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Simple Summary: The transcription factor p53 is a crucial tumor suppressor that regulates diverse
cellular responses to protect against cancer development. Deactivating p53 signaling either by
altering p53 regulators or by p53 mutations occurs frequently in human colorectal carcinoma (CRC).
Forty-three percent of CRCs harbor p53 mutations that reduce wild-type p53 tumor suppressor
activity and often provide neo-morphic functions, which contribute to tumorigenesis. In this review,
we summarize wild-type p53 signaling, how it can be deregulated in CRC, and the functional and
phenotypical effects of p53 mutations. We also discuss current therapeutic strategies of targeting p53.

Abstract: The transcription factor p53 functions as a critical tumor suppressor by orchestrating a
plethora of cellular responses such as DNA repair, cell cycle arrest, cellular senescence, cell death,
cell differentiation, and metabolism. In unstressed cells, p53 levels are kept low due to its polyubiq-
uitination by the E3 ubiquitin ligase MDM2. In response to various stress signals, including DNA
damage and aberrant growth signals, the interaction between p53 and MDM2 is blocked and p53
becomes stabilized, allowing p53 to regulate a diverse set of cellular responses mainly through the
transactivation of its target genes. The outcome of p53 activation is controlled by its dynamics, its
interactions with other proteins, and post-translational modifications. Due to its involvement in
several tumor-suppressing pathways, p53 function is frequently impaired in human cancers. In
colorectal cancer (CRC), the TP53 gene is mutated in 43% of tumors, and the remaining tumors often
have compromised p53 functioning because of alterations in the genes encoding proteins involved
in p53 regulation, such as ATM (13%) or DNA-PKcs (11%). TP53 mutations in CRC are usually
missense mutations that impair wild-type p53 function (loss-of-function) and that even might provide
neo-morphic (gain-of-function) activities such as promoting cancer cell stemness, cell proliferation,
invasion, and metastasis, thereby promoting cancer progression. Although the first compounds
targeting p53 are in clinical trials, a better understanding of wild-type and mutant p53 functions will
likely pave the way for novel CRC therapies.

Keywords: p53 signaling; p53 pathway; wild type p53; mutant p53; gain-of-function; colorectal
cancer; cancer therapy

1. Introduction

Colorectal cancer (CRC) comprises two common tumor types, namely, colon cancer
and rectal cancer, which make up 71% and 29% of CRC cases, respectively [1]. Colon cancer
is the fourth most diagnosed cancer worldwide, whereas rectal cancer is the eighth most
common type of cancer. Together, these two carcinomas represent the third most common
type of cancer globally and the second leading cause of cancer-related deaths. According
to estimates of the International Agency for Research on Cancer (IARC), 1.8 million people
were diagnosed with CRC and 862,000 people died of CRC in 2018, representing 10.2% of
cancer diagnoses and 9.2% of cancer-related deaths, respectively [2].

The major risk factor for developing CRC is age: most CRCs are diagnosed in patients
older than 50. In addition to this inherent risk factor, there are other main risk factors,
which are lifestyle dependent. These bio-behavioral risk factors include obesity, a sedentary
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lifestyle, high intakes of red and processed meat, alcohol consumption, and smoking [3].
These risk factors are associated with socioeconomic development and this is reflected
in the global incidence and mortality rates, with the majority of CRC cases occurring in
countries with high or very high human development indexes. However, the incidence
and mortality rates of CRC are rising rapidly in many low and middle-income countries
due to lifestyle changes [4]. Additionally, in some high-income countries with decreasing
or stable CRCs rates, the burden of early-onset CRC (diagnosis before 50) is alarmingly
increasing [5,6]. Thus, CRC represents and will continue to represent a major global
health burden.

While 90–95% of CRCs are diagnosed as colorectal adenocarcinoma (COAD), the
remaining CRCs represent other subclasses of CRC, including squamous/adenosquamous
carcinoma, signet ring cell carcinoma, medullary carcinoma, and endocrine neoplasms [7,8].
The majority of CRC cases occur sporadically (70%), whereas familial or hereditary CRC
make up 25% and 5–10% of CRC cases, respectively [9].

One gene frequently mutated in CRC is the tumor suppressor gene p53, which is
also known as the guardian of the genome. p53 is activated upon various stress signals,
including DNA damage or oncogene activation, and orchestrates a plethora of downstream
responses, such as DNA repair, cell cycle arrest, senescence, metabolism, and cell death.
p53 mainly acts as a transcription factor controlling the expression of hundreds of target
genes [10]. p53 mutations in cancer not only abrogate the ability of mutant p53 to transacti-
vate canonical p53 target genes but may also confer new oncogenic properties contributing
to tumorigenesis [11]. Thus, p53 mutant proteins may be considered as oncogenes that
actively promote carcinogenesis, although the degree of neo-morphic activity depends
on the specific p53 mutation. The observed gain-of-function (GOF) activity might be an
explanation for the selection of p53 missense mutations during carcinogenesis rather than
nonsense mutations, which are often observed for other tumor suppressor genes.

In this review, we give an overview of p53 signaling, how it is activated in response to
stress signals, and which mechanisms regulate p53-mediated cell fate decisions. We discuss
how the acquisition of p53 mutations and the deregulation of p53 upstream regulators
disrupt p53 signaling in CRC, and how mutant p53 could be exploited as a potential
therapeutic target in CRC therapy.

2. The p53 Pathway

The transcription factor p53 functions as a central hub that translates various stress
signals into diverse cellular outcomes, such as DNA repair, cell cycle arrest, or cell death [12].
The p53 gene is encoded by the TP53 gene locus located on the short arm of human
chromosome 17 (17p13.1). Due to the use of alternative promoters, alternative splicing, and
alternative translation sites, at least twelve different isoforms are expressed from the TP53
locus in a tissue-specific manner. The longest isoform encodes the so-called full-length p53
protein, which is 393 amino acids long and is the best-characterized isoform. Although
p53-mediated responses are the endpoints of the activities of the p53 isoforms in specific
cell types/tissues, the modes of action of the individual isoforms are only emerging [13,14].
Thus, the contributions of the individual isoforms to a specific p53-response in specific
tissues such as the colon and rectum are still unclear.

Full-length p53 possesses seven main functional domains: two transactivation do-
mains (TAD1 and TAD2, aa 20–40 and aa 40–60) at the N-terminus, a proline-rich domain
(PRD, aa 60–90), a central DNA binding domain (DBD, aa 100–300), an oligomerization
domain (OD, aa 325–356), and a regulatory C-terminal domain (CTD, aa 363–393) [15]. The
binding of p53 to DNA is mediated by the DBD, which allows binding to specific DNA
target sites termed p53 response elements (REs), and the CTD, which supports sequence-
specific DNA binding, especially when the p53 binding site deviates from the consensus
p53 RE sequence [16]. The OD is required for the tetramer formation of p53, which is a
prerequisite for its activity as a transcriptional activator [17].
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2.1. Control of p53 Levels

Due to its central role in mediating cellular responses such as cell cycle arrest or cell
death, p53 activity must be tightly regulated to avoid inappropriate cellular outcomes. In
healthy, unstressed cells, p53 levels are kept low mainly due to the activity of the RING-
finger E3 ubiquitin ligase MDM2. The structurally related protein MDM4 (also known
as MDMX) interacts with MDM2, prevents p53 transactivation activity, and enhances
MDM2-dependent p53 polyubiquitination [18]. MDM2 is itself a transcriptional target of
p53, thereby forming an autoregulatory negative-feedback loop [19]. This loop allows the
cell tight control over the duration of p53 activation (Figure 1). Although MDM2 is the
key regulator mediating p53 degradation, there are also MDM2-independent pathways
mediated by other E3 ligases such as PIRH2, COP1, ARF-BP1, and CHIP, which ensure that
p53 levels are low in the absence of p53 activating signals [20–23].

