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Abstract: (−)-Naringenin 4′,7-dimethyl ether ((−)-NRG-DM) was isolated for the first time by our
lab from Nardostachys jatamansi DC, a traditional medicinal plant frequently used to attenuate pain
in Asia. As a natural derivative of analgesic, the current study was designed to test the potential
analgesic activity of (−)-NRG-DM and its implicated mechanism. The analgesic activity of (−)-
NRG-DM was assessed in a formalin-induced mouse inflammatory pain model and mustard oil-
induced mouse colorectal pain model, in which the mice were intraperitoneally administrated with
vehicle or (−)-NRG-DM (30 or 50 mg/kg) (n = 10 for each group). Our data showed that (−)-NRG-
DM can dose dependently (30~50 mg/kg) relieve the pain behaviors. Notably, (−)-NRG-DM did
not affect motor coordination in mice evaluated by the rotarod test, in which the animals were
intraperitoneally injected with vehicle or (−)-NRG-DM (100, 200, or 400 mg/kg) (n = 10 for each
group). In acutely isolated mouse dorsal root ganglion neurons, (−)-NRG-DM (1~30 µM) potently
dampened the stimulated firing, reduced the action potential threshold and amplitude. In addition,
the neuronal delayed rectifier potassium currents (IK) and voltage-gated sodium currents (INa)
were significantly suppressed. Consistently, (−)-NRG-DM dramatically inhibited heterologously
expressed Kv2.1 and Nav1.8 channels which represent the major components of the endogenous
IK and INa. A pharmacokinetic study revealed the plasma concentration of (−)-NRG-DM is around
7 µM, which was higher than the effective concentrations for the IK and INa. Taken together, our study
showed that (−)-NRG-DM is a potential analgesic candidate with inhibition of multiple neuronal
channels (mediating IK and INa).

Keywords: (−)-Naringenin 4′,7-dimethyl ether; analgesic candidate; mechanism study; delayed
rectifier potassium currents; ion channels

1. Introduction

Pain is an unpleasant sensory and emotional experience associated with actual or
potential tissue damage [1]. It can be subdivided into somatic pain and visceral pain
according to the originating tissue, while it can be categorized into acute and chronic pain
based on the ongoing time [2]. As a rising health problem, chronic pain is predicted to affect
up to 30% of adults worldwide, and about 70% of patients are refractory to the current
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treatments [2,3]. The use of analgesics is one of the main therapies for the treatment of
pain. Opioids, currently a mainstay of pain relief drugs, can cause adverse effects such as
tolerance, dependence, opioid-use disorders as well as gastrointestinal dysfunction [4–6].
Huge unmet needs remain for patients with chronic inflammatory, musculoskeletal, visceral,
and neuropathic pain conditions. There is an urgent need to identify novel non-opioid drugs
and investigate the underlying mechanism, thereby benefiting the following structure-
activity relationship studies.

The sensing and transmission of pain signals rely critically on the activities of ion chan-
nels expressed in afferent pain fibers, especially for the small-diameter dorsal root ganglia
(DRG) neurons [7–9]. It is well established that voltage-gated sodium (Nav) and voltage-
gated potassium (Kv) channels are responsible for determining the neuronal excitability,
and genetic or pharmacological dysfunction of these channels was widely confirmed to
cause pain in human and multiple animal models [10,11]. Among the nine reported Nav
(Nav1.1~Nav1.9) isoforms, Nav1.7 and Nav1.8 channels are highly distributed in the pe-
ripheral nervous system (PNS) [12]. During an action potential, Nav1.7 is poised to help
set a voltage threshold for action potential firing, and Nav1.8 contributes substantially
to the rising phase of the action potentials in nociceptors during pain sensing [13]. Then,
Kv channel-mediated potassium currents terminate the action potential by repolarizing
the membrane potential [14,15]. The potassium currents in nociceptive DRG neurons
consist of a rapidly inactivating component and a slowly inactivating component, which
respectively correspond to the transient outward potassium currents (IA) and delayed
rectifier potassium current (IK) [16,17]. The Kv2.1 channels are thought to represent a major
component of IK, which helps to set the resting membrane potential and shape the action
potentials [18–20]. Therefore, modulation of these channels underlies multiple analgesics.

