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Deep Learning Convolutional 
Neural Networks for the 
Automatic Quantification of Muscle 
Fat Infiltration Following Whiplash 
Injury
Kenneth A. Weber   1, Andrew C. Smith2, Marie Wasielewski3, Kamran Eghtesad1, 
Pranav A. Upadhyayula1, Max Wintermark4, Trevor J. Hastie5, Todd B. Parrish6, Sean Mackey1 
& James M. Elliott3,7,8

Muscle fat infiltration (MFI) of the deep cervical spine extensors has been observed in cervical spine 
conditions using time-consuming and rater-dependent manual techniques. Deep learning convolutional 
neural network (CNN) models have demonstrated state-of-the-art performance in segmentation tasks. 
Here, we train and test a CNN for muscle segmentation and automatic MFI calculation using high-
resolution fat-water images from 39 participants (26 female, average = 31.7 ± 9.3 years) 3 months post 
whiplash injury. First, we demonstrate high test reliability and accuracy of the CNN compared to manual 
segmentation. Then we explore the relationships between CNN muscle volume, CNN MFI, and clinical 
measures of pain and neck-related disability. Across all participants, we demonstrate that CNN muscle 
volume was negatively correlated to pain (R = −0.415, p = 0.006) and disability (R = −0.286, p = 0.045), 
while CNN MFI tended to be positively correlated to disability (R = 0.214, p = 0.105). Additionally, 
CNN MFI was higher in participants with persisting pain and disability (p = 0.049). Overall, CNN’s may 
improve the efficiency and objectivity of muscle measures allowing for the quantitative monitoring of 
muscle properties in disorders of and beyond the cervical spine.

Muscle fat infiltration (MFI) has been described by conventional (T1- and T2-weighted) and advanced (Dixon and 
proton density fat fraction) magnetic resonance imaging (MRI) in cervical spine conditions, such as degenerative 
cervical myelopathy (DCM)1,2, spinal cord injury (SCI)3,4, and whiplash from a motor vehicle collision (MVC)5–8. 
While the mechanisms underlying these conditions greatly differ, the patterns of MFI appear consistent with the 
greatest magnitude occurring in the deepest, and most architecturally complex, muscular layer of the cervical 
extensors (i.e., multifidus and semispinalis cervicis)5–7.

While plausible to hypothesize that larger amounts of paraspinal MFI negatively impact function, recent stud-
ies do not provide confirmation9,10. This could be due to the varied methods used to measure MFI and function11, 
as others have shown MFI to be associated with lower physical function12–14, and that better surgical outcomes 
are achieved in those with larger muscle size and better quality15,16. Preliminary evidence suggests MFI may be 
reversible and associated with a concomitant improvement in chronic whiplash-related disability17.
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Muscular degeneration (as the larger magnitude of MFI might indicate) may have clinical implications for 
management and rates of recovery from persistent spinal disorders that currently feature high as the world’s most 
disabling diseases: low back pain (first) and neck pain (fourth)18. Despite ever-increasing options for ‘treatment’ 
of these conditions, explanations for their persistence have become urgently needed19. MFI may be one neuro-
biological explanation11,20,21. However, manual segmentation methods for MFI do not permit for time-efficient 
monitoring of these muscles in clinical practice.

The recent application of deep learning methods (i.e., convolutional neural networks (CNN’s)) in medical 
imaging analysis has demonstrated impressive gains in image segmentation, with accuracy nearing human-level 
performance22–24. Accordingly, CNN’s may permit time-efficient quantification of the characteristic MFI observed 
in disorders of the spine (e.g., DCM, SCI, whiplash, and low back pain) and other musculoskeletal/neuromuscu-
lar conditions (e.g., rotator cuff pathology, osteoarthritis, diabetes, and laminopathies)25.

In this study, we trained and tested a CNN for segmentation of the deep cervical spine extensor muscles using 
high-resolution fat-water Dixon images from participants with whiplash following an MVC. We leveraged a pre-
viously developed CNN for the segmentation of medical images, V-Net, and the newly released deep learning 
platform, NiftyNet26,27. Then, we assessed the association of the automated CNN measures to clinical measures of 
pain and neck-related disability.