In response to p53-activating signals such as genotoxic and non-genotoxic stress
(e.g., aberrant growth signals), disruption of the p53–MDM2 feedback loop is the main
mechanism for rapidly stabilizing p53 [24]. In response to DNA damage, post-translational
modifications (PTMs) of both p53 and MDM2 counteract their interaction (Figure 1). The
DNA damage checkpoint kinases ATM, ATR, CHK1, CHK2, and DNA-PKcs mediate
phosphorylation of p53, MDM2, and MDM4 leading to the dissociation of the p53–MDM2
complex. ATM, ATR, and DNA-PKcs phosphorylate p53 at Ser15, whereas the ATM/ATR
substrates CHK1 and CHK2 phosphorylate p53 at Ser20 (Figure 2A) [25]. ATM and DNA-
PKcs can additionally phosphorylate MDM2 at Ser395 and Ser17, respectively. MDM4
is a direct substrate of ATM, CHK2, and CHK1; phosphorylation of MDM4 promotes
its ubiquitination and degradation [26,27]. In addition to phosphorylation, C-terminal
acetylation of p53 counteracts p53 polyubiqutination [28]. Recently, a novel PTM of p53,
namely, UFMylation, was reported to antagonize p53 ubiquitination, thereby contributing
to p53 stability [29]. In response to oncogenic stress, p53 stabilization is mainly mediated
by the tumor suppressor ARF. ARF interferes with MDM2-mediated p53 ubiquitination
by constraining the enzymatic activity of MDM2 and/or by sequestering MDM2 in the
nucleolus [30].

2.2. p53 Downstream Responses

Upon activation, p53 can mediate a diverse set of cellular responses, including DNA re-
pair, cell cycle arrest, senescence, apoptosis, ferroptosis, stem cell reprogramming, invasion
and metastasis, autophagy, and metabolism [18,31]. Although transcription-independent
functions of p53 are known [32], p53 mainly functions as a transcription factor, which
activates the expression of a large and diverse set of target genes. Additionally, p53 can
also indirectly suppress gene expression via downstream effectors such as p21, E2F7, and
the DREAM complex [33].

How p53 can regulate such heterogeneous outcomes is not completely understood.
However, it is known that the cell or tissue type as well as the type and intensity of the
stress signal leading to p53 activation are important for the cell fate choice. This is reflected
by the fact that out of 3509 potential p53 target genes, which were identified in 17 high-
throughput data sets conducted in different cell lines and with different p53 activating
agents, only 343 genes were identified in at least three datasets [34]. Mechanistically, it
has been shown that post-translational modifications of p53, the interactions with other
proteins, which determine the DNA-binding properties of p53, and its temporal expression
dynamics are key determinators for p53-mediated cell fate decisions [35,36].
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Figure 1. p53 is activated in response to DNA damage and oncogenic stress and coordinates di-
verse cellular responses that are important for tumor suppression. The transcription factor p53 
transactivates MDM2, which is the main E3 ubiquitin ligase targeting p53 for proteasomal degra-
dation, thereby creating a negative feedback loop. In unstressed cells, MDM2 and its partner pro-
tein MDM4 are the main regulators of p53 stability. Upon cellular stress, blocking the interaction 
of p53–MDM2/MDM4 is the major principle for p53 stabilization. DNA damage leads to the acti-
vation of the DNA damage response kinases ATM and ATR and their substrates CHK2 and 
CHK1. Phosphorylation of p53, MDM2, and MDM4 by these kinases stabilizes p53 by antagoniz-
ing the p53–MDM2 interaction. In response to oncogene activation, the ARF protein, which is acti-
vated by transcription factors of the E2F family, restricts MDM2 activity, thereby stabilizing p53. 
Activated p53 can modulate many downstream cellular responses mainly by transactivating target 
genes whose protein products are involved in these processes. Classical outcomes of p53 activa-
tion are cell-cycle inhibition, senescence, DNA repair, and apoptosis. Additionally, p53 can regu-
late other cellular processes, such as promoting autophagy, cellular differentiation, and ferropto-
sis; and inhibiting invasion and metastasis, metabolic reprogramming, and stem cell self-renewal. 
All these p53-regulated responses contribute to tumor suppression. 

Figure 1. p53 is activated in response to DNA damage and oncogenic stress and coordinates di-
verse cellular responses that are important for tumor suppression. The transcription factor p53
transactivates MDM2, which is the main E3 ubiquitin ligase targeting p53 for proteasomal degrada-
tion, thereby creating a negative feedback loop. In unstressed cells, MDM2 and its partner protein
MDM4 are the main regulators of p53 stability. Upon cellular stress, blocking the interaction of
p53–MDM2/MDM4 is the major principle for p53 stabilization. DNA damage leads to the activa-
tion of the DNA damage response kinases ATM and ATR and their substrates CHK2 and CHK1.
Phosphorylation of p53, MDM2, and MDM4 by these kinases stabilizes p53 by antagonizing the
p53–MDM2 interaction. In response to oncogene activation, the ARF protein, which is activated by
transcription factors of the E2F family, restricts MDM2 activity, thereby stabilizing p53. Activated p53
can modulate many downstream cellular responses mainly by transactivating target genes whose
protein products are involved in these processes. Classical outcomes of p53 activation are cell-cycle
inhibition, senescence, DNA repair, and apoptosis. Additionally, p53 can regulate other cellular
processes, such as promoting autophagy, cellular differentiation, and ferroptosis; and inhibiting inva-
sion and metastasis, metabolic reprogramming, and stem cell self-renewal. All these p53-regulated
responses contribute to tumor suppression.
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Figure 2. Schematic representation of the domain structure of p53, the impacts of selected post-
translational modifications (PTMs), and the prevalence of p53 mutations. (A) Effects of selected 
p53 PTMs on p53 stability and cell fate. The enzymes catalyzing these PTMs are shown above the 
modified residues, whereas the impacts of these PTMs are depicted below. (B) Somatic p53 muta-
tions in CRC according to the IARC TP53 mutation database. A schematic cartoon representing the 
domain structure of p53. The aligned histogram represents the relative mutation frequency at each 
position along the p53 protein-coding sequence, based on data of 3607 CRC samples with somatic 
mutations derived from the IARC TP53 database (R20, July 2019). The five most common muta-
tions are labeled. Transactivation domain (TAD), DNA-binding domain (DBD), oligomerization 
domain (OD), and carboxyl-terminal domain (CTD). 
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Figure 2. Schematic representation of the domain structure of p53, the impacts of selected post-
translational modifications (PTMs), and the prevalence of p53 mutations. (A) Effects of selected
p53 PTMs on p53 stability and cell fate. The enzymes catalyzing these PTMs are shown above the
modified residues, whereas the impacts of these PTMs are depicted below. (B) Somatic p53 mutations
in CRC according to the IARC TP53 mutation database. A schematic cartoon representing the domain
structure of p53. The aligned histogram represents the relative mutation frequency at each position
along the p53 protein-coding sequence, based on data of 3607 CRC samples with somatic mutations
derived from the IARC TP53 database (R20, July 2019). The five most common mutations are labeled.
Transactivation domain (TAD), DNA-binding domain (DBD), oligomerization domain (OD), and
carboxyl-terminal domain (CTD).

PTMs of p53, such as phosphorylation and acetylation affect promotor-specific DNA
binding of p53 and cell fate choice (Figure 2A). In response to severe DNA damage,
p53 is phosphorylated at Ser46 by DNA-damage responsive kinases such as HIPK2 and
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DYRK2 [37–39]. This PTM is specifically linked to irreparable DNA damage and leads to
the dissociation of the anti-apoptotic protein iASPP from p53, allowing p53 to transactivate
a specific set of pro-apoptotic p53 target genes, such as BAX, p53AIP, p53INP1, and
NOXA [40,41]. Moreover, phosphorylation of p53 at Ser46 and other residues creates
binding sites for the prolyl-peptidyl cis/trans isomerase PIN1 [42–44]. Isomerization of p53
at the phospho-Ser46-Pro bond enhances the interaction of p53 with the acetyltransferases
CBP and p300 at PML nuclear bodies, which acetylate p53 at Lys373 and Lys382. These
PTMs potentiate the transcriptional activity of p53, allowing efficient activation of pro-
apoptotic p53 target genes [45]. Additionally, p53, and in particular p53 phosphorylated at
Ser46, also exerts non-nuclear, cell death-promoting functions by mediating BAX activation
and permeabilization of mitochondria [46]. Another example of a PTM specifying the
p53 response is acetylation at Lys120, which is mediated by the acetyltransferases hMOF
and TIP60. This PTM enhances the expression of pro-cell death genes such as BAX and
PUMA [47,48]. On the contrary, acetylation of p53 at Lys320 by the acetyltransferase PCAF
leads to cell survival via activation of the cyclin-dependent kinase inhibitor p21 [49].