Nardostachys jatamansi has been widely used as a folk medicine in China, Nepal,
Bhutan, India, and Japan for the treatment of pain, altitude sickness, fever, and wounds [21].
The roots of N. jatamansi have neuroprotective, sedative, and analgesic properties, and a
variety of active ingredients have been separated from N. jatamansi, in which sesquiter-
penoids, essential oils, iridoids, triterpenoids, flavonoid, coumarin, and lignin are the
main chemical constituents [21–23]. The anti-inflammatory activities of sesquiterpenoids,
terpenic coumarin, and phytosterol such as nardosinanones and narchinol might contribute
to the analgesic activities produced by N. jatamansi [21,24,25]. Inhibition of the production
of NO and inflammatory cytokines (IL-6, PEG2, TNF-a and IFN-a/β, etc.) and phospho-
rylation of MAPK signaling is implicated in the analgesic activity [25–27]. Flavonoids are
polyphenolic structures naturally distributed in most plants and consumed daily. They
have been widely used for analgesic, anti-inflammatory, and antioxidant effects along with
safe preclinical and clinical profiles [28,29]. For example, troxerutin and quercetin act as
anti-inflammatory agents that help reduce pain in clinics [30,31]. However, flavonoids
with analgesic activities have not been reported from N. jatamansi. In the current study,
a flavonoid named (−)-naringenin 4′,7-dimethyl ether ((−)-NRG-DM) was first isolated
from N. jatamansi (Figure 1). As a flavonoid originating from a widely used folk medicine
for pain relief, we hypothesized that (−)-NRG-DM might have analgesic activity similar
to its naringenin prototype which has been reported to alleviate pain in multiple mod-
els [32]. To explore the hypothesis, the analgesic activity and the potential side effects
of (−)-NRG-DM were examined in a formalin-induced mouse inflammatory pain model,
mustard oil-induced mouse colorectal pain model, and mouse rotarod test. The underly-
ing mechanism was studied in acutely isolated mouse small-diameter DRG neurons and
heterologous expression cells using a standard whole-cell patch-clamp technique.
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thyl ether [33,34]. (−)-NRG-DM has only one chiral carbon atom (C-2), and the specific 
rotation of (−)-NRG-DM was +7.8 (c 0.22 in CH2Cl2), which is contrary to that of sa-
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Figure 1. The structure of (−)-naringenin 4′,7-dimethyl ether ((−)-NRG-DM).

2. Results
2.1. Structure Elucidation of (−)-NRG-DM

(−)-NRG-DM was obtained as a white needle crystal, which was isolated from N. jata-
mansi by means of chromatographic methods, including HPLC and silica gel column
chromatography. The structural assignments were confirmed by HRESIMS, 1H, and 13C
NMR spectra, and compared with the literature data. The molecular formula was confirmed
as C17H16O5 based on its HRESIMS ion at m/z 323.088 5 [M + Na]+ (calcd. 323.089 0) and
623.187 9 [2M + Na]+ (calcd. 623.188 8). The planar structure of (−)-NRG-DM was con-
firmed by the NMR data of (−)-NRG-DM, which were those of (+)-naringenin 4′,7-dimethyl
ether [33,34]. (−)-NRG-DM has only one chiral carbon atom (C-2), and the specific rotation
of (−)-NRG-DM was +7.8 (c 0.22 in CH2Cl2), which is contrary to that of sakuranetin [35].
Therefore, the absolute configuration of C-2 of (−)-NRG-DM was determined as R. Thus,
the absolute configuration of (−)-NRG-DM was assigned as Figure 1.

2.2. Analgesic Effects of (−)-NRG-DM in Formalin-Induced Mouse Inflammatory Pain Model

The formalin test is a classical inflammatory pain model which represents somatic pain.
Intraplantar injection of formalin results in a typical two-stage nociceptive behavior, which
is characterized by licking and biting of the injected paw. The first phase (0~10 min) mainly
reflects nociceptive pain, while the second phase (11~60 min) represents the inflammatory
responses [36]. In our study, we tested the effects of (−)-NRG-DM on formalin-induced
inflammatory pain in mice. (−)-NRG-DM at 30 mg/kg and 50 mg/kg body weight were
individually intraperitoneally administrated 30 min before injection of 1% formalin solution.
Consequently, (−)-NRG-DM significantly attenuated painful behaviors in a dose-dependent
manner during phase I and phase II (Figure 2). At the dose of 50 mg/kg, (−)-NRG-DM
significantly attenuated painful behaviors, including the licking time and overall pain score
in both phases in formalin-injected mice. While at the dose of 30 mg/kg, (−)-NRG-DM
shortened the licking time and pain score of the two behavioral stages, but only had a
significant influence in phase I.