Results
CNN accuracy and reliability.  Training the V-Net model was completed in 25,000 iterations. The trained 
CNN segmented every axial slice from the C3 to C7 vertebrae in less than 60 s per image. Accuracy of the trained 
CNN was evaluated on the testing dataset (n = 14). The average muscle volume ± 1 standard deviation (SD) for 
the CNN on the testing dataset was 34.9 ± 6.2 ml and 34.1 ± 6.1 ml for the left and right muscles, respectively, and 
the average MFI ± 1 SD was 20.7 ± 3.5% and 20.2 ± 4.3% for the left and right muscles, respectively.

Overall, we report high accuracy of the CNN on the testing dataset (Fig. 1). The average DICE ± 1 SD for 
the left and right deep cervical extensors was 0.862 ± 0.017 and 0.871 ± 0.016, respectively. The CNN model 
had high sensitivity (average true positive rate = 0.904 ± 0.021 and 0.908 ± 0.017 for the left and right muscles, 
respectively) and high precision (average positive predictive value = 0.829 ± 0.031 and 0.843 ± 0.032 for the left 
and right muscles, respectively). CNN segmentation performance was similar at the C3–C4 and C5–C6 vertebral 
levels where the deep cervical extensor muscle composition and morphometry differs. The average DICE was 
0.876 ± 0.024 and 0.883 ± 0.026 at C3–C4 and 0.865 ± 0.020 and 0.866 ± 0.025 at C5–C6 for the left and right 
deep cervical extensors, respectively. The CNN performance metrics of the testing dataset are summarized in 
Table 1. Each rater’s masks were used as the ground truth (GT) to evaluate the performance of the CNN, and the 
average measures across the three raters were reported.

Interrater reliability between the three raters was excellent with the intraclass correlation coefficients 
(ICC2,1) for the left volume, right volume, left MFI, and right MFI equal to 0.85, 0.83, 0.90, and 0.92, respectively. 
Using the average measures across the raters, the interrater reliability between the raters and the CNN model was 
also excellent with the ICC2,1 for the left volume, right volume, left MFI, and right MFI equal to 0.94, 0.95, 0.92, 
and 0.88, respectively. The average difference in volume (CNN − GT) was 2.5 ml (95% confidence interval (CI) 
1.5–3.5) and 2.2 ml (1.4–3.1) for the left and right muscles, respectively, indicating that the CNN overestimated 
(i.e., bias) the muscle volume compared to the GT. Similarly, the average difference in MFI (CNN − GT) was 1.4% 
(95% CI 0.6–2.1) and 1.7% (0.6–2.8) for the left and right muscles, respectively, indicating that the CNN also 
demonstrated a bias towards higher MFI compared to the GT (Fig. 2).

Association with clinical measures of pain and neck-related disability.  Muscle volume was signif-
icantly negatively correlated to pain (R = −0.415, p = 0.006) and neck-related disability (R = −0.286, p = 0.045). 
MFI tended to be positively correlated to neck-related disability (R = 0.214, p = 0.105) but not pain (R = 0.075, 
p = 0.331) (Fig. 3A). Average pain (t = −3.356, df = 37, p < 0.001) and neck-related disability (t = −6.060, df = 37, 
p < 0.001) were significantly higher in the persistent group (neck disability index (NDI) > 28, n = 20, 16 female, 
average age = 33.3 ± 9.5 years, body mass index (BMI) = 23.8 ± 3.2 kg/m2) compared to the recovered group 
(NDI ≤ 28, n = 19, 10 female, average age = 29.9 ± 9.1 years, BMI = 25.8 ± 4.0 kg/m2). As hypothesized, MFI 
(t = 1.696, df = 37, p = 0.049) was significantly higher in the persistent group compared to those in the recovered 
group. While muscle volume was lower in the persistent group compared to those in the recovered group, the dif-
ference was not significant (t = −1.036, df = 37, p = 0.154) (Fig. 3B). Pain, neck-related disability, muscle volume, 
and MFI for each group are summarized in Table 2.