The binding of p53 to specific promoters is also regulated by p53-interacting proteins.
For example, iASPP and the hematopoietic zinc finger (HFZ) protein stimulate binding
of p53 to the p21 promoter, thereby promoting cell cycle arrest, whereas the apoptosis-
stimulating of p53 proteins 1 and 2 (ASPP1 and ASPP2) increase the affinity of p53 to
pro-apoptotic target genes [50–52]. Recently, we identified the adaptor protein DAZAP2
as a new interactor of p53. DAZAP2 inhibits the transactivation of a distinct set of p53
target genes in colorectal cancer cells, including pro-cell death genes upon DNA damage,
thereby diminishing p53-induced cell death, presumably in response to repairable genome
damage [53].

Another important factor, which determines the outcome of p53 activation, is the
temporal change in p53 protein levels, termed p53 dynamics. Rapid induction of p53 levels
has been shown to promote apoptosis, whereas slow induction of p53 levels is associated
with cell survival [54]. In addition to the induction rate, the dynamics of p53 protein levels
are important for cell fate decisions. Cells that display oscillatory behavior of p53 protein
levels induce cell cycle arrest and cell survival, whereas cells with a monotonic, sustained
increase in p53 levels induce the terminal cell fate choices senescence and apoptosis [55,56].
Pulsatile p53 behavior is mainly generated by the negative feedback loop with MDM2.
Indeed, degradation of MDM2 by the caspase-2-PIDDosome has been shown to allow cells
to switch from oscillating to sustained p53 dynamics [57]. However, although p53 pulses
are associated with pulsatile p53 DNA binding, only the mRNA levels of some target genes
show pulsatile behavior, whereas other target genes show a steady increase in mRNA
levels. This behavior is determined by the mRNA half-time. mRNAs with short half-times
show oscillations in mRNA levels [58,59].

In summary, p53 can induce a heterogeneous response in a cell, tissue, and stress-
specific manner, with the option being chosen depending on numerous parameters, such as
the presence of interacting and modifying enzymes, and p53 protein level dynamics. These
factors regulate p53 target gene expression. Most likely, cell fate choice is not determined by
the expression levels of single genes but by the relative expression levels of target gene sets.

3. p53 Mutations in Colorectal Cancer

P53 is the most commonly mutated gene in human tumors [60]. Colorectal can-
cer represents the cancer entity with the highest prevalence of p53 mutations, with 43%
of CRCs harboring p53 mutations (IARC TP53 database, R20; https://p53.iarc.fr/TP5
3SomaticMutations.aspx accessed on 1 April 2021). In contrast to other tumor suppressor
genes, which are predominantly altered by truncating mutations, approximately 90% of p53
mutations are missense mutations, meaning that the full-length protein with a single amino
acid change is expressed [61]. In CRC, these missense mutations are found at 257 codons
in the p53 gene; however, 42% occur at five so-called hotspot codons in the central DNA
binding domain, specifically at codons R175, G245, R248, R273, and R282 (Figure 2B). Thus,

https://p53.iarc.fr/TP53SomaticMutations.aspx
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the distribution of p53 mutations in CRC reflects the one in human tumors in general,
which show an additional mutation hotspot, codon R249 [62].

Strikingly, all hotspot codons—except R249—contain CpG dinucleotides. Random
deamination of methylated cytosines within those CpG dinucleotides leads to G:C→A:T
transitions, which might result in the high prevalence of mutations at these hotspot codons.
These G:C→A:T substitutions might also be caused by oxidative stress, which leads to the
accumulation of reactive oxygen species (ROS) and subsequent oxidation of DNA bases.
The most frequent DNA lesions caused by ROS are 8-oxoguanine and 5-hydroxycytosine,
which mispair with adenine and thymine during DNA replication, respectively [63]. High
ROS levels have been observed in different diseases, including CRC [64], and might
contribute to the prevalence of the p53 hotspot mutations. In line with Knudson’s two-hit
hypothesis, which states that both alleles of most tumor suppressor genes need to be
inactivated for promoting tumorigenesis, over 91% of tumors show a loss of p53 in both
alleles, with the second copy of p53 being inactivated by mutations, chromosomal deletion,
or loss-of-heterozygosity [65].

P53 missense mutations are often expressed at higher levels than wild-type p53. How
p53 mutants accumulate is not completely understood. However, it has been shown
that mutant p53 is impaired in transactivating MDM2 and is additionally more resistant
to MDM2-mediated ubiquitination and subsequent proteasomal degradation, allowing
accumulation of high levels of stable p53 mutant proteins [66].

3.1. Prevalence of p53 Mutations

The p53 mutation prevalence rate in CRC varies depending on the age of the patient,
the tumor anatomical site, and the tumor molecular subtype (Figure 3). Alterations in
p53 are more common in younger (<40 years old) than in older patients [67]. They occur
more often in distal colorectal tumors than in proximal tumors, with 45% or 34% of tumors
harboring p53 mutations, respectively [68]. This bias of p53 mutations in the distal gut
might be due to differences in the microbiome. In a mouse model of CRC, gallic acid
prevented mutant p53 from inhibiting pro-oncogenic WNT signaling. Since gallic acid is
produced by anaerobic bacteria in the gut (besides the primary production of gallic acid
in the liver) and is considerably more abundant in the distal than in the proximal gut,
mutant p53 cannot inhibit WNT signaling in the distal gut due to the higher gallic acid
concentration, whereas in the proximal gut (with only low concentrations of gallic acid
mutant p53) it might even counteract tumorigenesis by inhibiting WNT signaling [69].
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Figure 3. Associations of molecular features with the anatomical location of CRC. Simplified schematic representation of the
proximal (caecum, ascending colon, and transverse colon) and distal colon (descending colon; sigmoid colon). Tumors in the
proximal colon are associated with microsatellite instability (MSI), CpG island methylator phenotype (CIMP), the consensus
molecular subtype (CMS; CMS1), and mutations in BRAF. CRCs of the distal colon are characterized by chromosomal
instability (CIN) and CMS2, and often display mutations in p53, KRAS, and APC.
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The prevalence of p53 mutations also depends on the mutational burden of the
tumor. Sixteen to nineteen percent of CRCs are defined as hypermutated based on a high
rate of somatic mutations. Two studies analyzed the occurrence of p53 mutations in non-
hypermutated versus hypermutated tumors, which were defined as having more than 12 or
17 mutations per one million bases, respectively, and found that 60% of non-hypermutated
CRCs harbor p53 mutations, whereas p53 mutations occurred in 20–32% of hypermutated
CRCs [70,71]. CRCs are often classified by their genetic and epigenetic aberrations into
three subtypes: chromosomal instability (CIN), CpG island methylator phenotype (CIMP),
and microsatellite instability (MSI), which are not mutually exclusive [72,73]. p53 mutations
are some of the most frequent mutations in CIN-positive CRCs, which usually develop via
the so-called canonical pathway following a step-wise progression from early adenoma
via late adenoma to adenocarcinoma through acquiring a series of somatic mutations.
In this model, p53 mutations are associated with the progression from late adenomas to
carcinomas [74,75]. In another subclassification of CRCs based on gene expression by
the International CRC Subtyping Consortium, four main consensus molecular subtypes
(CMS) were defined. Although p53 mutations were found in all four subtypes, they were
most common in CMS2 (62%) and CMS4 (54%). CMS2 comprises the classical type of
CRC with high levels of CIN, whereas CMS4 tumors are characterized by a mesenchymal
signature [76]. In summary, p53 mutations in CRC are associated with younger patients,
distal (left-sided) tumor location, and high levels of CIN.