To exclude possible non-specific muscle relaxant or sedative effects, the effects of
(−)-NRG-DM on motor performance were evaluated in the rotarod test. (−)-NRG-DM
was well tolerated in the rotarod test, with no significant effects on the ability to remain
on the rotating rod after intraperitoneal administration of (−)-NRG-DM at 100 mg/kg,
200 mg/kg, or even 400 mg/kg (Table 1). Together, these data showed that (−)-NRG-DM is
a well-tolerated natural analgesic compound and can dose-dependently suppress somatic
pain in vivo.

2.3. Analgesic Effects of (−)-NRG-DM in Mustard Oil-Induced Mouse Colorectal Pain Model

The dose-dependent relief of somatic pain in the formalin model prompted us to
ask whether it could attenuate the visceral pain. Thereby, we constructed the mustard
oil-induced mouse colorectal pain model as previously described [37]. After intracolonic
application of 50 µL 0.75% mustard oil, the mice exhibited pain-related behavior (e.g., lick-
ing, stretching, squashing, or retraction of the abdomen) in the next 30 min observation
period (Figure 3A). As those observed in intraplantar formalin-induced pain, (−)-NRG-DM
dose dependently relieved intracolonic mustard oil-caused writhing (Figure 3A). After
intraperitoneal application of 30 mg/kg and 50 mg/kg (−)-NRG-DM, the writhing number
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reduced by approximately 60% and 80%, respectively (Figure 3B). Our data showed that
(−)-NRG-DM could attenuate visceral pain either.
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Figure 2. Analgesic effects of (−)-NRG-DM in the formalin-induced mouse inflammatory pain model.
(A) 30 mg/kg compound (−)-NRG-DM attenuated the biphasic pain responses, including both licking
time (left) and score (right) throughout the 60 min trial. (B) 50 mg/kg (−)-NRG-DM attenuated the
biphasic pain responses, including both licking time (left) and score (right) throughout the 60 min trial.
Bar graph showing the effects of vehicle (white), 30 mg/kg and 50 mg/kg compound (−)-NRG-DM
(grey) on the pain behaviors during phase I (C) and phase II (D) in the formalin-induced mouse
inflammatory pain model. In all groups, n = 10 animals. Statistical significance: * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001.
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Table 1. Effects of (−)-NRG-DM on motor impairment in the rotarod test in ICR mice.

Compound Dosage
(mg/kg)

Time of Test
(h)

Fall
nFall /nTest

Motor Impairment
(%)

Vehicle - 0.5 0/10 0
1 0/10 0

(−)-NRG-DM

100
0.5 0/10 0
1 0/10 0

200
0.5 1/10 10
1 0/10 0

400
0.5 0/10 0
1 0/10 0
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DM on the action potential firing in acutely isolated mouse small-diameter DRG neurons. 
The action potentials were evoked by a current injection of 200 pA for a 500 ms period. 
The threshold was defined by the first amplitude at which an action potential with a mem-
brane potential larger than 0 mV was produced, and the amplitude was defined as the 
peak relative to the resting membrane potential [38]. Consistent with its analgesic activi-
ties in vivo, (−)-NRG-DM dose-dependently inhibited the firing frequency of the DRG 
neurons (Figure 4A, B). The amplitudes were reduced from 98.00 ± 6.19 mV to 95.00 ± 5.65 
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Figure 3. Analgesic effects of (−)-NRG-DM in the mustard oil-induced mouse colorectal pain model.
(A) 30 mg/kg and 50 mg/kg (−)-NRG-DM attenuated the acute pain-related behaviors throughout
the 30 min trial. (B) Bar graph showing the effects of vehicle (white), 30 mg/kg and 50 mg/kg
(−)-NRG-DM (grey) on the writhing number caused by pain during a 30 min period in the mustard
oil-induced mouse colorectal pain model. In all groups, n = 10 animals. Statistical significance:
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