Discussion
In this study, we trained and tested a CNN for segmentation of the deep cervical spine extensor muscles from 
high-resolution fat-water Dixon MRI datasets of participants with whiplash injury using V-Net and the NiftyNet 
deep learning platform. Overall, we demonstrate the feasibility of training a previous CNN model for a novel 
segmentation task. The trained CNN was highly efficient (< 60 s compared to ≈ 20 minutes for manual segmen-
tation) in processing an image, and we report high accuracy and reliability of the CNN compared to manual 
segmentation for both the muscle volume and MFI measures. The association of the automated CNN measures 
to clinical measures of pain intensity and neck-related disability was also recognized. Lower muscle volume was 
associated with higher pain and higher neck-related disability, and higher MFI was present in participants with 
persisting whiplash versus those that recovered, supporting the validity and clinical utility of these measures.

Our findings are consistent with previous work from three different countries with different insurance 
schemes (Australia, United States, and Sweden), all demonstrating larger magnitudes of cervical spine extensor 
MFI in those with more severe levels of whiplash-related disability5–7,28,29. Participants nominating full recovery 
or mild symptoms do not present with the same magnitude of MFI. As such, the expression of MFI may embody 
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Figure 1.  Convolutional neural network (CNN) segmentation results of the deep cervical extensors. CNN 
segmentation masks of the left (green) and right (magenta) deep cervical extensors (i.e., multifidus and 
semispinalis cervicis) are shown from five randomly selected testing datasets. Example axial images at the 
C3 to C7 vertebral levels were selected to show changes in the deep extensor muscle morphometry across the 
cervical spine. For comparison, the segmentation masks from each rater are also shown (rows 2–4). The bottom 
two rows show the water-only and fat-only images for reference. For each example, the average DICE between 
the CNN and each rater is reported for the left and right masks. The C3 vertebral level is from the inferior 
portion of the C3 vertebra. L = left, R = right.

Performance Metric Left Right

Sørensen–Dice Index 0.862 ± 0.017 0.871 ± 0.016

Jaccard Index 0.758 ± 0.026 0.772 ± 0.026

Conformity Coefficient 0.678 ± 0.046 0.703 ± 0.044

True Positive Rate 0.904 ± 0.021 0.908 ± 0.017

True Negative Rate 0.999 ± < 0.001 0.999 ± < 0.001

Positive Predictive Value 0.829 ± 0.031 0.843 ± 0.032

Volume Ratio 1.100 ± 0.058 1.087 ± 0.058

Table 1.  Segmentation Performance Metrics of the CNN on the Testing Dataset (n = 14). Metrics shown =  
average ± 1 standard deviation.
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Figure 2.  Reliability and accuracy of the convolutional neural network (CNN) segmentation on the testing 
dataset (n = 14). Correlation and Bland-Altman plots are shown for the left and right deep cervical extensor 
muscle volumes and muscle fat infiltration (MFI). The average measures of the three raters were used as the 
ground truth (GT). (A,C) The dashed black line represents the best fit line. The linear regression coefficient (β) 
of GT on CNN (intercept = 0) is also provided, which can be used to correct the CNN measurement bias. (B,D) 
The dashed black and gray lines indicate the average difference (i.e., bias) ± 1.96 × standard deviation (i.e., 95% 
limits of agreement).

Figure 3.  Associations between convolutional neural network (CNN) muscle volume and muscle fat 
infiltration (MFI) and the clinical measures of pain and neck-related disability. Pain and neck-related disability 
were assessed using the numerical pain rating scale (NPRS) and the neck disability index (NDI), respectively. 
(A) Muscle volume was significantly negatively correlated with both pain and neck-related disability. A 
non-significant positive correlation between MFI and neck-related disability was present but not between 
MFI and pain. (B) The dataset was then split into groups of recovered (NDI ≤ 28, n = 19) versus persisting 
(NDI > 28, n = 20) whiplash using the NDI at 3 months post motor vehicle collision. The persisting group had 
significantly higher pain and neck-related disability compared to the recovered group. MFI was significantly 
higher in the persisting group compared to the recovered group. Muscle volume and MFI were corrected for 
age, gender, and body mass index. Error bars = 1 standard deviation. *p < 0.05, ***p < 0.001.
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one neurobiological basis underlying the transition to chronicity in a discrete, but not insignificant, number 
of these patients with persistent whiplash. It is noteworthy that the findings of MFI are not unique to whiplash 
injury, as similar MFI profiles have been observed, and reported, in DCM1,2, SCI3, but not idiopathic neck pain8,30, 
suggesting degenerative, and potentially traumatic, factors play a role in their development. More mechanistic 
work for understanding why and how MFI develops and its influence on recovery from trauma and other com-
mon degenerative processes is warranted and underway.