3.2. Functional Effects of p53 Mutations in CRC

Missense mutations of p53 usually abrogate all or most of the cellular responses
mediated by wild-type p53 (loss-of-function, LOF) and frequently also show a dominant-
negative effect (DNE) over wild-type p53 by forming mixed tetramers, thereby impairing
the function of a remaining p53 wild-type allele. Additionally, p53 missense mutations can
provide the mutant protein with neo-morphic, gain-of-function (GOF) properties, which
promote tumor growth and metastasis (Figure 4). While it is clear that p53 mutations
lead to LOF, whether DNE or GOF is the key driver behind the spectrum of p53 missense
mutations observed in human tumors, including CRC, is still under debate. Over 82%
of p53 mutations exhibiting LOF in a saturation mutagenesis screening also displayed
DNE, arguing that DNE of mutant p53 over the wild-type protein is important for p53
mutation selection [77]. In another saturation mutagenesis screening, it has been shown
that missense mutations, which efficiently inhibit wild-type p53, were highly enriched in a
cohort of 1040 patients with myeloid malignancies. Furthermore, in a cohort of 164 patients
with acute myeloid leukemia, these missense mutations did not confer an event-free or
overall survival advantage compared to patients harboring p53 truncating mutations. Since
oncogenic p53 GOF would be expected to give rise to more aggressive disease and worse
survival in patients harboring p53 missense mutations compared to patients with p53
truncating mutations, these data suggest that the GOF of mutant p53 is not critical during
carcinogenesis [78].

On the other hand, there is also strong evidence for the biological/clinical relevance of
GOF properties of p53 mutations. The vast majority of tumors with a p53 mutation show
LOH of the second allele, demonstrating that in those cases p53 mutants cannot exert any
DNE over an anyway deleted wild-type p53 at least after LOH [65]. An analysis of patients
with Li-Fraumeni syndrome, which carry p53 germline mutations, showed that patients
with missense p53 mutations had on average a 9-year earlier cancer onset than patients
with other types of p53 mutations, such as splicing mutations, non-sense mutations, or
frameshift deletions/insertions [79]. However, in another study of Li–Fraumeni syndrome
patients, where the authors analyzed the effects of different p53 missense mutations on the
age of cancer onset, only the p53 R282 mutation was statistically significantly associated
with earlier cancer onset compared to other p53 missense and nonsense mutations [80].
Convincing evidence for GOF of p53 mutations also comes from mouse studies. In a murine
tumor model, genetic deletion of mutant p53 slowed cancer growth and extended mice sur-



Cancers 2021, 13, 2125 9 of 29

vival [81]. In another mouse study, the authors investigated the GOF properties of two p53
mutants (R172H and R270H, corresponding to human R175H and R273H) expressed from
the endogenous p53 locus. p53mut/− mice spontaneously developed a broader spectrum
of tumors, including additional carcinomas and more frequent endothelial tumors than
p53−/− mice [82], suggesting that mutant p53 manifests GOF biological effects. However,
in a mouse model of CRC carrying the p53 R270H mutant, p53mut/− mice showed similar
tumor burden, metastasis frequency, and overall survival to p53−/− mice arguing against
p53 GOF [83].
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Figure 4. Functional consequences of p53 mutations. p53 mutations can lead to a loss-of-function of wild-type p53 activity
abrogating the ability of mutant p53 to transactivate canonical p53 target genes. p53 mutants co-occurring with wild-type
p53 can diminish canonical p53 target gene expression via exerting a dominant-negative effect over wild-type p53 by
forming hetero-oligomers and preventing binding of wild-type p53 to its response elements. Mutant p53 proteins can also
obtain gain-of-function activities by acquiring novel, non-canonical pro-tumorigenic functions through different molecular
mechanisms. (I) The binding of mutant p53 to novel, non-canonical binding sites leads to the transactivation of non-
canonical genes. (II) Protein–protein interactions (e.g., with other transcription factors or chromatin remodeling complexes)
also induce the expression of non-canonical genes. (III) Sequestration of other transcription factors via protein–protein
interactions with mutant p53 disrupts target gene expression of those transcription factors. RE, response element; TF,
transcription factor.

The conflicting results concerning DNE and GOF functions of p53 might be due to
different cell or tissue types (e.g., myeloid vs. epithelial), different expression levels of
p53 (e.g., overexpression of p53 mutant vs. expression from the endogenous locus), lack
of intrinsic p53 wild-type expression, or the specific p53 mutation studied. Thus, further
studies are warranted to distinguish between DNE and GOF effects of mutant p53.

3.3. Gain-of-function of p53 Mutants in CRC

Mechanistically, GOF p53 mutant proteins can regulate gene expression via protein–
protein interactions with other transcription factors and co-factors, or by binding directly
to and transactivating non-canonical, novel target genes. We focus on GOF mechanisms of
mutant p53 in CRC, but also describe GOF effects which have been shown in other types
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of cancer, but to the best of our knowledge have not been investigated in CRC so far and
might also be relevant in CRC (Figure 5).
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3.3.1. Effects of Mutant p53 on Protein Interactions

Interactions of p53 with other transcription factors can enhance or repress their activity.
For example, mutant p53 has been shown to inhibit the transcriptional activity of the
p53 family members p63 and p73, resulting in reduced chemosensitivity and enhanced
metastatic potential [84]. Mutant p53 proteins can interact with the transcription factor
STAT3, which promotes STAT3 phosphorylation, and thus JAK2/STAT3 signaling and
proliferation of colorectal cancer cells [85]. By interacting with the transcription factor NF-Y
and the co-activator p300, mutant p53 also drives the expression of pro-proliferative target
genes in cancer cell lines, including CRC cell lines [86,87]. Together with the transcriptional
regulator YAP, mutant p53 can bind to cell cycle target genes in an NF-Y-dependent manner
in breast cancer and CRC cell lines, thereby enhancing cell proliferation [88]. Interaction of
mutant p53 with NF-Y also induces ephrin-B2 expression, thereby enhancing JNK/c-JUN,
SRC/FAK, and SRC/ERK signaling, resulting in enhanced chemoresistance, cancer cell
proliferation, and epithelial-to-mesenchymal transition of CRC cells [89]. By augmenting
TNFα-induced NF-κB activation in a mouse CRC model, mutant p53 proteins contribute to
inflammation-associated CRC development [90]. Additionally, mutant p53 has been shown
to interact with various other transcription factors, such as E2F1, ETS1/2, HIF-1, MED1,
SMAD2/3, and SP1; these protein–protein interactions have been shown to regulate cell
migration, metastasis, angiogenesis, and chemoresistance [84,91–96].

3.3.2. Effects of Mutant p53 on Chromatin

p53 GOF mutants can additionally control genome-wide gene expression by regulating
chromatin compaction. Mutant p53 has been found to interact with the histone lysine
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methyltransferase MLL4 in colon cancer cells and stimulate MLL3/4-mediated H3K4
mono-methylation, which is associated with active enhancers [97]. Additionally, mutant
p53 can also bind to the SWI/SNF chromatin remodeling complex [98] and RUVBL1, which
is associated with several chromatin remodeling complexes, such as TIP60/NuA4, and
SWR1-like and INO80 complexes [99]; thus, mutant p53 can control chromatin accessibility
and consequently global gene expression.

In addition to interacting with chromatin-modifying enzymes, mutant p53 can also
regulate chromatin compaction by transactivating chromatin-modifying enzymes. Mu-
tant p53 has been shown to upregulate the expression of the histone methyltransferases
KMT2A (MLL1) and KMT2D (MLL2), which are alternative constituents of the histone
H3K4 methyltransferase COMPASS complex, and the histone acetyltransferase KAT6A
(MOZ), leading to a global increase in histone methylation and acetylation and cancer cell
proliferation [100].

3.3.3. Effects of Mutant p53 on RNA Expression, Exosomes, and Immunosuppression

Although protein–protein interactions of mutant p53 with partner proteins seem to be
a major mechanism for the observed GOF of mutant p53, it can also bind directly to specific
DNA regions to regulate gene expression of specific genes, such as tumor suppressor genes,
oncogenes, and non-coding RNAs. For example, p53 GOF mutants enhance the expression
of the colorectal cancer stem cell (CSC) markers CD44, LGR5, and ALDH1A1 by binding
to the promoter sequences of these genes, thereby increasing the subpopulations of cells
expressing these CSCs markers in colorectal cancer cell lines [101]. Additionally, mutant
p53 has been shown to regulate various cellular processes contributing to tumorigenesis by
upregulating the expression of genes such as proteasome subunits [102], the growth factor
IGF2, the growth factor receptors EGFR and IGF1R, and the proto-oncogenes MYC and
FOS [103].