2.4. Inhibitory Effects of (−)-NRG-DM on Action Potential Firing in Mouse DRG Neurons

To investigate the underlying mechanism of (−)-NRG-DM-mediated analgesic activity,
whole-cell current-clamp technology was applied to examine the effects of (−)-NRG-DM
on the action potential firing in acutely isolated mouse small-diameter DRG neurons. The
action potentials were evoked by a current injection of 200 pA for a 500 ms period. The
threshold was defined by the first amplitude at which an action potential with a membrane
potential larger than 0 mV was produced, and the amplitude was defined as the peak
relative to the resting membrane potential [38]. Consistent with its analgesic activities
in vivo, (−)-NRG-DM dose-dependently inhibited the firing frequency of the DRG neurons
(Figure 4A,B). The amplitudes were reduced from 98.00 ± 6.19 mV to 95.00 ± 5.65 mV,
93.40 ± 8.27 mV, 86.80 ± 9.75 mV, and 74.40 ± 7.08 mV after perfusion of 1 µM, 3 µM,
10 µM, and 30 µM (−)-NRG-DM, respectively (Figure 4C, n = 5). Current threshold, the
injection current required to elicit a single all-or-none action potential, was determined
by applying 500 ms depolarizing currents of increasing magnitude. Surprisingly, the
threshold of action potential firing was gradually reduced as the concentration of (−)-
NRG-DM increased (Figure 4D, E, n = 5). The inhibitory effects of (−)-NRG-DM on the
firing frequency and the amplitudes of action potentials were partially reversible after
washout. These data indicated that (−)-NRG-DM can dampen action potential discharges
in nociceptive DRG neurons.
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Figure 4. (−)-NRG-DM inhibited the neuronal excitability of acutely isolated mouse dorsal root
ganglion neurons. (A) Representative traces of action potentials following 200 pA current injection
with or without (−)-NRG-DM at indicated concentrations in DRG neurons. Bar graph showing the
effects of (−)-NRG-DM on the firing frequency (B), amplitudes of the first action potential (C) before
(control, white) and after the application of (−)-NRG-DM (grey) at indicated concentrations (n ≥ 5).
(D) Responses of representative DRG neurons with or without 30 µM (−)-NRG-DM to 500 ms
depolarization current steps for the generation of all-or-none action potential. (E) The averaged
number of action potentials of DRG neurons before and after application of 30 µM (−)-NRG-DM
(n = 5). Statistical significance: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

2.5. Inhibitory Effects of (−)-NRG-DM on Neuronal Potassium Currents

(−)-NRG-DM treatment caused a significant decrease in the current threshold for DRG
neurons indicating that the compound may inhibit the potassium currents. The currents
in mouse DRG neurons can be separated into IA and IK. They could be distinguished
by applying voltage steps from a holding potential of −50 mV, at which IA was almost
completely inactivated, while IK remained unchanged. Thereby, IA could be separated
by subtracting IK from the total potassium currents. According to these electrophysio-
logical characteristics, the effects of (−)-NRG-DM on potassium currents were examined
(Figure 5A). We found that (−)-NRG-DM inhibited potassium currents in a dose-dependent
manner, and the IC50 values were 5.10 ± 0.04 µM and 119.90 ± 0.03 µM for IK and IA,
respectively (Figure 5B, n = 5). The data indicated that (−)-NRG-DM is an inhibitor of
Kv channels in DRG neurons. Additionally, the effects of (−)-NRG-DM on the kinetics
of the Kv channels were further characterized. The Kv currents were elicited by multiple
1500 ms depolarization pulses ranging from −80 mV to +90 mV in 10 mV increments
from a holding potential of −80 mV. Congruently, the amplitudes of elicited potassium
currents were potently reduced by (−)-NRG-DM at 10 µM, a concentration around IC50 of
(−)-NRG-DM on IK currents (Figure 5C). The activation curves of Kv channels before and
after the perfusion of 10 µM (−)-NRG-DM were fitted with the Boltzmann equation, the
data showed that (−)-NRG-DM does not affect the activation of the potassium currents
(Figure 5D). The values of V1/2 in the absence and presence of 10 µM (−)-NRG-DM were
−6.43 ± 1.21 mV and −8.08 ± 2.02 mV, respectively (Figure 5D). These data showed that
(−)-NRG-DM is an inhibitor of native potassium currents in DRG neurons.
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Figure 5. Inhibitory effects of (−)-NRG-DM on the potassium currents of DRG neurons in mice.
(A) Typical traces of the transient outward potassium currents IA and the delayed rectifier potassium
currents IK in the presence of (−)-NRG-DM at indicated concentrations. (B) The dose–response curve
of (−)-NRG-DM on IK and IA currents. The IC50 values were 5.10 ± 0.04 µM and 119.90 ± 0.03 µM,
respectively (n = 5). (C) Representative activation current traces of Kv channels before and after
10 µM (−)-NRG-DM. (D) Activation curves of Kv currents before and after 10 µM of (−)-NRG-DM
(n = 6).