The CNN demonstrated a bias towards higher muscle volumes and MFI compared to manual segmentation. 
Continued training of the model, training on a larger and more diverse dataset, or the adjustment of the model 
hyperparameters may have reduced the bias and improved the accuracy. The increased muscle volume could 
also be due to an intrinsic property of the V-Net architecture, leading to dilation of the output, possibly as the 
information is compressed and decompressed through the convolutional and deconvolutional layers. The higher 
segmentation volume likely led to the inclusion of extramuscular fat located adjacent to the deep cervical exten-
sors, which would contribute to the higher MFI measure. However, the average bias of the CNN was small and 
did not preclude us from identifying associations with the clinical measures. Because no specific clinical cutoffs 
or normative comparative datasets yet exist for these measures, we are not able to assess the clinical significance 
of the bias. More testing is necessary to fully understand the properties and behavior of the network to improve 
the accuracy and relationships to the clinical measures.

The NiftyNet platform supports multi-modal CNN models and 3D convolutional layers. In the present study, 
2D convolutional layers were employed using the water-only axial images as features. The inclusion of the fat-only 
images and use of 3D convolutional layers may provide additional information to more accurately segment the 
muscles, but at the trade-off of a greater number of features, larger network size, higher model complexity, and 
increased computational costs. The reason for our choice was that our group mainly uses the axial water-only 
images for segmentation of the deep cervical extensors, and intuitively, we feel that they contain the most infor-
mation31. We are actively exploring the inclusion of multi-modal features and different network architectures. The 
use of dilated convolutional layers in the multi-modal models may help reduce the feature space while maintain-
ing spatial coverage and accuracy23.

The use of images from the same site, scanner, sequence, and imaging parameters reduces the generaliza-
bility of the trained model and is a recognized limitation. A major barrier in developing deep learning models 
for medical imaging tasks is the availability of large, diverse annotated datasets for model training. Fortunately, 
several collaborative efforts are currently in progress to pool clinically- and research-based imaging data towards 
the development of large multi-site (and multi-cultural) annotated imaging databases for research purposes. The 
use of multi-site imaging data will have its own inherit challenges that include, but are not limited to, developing/
establishing analysis pipelines and models that can generalize to images of varying resolution, field-of-view, and 
orientation while also accounting for variability in image signal and contrast due to differences in the imaging 
parameters and equipment (TR, TE, imaging field strength, and manufacturer).

CNN models have potential to provide an efficient, accurate, and objective measure of muscle volume and 
MFI. Future directions will aim to refine CNN hyperparameters, compare different CNN models, explore the 
use of multi-modal imaging, obtain larger multi-site annotated imaging datasets to increase performance and 
generalizability, and establish a global resource of normative reference values where clinical comparisons can be 
informed on a patient-by-patient basis.

Methods
Participants.  MRI datasets from 39 participants (26 female, average age ± 1 SD = 31.7 ± 9.3 years) were 
obtained from a prospective observational longitudinal study exploring recovery from whiplash (ClinicalTrials.
gov Identifier: NCT02157038). Datasets from the third time point at 3-months post MVC were used in the pres-
ent study. Inclusion criteria included age 18 to 65 years, Quebec Task Force whiplash grades of II to III, and < 1 
week post MVC with a primary complaint of neck pain32. Exclusion criteria included spinal fracture from the 
MVC, history of a previous MVC, previous spinal surgery, previous diagnosis of cervical or lumbar radiculopathy, 
history of neurological or metabolic disorders, and standard contraindications to MRI. The study was approved 
by Northwestern University’s Institutional Review Board. All applicable institutional and governmental regula-
tions concerning the ethical use of human volunteers were followed during the course of this research according 
to the Declaration of Helsinki, and written informed consent was obtained from every participant. Prior to work-
ing with the datasets, all personal identifying information was removed.

