identified in BuOF and FBS were found
to be involved in lipid transport and binding as well as cell migration. Transthyretin, which is a
transport protein in BuOF, is involved in lipid metabolism [76]. Apolipoprotein A-I, which is a
major component of high-density lipoprotein (HDL), has been reported to promote proliferation
and inhibit apoptosis of endothelial and vascular smooth muscle cells [77]. Presence of these pro-
teins in BuOFmay be critical for preventing cell apoptosis during freezing and thawing.

A few proteins were exclusively identified in BuOF. Amine oxidase and kininogen are
reported to play crucial role in prevention of cellular apoptosis [78, 79]. Actin plays a crucial
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role in cell structure, motility, and cell division [77]. Damage to actin modifies microtubule
organization in the presence of cryoprotectants such as propanediol and DMSO [80]. The glob-
ular and glycoproteins present in BuOF contribute to important cellular functions, such as
mobility and contraction of cells during cell division. Regucalcin has a role as a suppressor pro-
tein in cell signaling systems of many cell types [81]. Fetuin, a glycoprotein and protease inhibi-
tor, increases superoxide dismutase and glutathione peroxidase enzymatic activities to
minimize membrane and DNA damage in cryopreserved semen [82]. Whether these proteins
have a critical role in cell cryopreservation needs to be investigated further.

This is a preliminary study that identified BuOF as a replacement for FBS in cryopreserva-
tion media. The composition of ocular fluid may vary with age, sex, breed, origin, and physio-
logical and health status of the animal. Variation in the composition of ocular fluid may affect
cell survival and gene expression of cryopreserved cells. Therefore, further investigations and
standardizations are needed before BuOF can find its use for commercial applications.

In conclusion, this study demonstrates efficient cryopreservation of adherent cell lines, such
as CHO, HEK, C18-4, and mES cells and primary suspension cells such as hPBMC and mBMC
in 20% BuOF, and its potential to replace FBS in cryomedia. Because mouse primary cells
(mBMCs and MEF cells) are susceptible to cryodamage, cryopreservation using BuOF needs
further investigation. Proteomic and biochemical analyses of BuOF identified several compo-
nents that may have crucial roles in cell cryopreservation. Further studies that elucidated the
effect of BuOF in several different cell types could help establish BuOF as a vital component for
serum-free cryopreservation protocols.
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