2.6. Inhibition of (−)-NRG-DM on Neuronal Sodium Currents

A reduction in amplitudes of action potentials manifested that (−)-NRG-DM may
inhibit native sodium currents, which are mainly involved in the rising phase of an action
potential [39]. To record native sodium currents in acutely isolated DRG neurons, a 50 ms
test pulse depolarized to −20 mV from a holding potential of −90 mV was applied. As
illustrated in Figure 6A, the amplitudes of peak currents and persistent currents dose-
dependently declined as the concentration of (−)-NRG-DM increased. The IC50 value of
(−)-NRG-DM on native Nav currents was 34.78± 0.14 µM (Figure 6C, n = 5). To understand
how (−)-NRG-DM inhibited Nav channels, the effects of 30 µM compound (−)-NRG-DM
on Nav channel kinetics were further characterized. The activation currents were elicited
by applying step pluses ranging from −60 mV to +15 mV in 5 mV increments for a 50 ms
period from a holding potential of −90 mV (Figure 6D). The activation curves showed that
the half-activation voltage did not change significantly after the perfusion of 30 µM (−)-
NRG-DM, and the V1/2 values were −15.34 ± 0.58 mV and −15.23 ± 0.56 mV, respectively
(Figure 6E). The influence of 30 µM (−)-NRG-DM on steady-state inactivation was assessed
by 500 ms conditioning pulses ramping from −120 mV to 0 mV in 10 mV increments,
followed by a 20 ms test pulse at −20 mV (Figure 6F). In contrast to the lack of effect on
the Nav channel activation, (−)-NRG-DM caused a depolarization shift of the steady-state
inactivation. The V1/2 value was shifted from −65.72 ± 1.74 mV to −55.34 ± 2.14 mV by
30 µM (−)-NRG-DM (Figure 6G). These data showed that (−)-NRG-DM is an inhibitor of
native sodium channels in small-diameter DRG neurons.

The sodium currents in small-diameter DRG neurons could be furtherly subdivided
into TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) currents, which contribute to setting
the firing threshold and the rising phase of an action potential [40]. To isolate TTX-R
currents, whole-cell sodium currents were measured in the presence of 300 nM TTX.
Similar to its effect on total sodium currents, (−)-NRG-DM did not affect the activation
either (Figure 6I). The values of V1/2 in the absence and presence of 30 µM (−)-NRG-
DM were −16.82 ± 0.72 mV and −20.14 ± 0.87 mV, respectively. Notably, (−)-NRG-DM
caused a hyperpolarizing shift in steady-state inactivation. The value of V1/2 shifted from
−39.43 ± 0.66 mV to −49.99 ± 0.67 mV by 30 µM (−)-NRG-DM (Figure 6K). These data
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indicated that (−)-NRG-DM is an inhibitor of sodium currents and preferentially affects
channel inactivation.
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Figure 6. Characterization of (−)-NRG-DM inhibition on Nav currents of DRG neurons in mice.
(A) Representative traces of Nav currents in the absence or presence of (−)-NRG-DM at indicated
concentrations. (B) Current–voltage relationship of Nav currents with or without 30 µM (−)-NRG-
DM (n = 8). (C) The dose–response curve of (−)-NRG-DM on native Nav currents. The IC50 value
was 34.78 ± 0.14 µM (n = 5). Typical activation current traces (D) and steady-state activation curves
(E) of total Nav currents before and after application of 30 µM (−)-NRG-DM (n = 6). Representative
inactivation traces (F) and steady-state inactivation curves (G) of total Nav currents before and after
perfusion of 30 µM (−)-NRG-DM (n = 6). Typical activation current traces (H) and steady-state
activation curves (J) of TTX-R currents before and after perfusion of 30 µM (−)-NRG-DM (n = 7).
Representative inactivation traces (I) and steady-state inactivation curves (K) of TTX-R currents before
and after perfusion of 30 µM (−)-NRG-DM (n = 7). Statistical significance: * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001.