In addition to protein-coding genes, mutant p53 can also regulate the expression
of non-coding RNAs (ncRNAs) such as long ncRNAs (lncRNAs, >200 nt length), which
can function both as activators or repressors of transcription, and short ncRNAs, such as
microRNAs (miRNAs, 18–25 nt length), which act as post-transcriptional repressors of
gene expression by binding to complementary regions in the 3’-untranslated region of
target mRNAs. These non-coding RNAs can act both in a pro- or anti-tumorigenic manner
depending on the cell and tissue types [104]. For example, the lncRNAs lnc273–31 and
lnc273–34 are expressed at higher levels in CRCs harboring the hotspot p53 mutations
R273H compared to CRCs with wild-type p53 and are associated with cancer stem cell
self-renewal, epithelial-to-mesenchymal transition, invasion, and chemoresistance [105]. In
breast and colon cancer cell lines, mutant p53 was shown to downregulate the expression
of the miRNA miR-233, which contributes to chemoresistance [106].

P53 GOF mutants can also promote tumorigenesis by increasing the secretion of
exosomes such as exosome-mediated HSP90α secretion, which enhances tumor inva-
sion and metastasis [107]. Furthermore, p53 mutants can stimulate the secretion of miR-
1246-enriched exosomes, which has been shown to contribute to the reprogramming of
macrophages to a cancer-promoting state, favoring increased secretion of anti-inflammatory
cytokines and possibly contributing to immunosuppression [108]. The association of p53
mutations with immunosuppression in CRC, specifically COAD, has been shown in another
study, where the authors demonstrated that tumors with p53 mutations had significantly
decreased antitumor immune signatures, including a lower ratio of pro-/anti-inflammatory
cytokines than cancers harboring wild-type p53 [109]. In summary, p53 mutations con-
tribute to carcinogenesis by promoting cancer cell stemness, cell proliferation, invasion and
metastasis, and immunosuppression. However, it is important to recognize that not all p53
mutants behave equally, but that different p53 mutations may harbor unique GOF activities.
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3.4. Effects of p53 Mutations on Therapy Response and Patient Survival

p53 mutations are associated with reduced responses to chemotherapeutic agents such
as 5-fluorouracil (5-FU), cisplatin, temozolomide, doxorubicin, and gemcitabine; and the
anti-EGFR monoclonal antibody cetuximab [110]. In CRC, p53 mutations correlate with
chemoresistance to 5-FU, which is a first-line treatment for CRC. One study showed that
only patients with wild-type p53 benefitted from 5-FU/levamisole chemotherapy [111].
The association between p53 status and 5-FU resistance has also been observed in vitro and
in xenograft mouse models [112,113]. Another study has found that CRC patients with
wild-type p53 had better survival when treated with adjuvant chemotherapy than patients
carrying p53 mutations [68].

The association between p53 mutations and therapy responses most likely also con-
tributes to the worse prognosis and overall-survival of CRC patients compared to patients
with wild-type p53 [71,114]. Progression-free and overall survival was especially poor if
the tumors in addition to p53 mutations also harbored KRAS or NRAS mutations, which
are frequently mutated in CRC [115,116]. However, other studies did not find a significant
correlation between p53 mutation and overall survival in COAD [65,109], which is the
most prevalent type of CRC. These discrepancies might be due to different follow-up times
of the specific CRC subtype. Taken together, the data linking p53 mutations to survival are
currently insufficient; thus, p53 mutations are not considered useful prognostic markers.

4. Alterations of p53 Regulators in Colorectal Cancer

Tumor cells retaining wild-type p53 can attenuate its function by deregulating genes
involved in p53 regulation such as MDM2 and ARF (CDKN2A), or the DNA damage
kinases ATM, ATR, DNA-PKcs (PRKDC), CHK1 (CHEK1), and CHK2 (CHEK2). The best-
known mechanism to impair p53 signaling in cancer cells is the amplification of its negative
regulator MDM2. In many cancers, MDM2 amplification or altered protein expression
can be detected [27]. In CRC, one study found MDM2 to be amplified in 9% of cases
with MDM2 amplification more often occurring in p53 wild-type tumors [117]. Similarly,
MDMX was shown to be overexpressed in approximately 50% of colon cancer tissues [118].
However, when we analyzed the TCGA (The Cancer Genome Atlas) COAD PanCancer
Cohort, we found genetic alterations of the MDM2 and MDM4 gene in only 1.1% and 1.9%
of samples out of 526 patients (Figure 6; Supplementary Figure S1). These discrepancies
might have been due to different cancer subtypes analyzed—CRC, colon cancer, and COAD.
Although no subtypes were given for the first two studies, it can be assumed that they
were mainly comprised of COAD, as this is the prevalent subtype. Another reason for
these conflicting results might have been the method of how the alterations were detected
(PCR, Immunohistochemistry, and whole exome/genome sequencing).

When we investigated the mutation prevalence of other p53 regulators, we found that
HAUSP (USP7), ATM, ATR, and DNA-PKcs (PRKDC) show frequent genetic alterations
in COAD (Figure 6; Supplementary Figure S1). The deubiquitinating enzyme HAUSP is
mutated in 5% of COAD samples and has a dual role in p53 regulation, as it can deubiquiti-
nate both p53 and MDM2. Whereas the latter leads to increased p53 ubiquitination and
proteasomal degradation, the former has the opposite effect. Since the loss of HAUSP has
been shown to lead to an increase in p53 stability, the dominant function of HAUSP seems
to be mediated by the ubiquitination of MDM2 [119–121]. Thus, it would be important to
investigate the effects of the HAUSP mutations observed in COAD on p53 stability.

The DNA damage kinases ATM, ATR, and DNA-PKcs are involved in p53 stabilization
and activation and are frequently mutated COAD (14%, 5%, and 11%; Figure 6). These
mutations include putative cancer-driving deep deletions, truncating mutations, and
missense mutations. Phosphorylation of p53 and MDM2 leads to the disruption of the p53–
MDM2 protein complex; thus, this post-translational modification inhibits p53 degradation.
As described in Section 2.1, both p53 and MDM2 are substrates of ATM, ATR, and DNA-
PKcs. In addition, these kinases can also regulate MDM2 indirectly by mediating the
phosphorylation of MDM4. While MDM4 does not have intrinsic E3 ligase activity, it
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enhances MDM2-mediated p53 polyubiquitination and also reduces p53 transcriptional
activity. ATM can directly phosphorylate MDM4 at Ser403. Additionally, ATM, ATR, and
DNA-PKcs can indirectly phosphorylate MDM4 via their substrates CHK2, CHK1, and
AKT. ATM and CHK2-dependent MDM4 phosphorylation enhances ubiquitination and
degradation of MDM4, whereas AKT-dependent MDM4 phosphorylation increases MDM4
stability and thus MDM2 stability [27]. Thus, it would be interesting to analyze whether
the ATM, ATR, and DNA-PKcs mutations observed in COAD inhibit the dissociation of
the MDM2–p53 protein complex, and thus p53 stabilization and activation.