Measure
Recovered 
(n = 19)

Persisting 
(n = 20) P-value

NPRS 1.7 ± 2.1 4.2 ± 2.5 < 0.001

NDI 6.9 ± 7.9 30.6 ± 15.2 < 0.001

Muscle Volume (ml) 37.9 ± 4.7 36.3 ± 5.3 0.154

MFI (%) 19.1 ± 3.9 21.2 ± 3.8 0.049

Table 2.  CNN Muscle and Clinical Measures for Recovered and Persisting Whiplash. Recovery from whiplash 
was defined as an NDI ≤ 28 at 3 months post motor vehicle collision. NPRS = numerical pain rating scale, 
NDI = neck disability index. Metrics shown = average ± 1 standard deviation. Muscle volume and muscle 
fat infiltration (MFI) were corrected for age, gender, and body mass index. P-value based on one-tailed 
independent samples t-tests.
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Image acquisition and processing.  Imaging was performed on a 3.0 T Siemens (Munich, Germany) 
Prisma scanner equipped with a 64-channel head/neck coil. High-resolution 3D fat-water images of the cervi-
cal and upper thoracic spine were acquired using a dual-echo gradient-echo FLASH sequence (2-point Dixon, 
TR = 7.05 ms, TE1 = 2.46 ms, TE2 = 3.69 ms, flip angle = 12°, bandwidth = 510 Hz/pixel, FOV = 190 × 320 mm2, 
slab oversampling of 20% with 40 partitions to prevent aliasing in the anterior-posterior direction, in-plane res-
olution = 0.7 × 0.7 mm2, slice thickness = 3.0 mm, number of averages = 6, acquisition time = 4 min 5 s)33. Fat 
and water have slightly different chemical structures and precessional frequencies that differentially influence 
the local magnetic field. Images can be acquired when the fat and water signals are in-phase (IP = W + F) and 
out-of-phase (OOP = W − F). The in-phase and out-of-phase images can be combined to create images with 
fat-only signal (F = (IP − OOP)/2) and water-only signal (W = (IP + OOP)/2). As the images are acquired simul-
taneously in the same sequence and space, the images require no registration. Three blinded, independent raters, 
each doctoral-level health professionals, with extensive training in the cervical spine anatomy and musculoskel-
etal imaging, manually segmented the left and right deep cervical extensor muscles (i.e., multifidus and semispi-
nalis cervicis) from the water-only images using methods previously described (2018)31. The segmentation masks 
contained the background, left muscle group, and right muscle group, labeled as 0, 1, and 2, respectively.

Data augmentation.  Data augmentation is a step commonly used to supplement the size of the training 
dataset. The images were randomly split into training (n = 25) and testing (n = 14) datasets, and 5,100 augmented 
datasets were generated by applying a series of random affine spatial transformations (scaling, shearing, rotation, 
translation, and reflection) and adding varying degrees of Gaussian noise to a training image. For each augmented 
dataset, the same spatial transformations were applied to the segmentation mask from one randomly selected 
rater for use as the GT. A similar approach using each rater as the GT was used by Perone et al. (2018) for model 
training, forcing the model to learn the optimal weights for segmentation despite the interrater variability23. The 
augmented datasets were then split into final training (n = 5,000) and validation (n = 100) datasets.

V-Net.  V-Net is a CNN designed for segmentation tasks. The network consists of several stages having 
one or more convolutional layers (5 × 5 kernels with stride 1 and padding) followed by a PReLu activation 
function to extract features. The last step of each stage is a convolutional or de-convolutional layer (2 × 2 ker-
nels with stride 2) to decrease or increase the resolution, respectively. The first half of the network contracts 
the resolution, while the second half expands the resolution back to the input dimensions. At each stage, a 
residual learning framework is implemented by adding the input of each stage to the output of its last convo-
lutional layer. Fine feature information from each convolutional stage is also forwarded to the corresponding 
de-convolutional stage to improve the contour prediction. To limit bias towards predicting the image back-
ground, a loss function based on the Sørensen-Dice index (DICE) was employed and minimized. The output 
after soft-max transformation is probabilistic segmentation masks for the left and right muscles with the same 
dimensions as the input volume26.