2.7. Inhibitory Effects of (−)-NRG-DM on Heterologously Expressed Kv2.1 Channel

Kv2.1 represents a major component of IK currents in neurons and plays an important
role in the formation of functional Kv channels [18,41]. The potent inhibitory effects of
(−)-NRG-DM on native potassium currents in DRG neurons prompted us to investigate
whether the natural analgesic compound affects Kv2.1 channels transiently expressed in
CHO cells. Congruently, (−)-NRG-DM dose-dependently inhibited Kv2.1 channels with an
IC50 value of 21.17 ± 0.11 µM (Figure 7A, n = 5). The typical Kv2.1 current was elicited by
applying a 40 mV depolarization stimulus before and after application of (−)-NRG-DM at
20 µM, a concentration around the IC50 of Kv2.1 channels, as illustrated in Figure 7B. The
effects of 20 µM (−)-NRG-DM on the activation of Kv2.1 channels were furtherly evaluated.
The activation currents of Kv2.1 were elicited by applying multiple pulses ranging from



Molecules 2022, 27, 1735 9 of 17

−80 mV to +110 mV in 10 mV increments for a 1500 ms period from a holding potential
of -50 mV (Figure 7D). Surprisingly, the value of V1/2 shifted from 22.30 ± 1.12 mV in the
control condition to 35.88 ± 1.88 mV in the presence of 20 µM (−)-NRG-DM (Figure 7E).
These data showed that (−)-NRG-DM is an inhibitor of the Kv2.1 channel and dampens
channel activation.
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Figure 7. Inhibitory effects of (−)-NRG-DM on Kv2.1 channels heterologously expressed in CHO cells.
(A) Representative Kv2.1 current traces in the absence and presence of 20 µM (−)-NRG-DM (Inset)
The recording protocol. (B) Time course of peak and end-pulse currents of Kv2.1 channels before
and after perfusion of 20 µM (−)-NRG-DM. (C) The dose–response curve of (−)-NRG-DM on Kv2.1
channel. The IC50 value was 21.17 ± 0.11 µM (n = 5). (D) Representative activation current traces
of Kv2.1 channels in absence and presence of 20 µM (−)-NRG-DM (Inset) The recording protocol.
(E) Activation curves of Kv2.1 channels with or without 20 µM (−)-NRG-DM (n = 5). Statistical
significance: * p ≤ 0.05.

2.8. (−)-NRG-DM Inhibits Nav Channels

The dose-dependent suppression of the sodium currents by (−)-NRG-DM indicated
that it should inhibit the Nav channels. As Nav1.7 and Nav1.8 are mainly distributed in the
PNS and have been demonstrated to play an important role in pain sensing, we detected the
effects of (−)-NRG-DM on Nav1.7 and Nav1.8 channels stably expressed in HEK293 cells.
As shown in Figure 8A, we found that 30 µM (−)-NRG-DM, a concentration around the IC50
of native Nav currents in DRG neurons, can potently inhibit Nav1.7 and Nav1.8 currents.
The values of IDrug/IControl were 0.61± 0.05 and 0.56± 0.03, respectively (Figure 8B). There
is no significant difference in the inhibitory efficacy between Nav1.7 and Nav1.8 channels;
the data showed that (−)-NRG-DM is a non-selective Nav channel inhibitor (Figure 8B).
To understand how (−)-NRG-DM inhibits Nav1.8 channels, we assessed its impacts on
the voltage dependence of steady-state activation and inactivation. The Nav1.8 currents
were elicited by applying step pluses ranging from −65 mV to +30 mV for 200 ms in 5 mV
increments at a stimulus frequency of 0.5 Hz (Figure 8C). Activation curves showed that
the V1/2 did not change significantly before and after the perfusion of 30 µM (−)-NRG-
DM, which was −7.10 ± 1.10 mV and −10.31 ± 1.17 mV, respectively (Figure 8D). The
influence of (−)-NRG-DM on steady-state inactivation was evaluated by applying a 500 ms
conditioning pulse ramping from −110 mV to 10 mV in 10 mV increments, followed by a
20 ms test pulse at −20 mV (Figure 8E). The values of V1/2 were −48.58 ± 0.67 mV and
−53.37 ± 0.70 mV before and after the application of 30 µM (−)-NRG-DM (Figure 8F).
Similarly, no significant difference was observed. These data showed that (−)-NRG-DM is
a nonselective inhibitor of Nav channels.
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Figure 8. Inhibitory effect of (−)-NRG-DM on Nav currents. (A) Representative Nav1.7 and Nav1.8
current traces in the absence and presence of 30 µM (−)-NRG-DM recorded with the depicted
protocol. (B) Summarized data showing the suppression effect of (−)-NRG-DM (30 µM) on Nav1.7
and Nav1.8 channels (n = 5). (C) Representative Nav1.8 current traces in absence and presence of
30 µM (−)-NRG-DM recorded with the protocol shown inset. (D) Activation curves obtained in the
absence and presence of 30 µM (−)-NRG-DM (n = 13). (E) Representative activation current traces of
Nav1.8 currents before and after 30 µM (−)-NRG-DM. (F) Steady-state inactivation curve of Nav1.8
currents before and after 30 µM (−)-NRG-DM (n = 13). Statistical significance: *** p ≤ 0.001.