Cancer cells can also disrupt p53 signaling via the deregulation of non-coding RNAs.
Deregulation of ncRNAs can impair p53 signaling by decreasing the levels of p53. Two
microRNAs, miR-1827 and miRNA-766, which target MDM2 and MDM4 respectively, were
reported to be frequently downregulated in CRC samples implying that their decreased
expression in CRC could contribute to impaired p53 stabilization [122,123]. Another
miRNA, miR-944, which targets the p53 E3 ubiquitin ligases MDM2 and COP1, was also
found to be lower expressed in CRC samples [124]. The long-noncoding RNA PiHL,
which is upregulated in CRC, decreases p53 levels by promoting MDM2-dependent p53
polyubiquitination, and thus proteasomal degradation [125]. Two additional ncRNAs
were also shown to affect p53 levels: the lncRNA CACNA1G-AS1, which decreases p53
levels, is more highly expressed in CRC tissues than in adjacent normal tissue, whereas
the circular RNA, circZNF609, which enhances p53 levels, shows decreased expression in
CRC compared with adjacent normal tissue [126,127]. In addition to affecting p53 stability,
ncRNAs can also deregulate p53 signaling by inhibiting p53’s ability to transactivate its
target genes. miR-214 was found to enhance p53 transcriptional activity. miR-214 shows
lower expression in colorectal and cervical cancer tissues than in normal tissue; thus, this
miRNA might contribute to dampening p53 transcriptional activity in cancer [128,129].
p53 transcriptional activity can also be regulated by another non-coding RNA, the lncRNA
GCln1, which is overexpressed in CRC. GClnc1 reduces the binding of p53 binding to
the p21 promoter [130]. In summary, p53 signaling in p53 wild-type CRC cells can be
impaired by various mechanisms, including mutations and deregulated expression of
upstream regulators.
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5. p53 as a Therapeutic Target

P53 acts as a double-edged sword in cancer therapy. On the one hand, many chemo-
and radiotherapies rely on wild-type p53 activation and its downstream responses to medi-
ate cancer cell growth arrest, senescence, and cell death. On the other hand, mutant p53
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has been shown to promote cancer growth and to contribute to therapy resistance [18,62],
making both wild-type p53 and mutant p53 interesting targets for cancer therapy. However,
for a long time, p53 was considered “undruggable,” mainly due to its lack of a catalytic do-
main, which could be targeted by low molecular weight inhibitors. This view has changed,
and two major strategies of targeting p53 are currently exploited for use in human cancer
therapy. In tumors with wild-type p53 (approximately 50% of tumors), activation of p53 to
induce p53 outcomes such as cell death in response to cancer therapy is pursued to improve
clinical outcomes. In tumors with mutant p53, targeting of mutant p53—for example, by
selective degradation or inhibition—is vigorously investigated to counteract the DNE or
GOF function of mutant p53 to overcome the cancer growth-promoting effect of mutant
p53. In the following sections, we want to introduce the conceptual approaches to target
wild-type and mutant p53, focusing on drugs that are in clinical testing. Since a full descrip-
tion of all the strategies targeting p53 is beyond the scope of this article, we recommend
the following recent reviews for readers interested in further information [11,133–136].

5.1. Activation of p53 Signaling in p53 Wild-Type Cancer Cells

For cancer cells without p53 mutations, the focus of research was to improve clinical
outcomes of cancer therapy by reactivating p53 signaling through inhibition of its pro-
teasomal degradation (Figure 7). Intensive research efforts have led to the development
of several molecules inhibiting the interaction of p53 with its E3 ubiquitin ligase MDM2.
These antagonists, including the pioneering drug Nutlin-3a, generally bind to the p53
binding interface in MDM2, thereby inhibiting the binding of MDM2 to p53, leading to its
stabilization and activation [110,137]. A search of the Clinicaltrials.gov (accessed on 1 April
2021) website showed that the following compounds that block the protein–protein inter-
action between p53 and MDM2 in CRC or solid cancers, which are not further specified,
are currently or have been in phase I/II clinical trials (Table 1): RG7112/RO5045337 [138],
RG7388/Idasanutlin [139–142], RO6839921/RG7775 [143], SAR405838/MI-77031 [144,145],
AMG232 [146], MK-8242 [147], CGM097 [148], APG-115 [149–151], BI 907828 [152,153],
HDM201 [154–157], and Milademetan/DS-3032b [158]. Additionally, ALRN-6924, which
targets both MDM2 and MDM4, is or has been investigated in phase I/II clinical trials
in solid neoplasms [159–161]. Surprisingly, many clinical studies with MDM2/MDM4
inhibitors do not take the p53 status of the cancer cells into account. This leads to the
concern that in patients whose tumors harbor p53 mutations, inhibition of p53 degradation
will result in increased levels of mutant p53 proteins, thereby aggravating its DNE and/or
GOF effects and posing the danger that these compounds might even contribute to tumor
growth and therapy resistance. Thus, stratification of patients according to their p53 status
would be advisable when considering the administration of these p53-activating drugs.
However, since p53 signaling cannot only be disrupted by p53 mutations, but also by
alternative mechanisms, such as MDM2 amplification, the p53 status is not always predic-
tive of sensitivity to MDM2/MDM4 inhibitors. Therefore, p53 gene expression signatures
are used as surrogate markers of functional p53 activity [162–165], which might provide
a better assessment of wild-type p53 activity and thus the response to MDM2/MDM4
inhibitors than the p53 mutational status alone. p53 activation might also have unwanted
outcomes. In melanoma, it was recently shown that p53 induces slow-cycling cells that
contribute to therapy resistance to BRAF/MEK inhibition [166]. Moreover, it will be of
particular importance to restrict the p53 activating functions in cancer cells in order to
avoid unwanted negative effects on normal, healthy tissues and organs. Thus, specific
tumor-targeting of these compounds will be of central importance. Taken together, further
research is needed to show the efficacy and safety of p53 reactivating compounds.

Clinicaltrials.gov
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Table 1. Overview of compounds targeting wild-type or mutant p53 in clinical trials in colorectal cancer or solid tumors (not specified). DN, dominant-negative; HLA, human leukocyte
antigen; ICI, immune checkpoint inhibition; ID, identifier. IHC, immunohistochemistry; MM, multiple myeloma; TCR, T cell receptor.

Compounds Targeting p53 Wild-Type

Compound Combination Therapy Disease Phase ClinicalTrials.Gov ID
(accessed on 1 April 2021)

Inclusion Criteria Regarding
p53 Status

(Possible) Mechanism
of Action

AMG232 — Solid tumor, MM 1 NCT01723020 p53 wild-type MDM2 inhibition

APG-115
— Solid tumor, lymphoma 1 NCT02935907 p53 mutation analysis MDM2 inhibition

Pembrolizumab Solid tumor, melanoma 1, 2 NCT03611868 p53 wild-type MDM2 inhibition + ICI
Toripalimab Solid tumor, liposarcoma 1, 2 NCT04785196 —1 MDM2 inhibition + ICI

BI 907828
— Solid tumor 1 NCT03449381 p53 wild-type or unknown MDM2 inhibition

alone or plus BI 754,091 ± BI 754,111 Solid tumor 1 NCT03964233 p53 wild-type or unknown MDM2 inhibition ± ICI

CGM097 — Solid tumor 1 NCT01760525 p53 wild-type MDM2 inhibition

HDM201

Alone or plus ancillary treatment Solid or hematological tumors 1 NCT02143635 p53 wild-type MDM2 inhibition
PDR0012 CRC, other solid tumors 1 NCT02890069 — MDM2 inhibition ± ICI

Trametinib CRC 1 NCT03714958 p53 wild-type MDM2 + MEK inhibition
Ribociclib Solid tumor 2 NCT04116541 p53 wild-type MDM2 + CDK4/6 inhibition

Idasanutlin (RG7388/
RO5503781)

— Solid tumor 1 NCT02828930 — MDM2 inhibition
— Solid tumor 1 NCT03362723 — MDM2 inhibition
— Neoplasm (except leukemia) 1 NCT01462175 p53 mutation analysis MDM2 inhibition

Posaconazole Solid tumor 1 NCT01901172 — MDM2 inhibition +
anti-fungal drug

—1 Solid tumor, leukemia 1, 2 NCT04029688 —1 MDM2 inhibition
Atezolizumab CRC 1, 2 NCT03555149 — MDM2 inhibition + ICI

— Solid tumor 2 NCT04589845 p53-wildtype MDM2 inhibition

Milademetan (DS-3032b) — Solid tumor, lymphoma 1 NCT01877382 No known p53 mutation, p53
mutation analysis MDM2 inhibition

MK-8242 — Solid tumor 1 NCT01463696 p53 mutation analysis MDM2 inhibition

RO5045337 (RG7112)
— Solid tumor 1 NCT00559533 — MDM2 inhibition
— Solid tumor 1 NCT01164033 — MDM2 inhibition
— Neoplasm 1 NCT01677780 — MDM2 inhibition

RO6839921 (RG7775) — Neoplasm 1 NCT02098967 — MDM2 inhibition

SAR405838 (MI-77031) — Neoplasm 1 NCT01636479 — MDM2 inhibition
Pimasertib Neoplasm 1 NCT01985191 — MDM2 + MEK1/2 inhibition

ALRN-6924
—3 Pediatric cancer 1 NCT03654716 p53 wild-type MDM2/4 inhibition

Paclitaxel Solid tumor 1 NCT03725436 p53 wild-type MDM2/4 inhibition +
chemotherapy

— Solid tumor, lymphoma 1, 2 NCT02264613 p53 wild-type MDM2/4 inhibition

ClinicalTrials.Gov
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Table 1. Cont.