Training.  V-Net was trained on the water-only images from the augmented training dataset using NiftyNet 
(Version 0.2.2, spatial window = 256 × 256, window orientation = axial, padding = 128 × 128, learning 
rate = 0.001, optimizer = Adam, loss function = DICE, decay = 0.0001, samples per volume = 30, window sam-
pling = uniform, batch size = 30). NiftyNet is an open-source CNN platform built on TensorFlow (Version 1.7) 
in Python (Version 2.7) and designed specifically for medical imaging analysis27. Prior to training, histogram 
standardization was performed, the images were resampled to 0.5 × 0.5 × 0.5 mm3, mean-centered (i.e., mean 
subtracted from each image), and normalized by their standard deviation. The V-Net model was initialized with 
random weights, and training was completed once the average DICE plateaued on the validation dataset.

Metric Equation Range Meaning

Sørensen-Dice Index (DICE) ∩×
+

SM GT
SM GT

2 0–1 Spatial overlap
between masks

Jaccard Index ∩
∩+ −

SM GT
SM GT SM GT

0–1 Spatial overlap
between masks

Conformity Coefficient − +1 FP FN
TP

≤ 1 Ratio of incorrectly and 
correctly segmented voxels

True Positive Rate (TPR)
+
TP

TP FN
0–1 Sensitivity

True Negative Rate (TNR)
+
TN

TN FP
0–1 Specificity

Positive Predictive Value (PPV)
+
TP

TP FP
0–1 Precision

Volume Ratio SM
GT

≥ 0 Ratio of mask volumes

Table 3.  Segmentation Performance Metrics. SM = segmentation mask; GT = ground truth mask; TP = true 
positive, voxels correctly segmented as deep cervical extensor muscle; TN = true negative, voxels correctly 
segmented as background; FP = false positive, voxels incorrectly segmented as deep cervical extensor muscle; 
FN = false negative, voxels incorrectly segmented as background. The masks from each of the three raters were 
used as the GT for the performance metrics.
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Performance.  Performance of the CNN was assessed using DICE, Jaccard index, conformity coefficient, true 
positive rate, true negative rate, positive predictive value, and volume ratio (Table 3)34. Muscle volume and MFI 
were measured for the left and right deep cervical extensors using the segmentation masks from each rater and 
the CNN model. MFI was calculated as the average fat-only signal divided by the sum of the average fat-only sig-
nal and the average water-only signal multiplied by 100. Reliability between the raters and the CNN was assessed 
using intraclass correlation coefficients (ICC2,1), Pearson correlations, and Bland-Altman plots.

Clinical measures.  To investigate the association of the CNN muscle volume and MFI and the clinical meas-
ures, the complete dataset (n = 39) was then input into the trained CNN, and segmentation masks were gener-
ated. The left and right muscle volume and MFI of the deep cervical extensors were then calculated and averaged. 
For pain, the 11-point numerical pain rating scale (NPRS) with anchors of “no pain” (0) and “extreme pain” (10) 
was used to assess neck pain35. Neck-related function was assessed with the NDI36. The NDI is a 10-item scaled 
questionnaire that assesses disability and functioning specific to the neck. The scores range from 0 to 100, and 
higher values indicate more neck-related disability in daily activities.

Relationships between muscle volume and MFI, and the clinical measures of pain and neck-related disability, 
were assessed with partial Pearson correlations correcting for age, gender, and BMI. We hypothesized that lower 
muscle volume and higher MFI would be correlated with higher pain and disability. Next, we divided the dataset 
into groups of recovered (NDI ≤ 28) versus persisting whiplash (NDI > 28) using the NDI at 3 months post MVC. 
Differences in average muscle volume and MFI between the recovered and persistent groups were assessed with 
independent samples t-tests after correcting for age, gender, and BMI. We hypothesized that the group reporting 
persistent disability and higher pain intensity would have lower muscle volume and increased MFI compared 
to the recovered group. As the hypotheses were directional, one-tailed tests were performed with an α < 0.05 
considered statistically significant. Statistical analyses were performed using IBM SPSS Statistics (Version 21, 
Armonk, NY, USA).

Data Availability
The de-identified datasets used in this study are available from the corresponding author upon reasonable request.
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