3. Discussion

In the present study, a naringenin derivative named (−)-NRG-DM was first iso-
lated from N. jatamansi (Figure 1). Intraperitoneal administration of (−)-NRG-DM dose-
dependently attenuated pain in a formalin-induced mouse inflammatory pain model and
mustard oil-induced mouse colorectal pain model, which, respectively, corresponded to
somatic pain and visceral pain (Figures 2 and 3). Notably, (−)-NRG-DM was well tolerated
as no significant neurotoxicity was observed at doses of 100 mg/kg, 200 mg/kg, and even
400 mg/kg in the rotarod test (Table 1). All animals displayed no sign of toxicity during
the rotarod test (0.5 and 1 h) and 24 h after the drug administration. The data showed
that (−)-NRG-DM is an analgesic compound with a wide margin of safety. Combining the
data obtained from the acutely isolated mouse small-diameter DRG neurons, heterologous
expression system, and pharmacokinetic study, we furtherly elucidated that inhibition
of neuronal channels mediating IK and INa currents is implicated in the (−)-NRG-DM-
produced analgesic activity.

The current study showed that the analgesic (−)-NRG-DM directly dampens neuron
excitability in acutely isolated mouse small-diameter DRG neurons with a reduced thresh-
old and amplitude of action potential firing (Figure 4A). Intriguingly, the suppression of
firing frequency is tightly accompanied by a depolarized firing threshold (Figure 4A,D).
The significant reduction in the number of action potentials started after 10 µM (−)-NRG-
DM was applied, at which the significant difference in the firing threshold occurred
(Figure 4D,E). The data suggested that (−)-NRG-DM may cause suppression through
a mechanism similar to neuronal desensitization. The feature is involved in capsaicin,
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a TRPV1 channel agonist, and an 8% capsaicin patch (Qutenza) has been approved for
the treatment of chronic pain in clinics [42]. Analgesic activities produced by a direct
desensitization of nociceptive neurons might reduce side effects including gastrointestinal
erosions, renal and hepatic insufficiency which are commonly associated with cyclooxyge-
nase inhibitors [43]. As 10 µM (−)-NRG-DM did not affect TRPA1 currents, the neuronal
desensitization could not be ascribed to its modulation on the channels (Figure S1). The
suppression of neuron activity produced by (−)-NRG-DM is in agreement with the study of
(+)-naringenin 4′,7-dimethyl ether ((+)-NRG-DM), a naturally occurring naringenin deriva-
tive that has been isolated many times from plants, that showed analgesic activity in vivo
and that did not influence the production and release of pro-inflammatory factors compared
to other naringenin derivatives [44]. Additionally, radioligand binding assay demonstrated
that (+)-NRG-DM does not show affinity to endocannabinoid or opioid receptors [22]. To-
gether, our data showed that (−)-NRG-DM causes a direct inhibition of neuron excitability
through a mechanism similar to excitatory desensitization in nociceptive neurons.