Compounds Targeting p53 Wild-Type

Compound Combination Therapy Disease Phase ClinicalTrials.Gov ID
(accessed on 1 April 2021)

Inclusion Criteria Regarding
p53 Status

(Possible) Mechanism
of Action

Ad-p53 (Gendicine)

— CRC, other solid tumors 1 NCT01191684 >10% of p53-positive cells
in IHC

Gene therapy to deliver
p53 wild-type

Pembrolizumab CRC, other solid tumors 1 NCT02432963 p53 mutation or ≥10% of
p53-positive cells in IHC

Gene therapy to deliver p53
wild-type + ICI

Xeloda or Keytruda or Opdivo Solid tumor 1, 2 NCT02842125 p53 wild-type or < 20% of
p53-positive cells in IHC

Gene therapy to deliver p53
wild-type + chemotherapy

or ICI

Approved ICI Solid tumor, lymphoma 2 NCT03544723 p53 wild-type or < 20% of
p53-positive cells in IHC

Gene therapy to deliver
p53 wild-type

Compounds Targeting p53 Mutant

Compound Combination Therapy Disease Phase ClinicalTrials.gov ID
(accessed on 1 April 2021)

Inclusion Criteria regarding
p53 Status

(Possible) Mechanism
of Action

PRIMA-1MET (APR-246) Pembrolizumab Solid tumor 1, 2 NCT04383938 p53 mutation Restoration of wild-type
functions + ICI

COTI-2 Alone or plus Cisplatin CRC, other solid tumors 1 NCT02433626 —2 Restoration of wild-type
functions + chemotherapy

Kevetrin
(thioureidobutyronitrile) — Solid tumor 1 NCT01664000 — Degradation of mutant p53

(activation of wild-type p53)

Atrovastatin — Ulcerative colitis 2 NCT04767984 DN missense p53 mutation
Degradation of mutant p53 +

Inhibition of the
melanovate pathway

Tanespimycin (17-AAG) Irinotecan Solid tumor 1 NCT00119236 —

Degradation of mutant p53 by
HSP90 inhibition +

chemotherapy (Investigation
if response depends on p53

mutational status?)

Mutant p53 peptide
pulsed dendritic cell

vaccine

Colorectal cancer, other solid
tumors 2 NCT00019084 p53 mutation Mutant p53 vaccine

ALT-801 — Neoplasm 1 NCT00496860 HLA-A2.1/p53 positive IL-2 fused to TCR
recognizing p53

1 Patients with solid tumors. 2 Patients with CRC. 3 All enrolled patients except p53 wild-type acute leukemia.

ClinicalTrials.Gov
ClinicalTrials.gov
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Figure 7. Therapeutic strategies of targeting wild-type p53. In tumors with inert p53 signaling, p53 signaling could
be reactivated by using MDM2 inhibitors, thereby rescuing p53 from MDM2-mediated proteasomal degradation. RE,
response element.

5.2. Strategies to Target Mutant p53

Mutant p53 is a promising therapeutic target since approximately 50% of all tumors
harbor p53 mutations, implying that potential therapies could be applied for a wide range
of human tumors [167]. Additionally, p53 mutant proteins often accumulate in tumor
cells, whereas normal cells only have low amounts of wild-type p53 [66]. This difference
in expression raises the hope that drugs against mutant p53 preferentially target cancer
cells carrying p53 mutations. Different approaches to target mutant p53 are exploited.
The main strategies include restoration of wild-type p53 activities, selective degradation,
inhibition of novel protein–protein interactions with factors involved in neo-morphic
responses, inhibition of downstream survival mechanisms, exploitation of synthetic lethal
vulnerabilities, and immunotherapy (Figure 8).

Restoration of wild-type p53 function aims at inducing the native conformation of the
DNA binding domain so that mutant p53 can bind to p53 REs and transactivate canonical
p53 target genes to induce cell cycle arrest and cell death. Studies in murine cancer
models have shown that wild-type p53 induction leads to tumor regression and prolonged
survival [168–170], raising the hope that this will be a successful strategy for treating human
cancers. Intensive research efforts have led to the discovery of several compounds that
can reactivate p53 wild-type activities. Many of these drugs are either cysteine-targeting
compounds or Zn2+ chelators. To our knowledge, of the various Cys-binding compounds,
only PRIMA-1MET (APR-246) has progressed to clinical trials (Table 1). One phase I/II study
is currently testing administration of PRIMA-1MET together with the immune checkpoint
inhibitor pembrolizumab in patients with solid tumors [171]. Mechanistically, PRIMA-1MET

binds covalently to Cys-residues in the core domain of p53 [172]. PRIMA-1MET has been
shown to enhance refolding of mutant p53, induce p53 canonical target genes and inhibit
tumor growth in murine cancer models [133]. Another approach to induce p53 “wild-
type” conformation is by using Zn2+-chelating agents. Zn2+ is required for wild-type p53
structural stability, and Zn2+-chelators have been shown to facilitate the incorporation of
zinc into misfolded p53 proteins, thereby restoring the wild-type-like folding and specific
DNA binding of mutant p53 [135]. The only drug of this class of compounds in clinical
trials is COTI-2 [173]. Another compound that can restore p53 wild-type-like conformation
is the food-derived phenethyl isothiocyanate (PEITC), which is currently tested in clinical
trials with cancer patients [174].
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Figure 8. Therapeutic strategies of targeting mutant p53. Approaches targeting p53 mutant that are new or are already in
clinical trials can be classified into six categories: restoration of wild-type like activities to mutant p53; selective degradation
of mutant p53; inhibition of novel protein–protein interactions involved in mediating gain-of-functions of mutant p53;
exploitation of synthetic lethality vulnerabilities of mutant p53; inhibition of downstream survival pathways augmented by
mutant p53; and immunotherapy based on the recognition of mutant p53 neoantigens. GOF, gain-of-function; MHC I, major
histocompatibility complex class I; RE, response element; TCR, T-cell receptor; TF, transcription factor.

Induction of mutant p53 degradation, thereby ameliorating its pro-tumorigenic func-
tions, is another strategy for therapeutic targeting of mutant p53. This strategy is supported
by the observation that cancer cells can become addicted to mutant p53 [81]. Several
compounds have been discovered that can destabilize p53 mutant proteins. These include
HSP90 and HDAC inhibitors. HSP90 inactivates the p53 E3 ubiquitin ligases, MDM2 and
CHIP, thereby increasing mutant p53 levels; HSP90 chaperone activity is enhanced by
HDAC6-mediated deacetylation [175,176]. Thus, targeting of HSP90 or HDAC6 induces
mutant p53 degradation. Whereas several HSP90 inhibitors are currently in clinical trials,
HDAC inhibitors have already been approved by the FDA for use in cancer therapy [177].

Amelioration of the functions of mutant p53 can also be achieved by blocking protein–
protein interactions with factors involved in GOF responses. As described in Section 3.3,
mutant p53 can inhibit p63/p73 activity by forming protein complexes with these TFs. The
small molecule RETRA can disrupt the mutant p53–p73 complex, leading to p73-dependent
transcription and cell death. RETRA has been shown to inhibit tumor growth of mutant
p53-expressing cancer cells in a mouse xenograft model [178].

In another study, it was demonstrated that the peptidyl-prolyl cis-trans isomerase
PIN1 enhances the inhibitory effect of mutant p53 on p63 [179]. Isomerization of mutant
p53 also promotes its interaction with the proto-oncogene MYC [180]. PIN1 can be targeted
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for degradation by all-trans retinoic acid (ATRA), which is approved for the treatment of
acute promyelocytic leukemia [181]. However, PIN1 also plays an important role in the
activation of the cell death-driving p53 Ser46 kinase HIPK2 [182], which also potentiates
cell death induction in the absence of p53 [183,184], suggesting that its use could potentially
exert opposite effects.

Inhibition of survival pathways regulated by mutant p53 is another strategy pursued to
target cells harboring p53 mutations. One such example is the mevalonate pathway, which
is a metabolic pathway providing isoprenoids such as cholesterol and steroid hormones.
While wild-type p53 suppresses this pathway, it was found to be upregulated in p53 mutant
cells [185,186]. The mevalonate pathway can be inhibited by statins, which are approved
for the treatment of cardiovascular disease [187]. Other approved drugs that might be
repurposed for targeting mutant p53 are metformin, proteasome inhibitors, and PARP
inhibitors, which are approved for the treatment of type 2 diabetes mellitus, multiple
myeloma, and BRCA-mutated cancers, respectively [11]. This concept is supported by
the observations that mutant p53 drives the Warburg effect, which might be counteracted
by Metformin; that mutant p53 induces the transcription of proteasome genes; and that
mutant p53 increases PARP1-dependent poly-ADP ribosylation of proteins [102,188,189].
Repurposing already approved drugs for treating cancers harboring p53 mutations is a
promising approach since the (sufficient) safety of these drugs has already been proven and
drug repositioning might lead to shorter development times due to the reduced number of
required preclinical/clinical testing.

Another strategy to target mutant p53 is the induction of synthetic lethality. The
rationale behind this approach is that inhibition of pathways on which p53 mutant cells
rely for survival leads to a loss of viability. It has been shown that the inhibition of kinases
involved in the G2/M checkpoint such as CHK1, polo-like kinase 1 (PLK1), protein kinase
C (PKC), and WEE1 induces synthetic lethality in p53 mutant cells [190–193]. Inhibitors
of these kinases are being tested for cancer therapy in clinical trials [11]. The exploitation
of synthetic lethal vulnerabilities of cancer cells harboring p53 mutations should result
in specificity for mutant p53-expressing cancer cells and spare normal cells expressing
wild-type p53. However, since many of the compounds which induce synthetic lethality in
cells with p53 mutations are involved in the DNA damage response, this strategy poses
the danger of exacerbating genetic instability, which might even drive cancer growth and
therapy resistance.

Since p53 mutations do not occur in normal, healthy cells, they might serve as tumor-
specific neoantigens. As anti-p53 antibodies have been detected in cancer patients (includ-
ing patients with CRC) and antibodies and T-cell receptors can recognize p53 mutants,
vaccines targeting mutant p53 are being evaluated in clinical trials for the treatment of
many different types of cancer, including CRC [194–198]. Unfortunately, clinical studies
with p53 vaccines so far have not shown convincing results. This might be due to im-
munoregulatory and -suppressive mechanisms. Therefore, stimulation of the immune
response—for example, by immune checkpoint inhibitors—might improve the efficacy of
p53 vaccines [196].

Developing therapeutic approaches against mutant p53 would be of huge clinical
benefit due to the prevalence of p53 mutations. However, it is becoming increasingly clear
that p53 mutants differ substantially in their function; thus, a “one-size-fits-all” approach
will very likely not be applicable.

6. Conclusions and Future Perspectives

Decades of research on the function of the p53 protein have shown that p53 is a central
hub for integrating diverse cellular stress signals to mediate appropriate cellular outcomes.
How p53 controls stress-specific responses remains puzzling. Although the molecular
mechanisms controlling cell fate decisions such as post-translational modifications, inter-
actions with cofactors, and p53 expression dynamics are beginning to emerge [36,41,199],
more research is needed to understand how p53 translates a specific stress signal into a
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particular cellular response. Another unsolved question is how p53 is regulated in different
human tissues. So far, most of our knowledge about the p53 pathway comes from studies
in cell lines and mouse models—two model systems showing limitations. Along these
lines, the use of human cancer organoids, which appear to closely match the situation in the
tumor, might be of great advantage to understand p53 function in a more cell type-specific
manner and to test for therapeutic options [200].

New high-throughput and single-cell technologies will enable the investigation of
p53 regulation and responses in a tissue and cell-type-specific manner with only short
or no culturing of cells required. This knowledge about context-dependent effects will
deepen our understanding of p53 signaling in the colon and rectum, and might be used
for manipulating p53 signaling specifically in colorectal cancer cells while avoiding the
harmful consequences of targeting p53 in all tissues.

Another open question is how p53 suppresses tumorigenesis. While previous studies
indicated that p53 mediates tumor suppression via induction of cell cycle arrest, apoptosis,
and senescence, new research has challenged this view. Instead of a single cellular re-
sponse, p53 most likely inhibits carcinogenesis by activating numerous cellular responses,
including non-apoptotic cell death, migration/invasion, metabolism, DNA repair, and
stemness [201,202]. Elucidating the mechanisms by which p53 suppresses tumorigenesis
might open the path for new therapeutic options with fewer side effects. Investigating
p53-mediated tumor suppression in a cell type-specific manner by the above-mentioned
methods and organoid models might also help us understand why p53 mutations are more
common in the distal colon than in the right colon.

The crucial role of p53 in suppressing tumorigenesis is highlighted by the fact that 43%
of all CRCs harbor p53 mutations. Potentially all CRC patients could benefit from therapies
targeting p53. Therapeutic strategies aiming at reactivating inert p53 signaling in tumors
with wild-type p53 on the one hand, and restoring wild-type like activities of mutant p53
on the other hand, are in clinical trials and if successful will have a huge clinical impact.
Whereas there are several compounds in clinical trials which can reactivate wild-type p53,
only two drugs targeting p53 mutant proteins directly are being investigated in clinical
trials. This highlights the fact that further research is needed on how to target mutant
p53. However, since it is becoming increasingly clear that different p53 mutations vary in
their functionality and pathobiology, individual therapies targeting the different classes of
p53 mutations might have to be developed. In addition, since many clinical studies with
MDM2/MDM4 inhibitors did not take the p53 status of the cancer cells into account, better
stratification of patients according to their p53 status is required for testing the efficacy of
p53-activating drugs.

Since targeting/activating wild-type p53 is not trivial owing to massive side effects due
to the function of p53 as a cell death activator, it might be more achievable to identify easier
targetable components upstream and downstream of p53. However, despite intensive
research, it is still not clear which of the many p53 activators, target genes, and effector
pathways are crucial for mediating tumor suppression. Furthermore, the key targets and
pathways suppressing malignancy might be even context dependent; therefore, more
research is needed to address which of the many p53 functions are crucial in specific tissues
such as the colon. Due to the complexity of the p53 signaling network, a one-size-fits-all
approach might not be suitable. Instead, the cellular and molecular context have to be
taken into account when developing therapeutic approaches for cancer and CRC therapy.
The challenges in the coming years of p53 research will be to deepen our understanding
of p53 at the molecular and cellular levels and to translate this knowledge into clinical
applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13092125/s1, Figure S1: Prevalence of genetic alterations in p53 and upstream p53
regulators in COAD.
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5-FU 5-Fluorouracil
aa amino acid
ASPP apoptosis-stimulating of p53 protein
CSC cancer stem cell
CIMP CpG island methylator phenotype
CIN chromosomal instability
CMS Consensus Molecular Subtype
COAD colorectal adenocarcinoma
CRC colorectal cancer
CTD C-terminal domain
DBD DNA-binding domain
DN dominant-negative
DNE dominant-negative effect
GOF gain-of-function
HLA human leukocyte antigen
HZF hematopoietic zinc finger
IARC International Agency for Research on Cancer
ICI immune checkpoint inhibitor
IHC immunohistochemistry
lncRNA long non-coding RNA
LOF loss-of-function
MHC I major histocompatibility complex class I
miRNA microRNA
MM multiple myeloma
MSI microsatellite instability
ncRNA non-coding RNA
OD oligomerization domain
PKC protein kinase C
PLK1 polo-like kinase 1
PRD proline-rich domain
PTM post-translational modification
RE response element
ROS reactive oxygen species
TAD Transactivation domain
TCR T-cell receptor
TF transcription factor
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