Voltage-gated potassium currents play a fundamental role in the modulation of rest-
ing membrane potential [45]. In the small-diameter DRG neurons, the currents can be
divided into two separate components: IA and IK [46]. Due to the low current density
and distribution ratio, the IA currents did not seem to play a key role in the excitability of
nociceptive neurons. The IK currents contribute to the setting of resting membrane potential
and appear to be the main contributor to after-hyperpolarization [20,47]. Consistent with
the depolarized threshold of action potential firing, (−)-NRG-DM potently inhibited the IK
but not IA currents with IC50 values of 5.10 ± 0.04 µM and 119.90 ± 0.03 µM, respectively
(Figure 5A,B). Notably, the pharmacokinetic study showed that the plasma concentration
of (−)-NRG-DM after 0.5~1.5 h intraperitoneal injection of the compound at 50 mg/kg is
around 7 µM, which is higher than the IC50 value of (−)-NRG-DM on IK currents (Table 2).
The reduction in the IK currents in DRG neurons at this concentration was around 58%
(Figure 5B). Kv2.1 homotetramers or containing heterotetramers represent the major com-
ponent of IK currents in neurons [18,40]. Consistently, the IC50 value of (−)-NRG-DM on
Kv2.1 channels heterologously expressed in CHO cells was 21.17 ± 0.11 µM (Figure 7A,B).
The difference between the IC50 values obtained from DRG neurons and CHO cells may
emerge from species differences in primary pharmacology. One might argue that a reduc-
tion in the IK currents has been found in multiple animal models for studying pain, and
lesser IK currents are involved in human labor pain [48,49]. The feature might be similar to
that found in Nav1.9 channels, in which the gain-of-function mutations caused a loss of
pain reception in humans and exhibited a reduced neuronal excitability during the long
stimulus due to neuronal desensitization [50]. Thus, our data showed that the inhibition of
IK mainly contributes to (−)-NRG-DM-produced pain relief and Kv2.1-containing channels
involved in the inhibitory activity.

Table 2. Mean plasma concentration of (−)-NRG-DM administrated via intraperitoneal route in
ICR mice.

Compound Dosage
(mg/kg)

Time of Test
(h)

Concentration
(ng/mL)

Concentration
(µM/L)

0.5 2293.3 ± 183.4 7.64 ± 0.61
(−)-NRG-DM 50 1 2216.0 ± 1252.0 7.39 ± 4.17

1.5 716.7 ± 222.5 2.39 ± 0.74
Data are presented as the mean ± SEM.

The reduction in the amplitudes of the action potentials after exposure to (−)-NRG-
DM was in accordance with its suppression of sodium currents (Figure 4C). (−)-NRG-
DM inhibited Nav currents in DRG neurons in a dose-dependent manner with an IC50
value of 34.78 ± 0.14 µM (Figure 6C). Nevertheless, a reduction in the INa of the DRG
neurons was around 28% at the plasma concentration obtained from the pharmacokinetic
study (Figure 6C). Nav1.7 and Nav1.8 are analgesic-related Nav subtypes in the PNS,
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which separately correspond to the TTX-S and TTX-R currents in small-diameter DRG
neurons [46]. The inhibitory ratios of (−)-NRG-DM (30 µM) on Nav1.7 and Nav1.8 were
39± 5% and 44± 3% respectively, which were very close to those on native sodium currents
(Figure 8A,B). As an enantiomer, NRG-DM extracted from peanut stem and leaf promoted
sleep by dampening neuronal excitability. In cortical neurons, the inhibitory activity of
NRG-DM on Nav channels appeared to be more potent than that on Kv channels [51].
However, in the current study, due to the higher IC50 value, our data showed that inhibition
of Nav channels might contribute to (−)-NRG-DM-produced analgesic activity but the
effect is secondary to that of Kv channels.

In conclusion, our study showed that (−)-NRG-DM is a promising analgesic drug
candidate potently attenuating somatic and visceral pain in vivo. The analgesic activity
could be ascribed to its direct suppression of nociceptive neuron excitability through a
desensitization mechanism. Due to the plasma concentration of (−)-NRG-DM being higher
than the effective concentrations for the IK and INa, our study suggested that the inhibition
of neuronal channels mediating these currents contributes to the analgesic activity. (−)-
NRG-DM may act as a new structural framework for the subsequent development of
analgesic drugs.

4. Materials and Methods
4.1. Chemical Compounds

(−)-NRG-DM, isolated from the roots of N. jatamansi, was prepared and certificated
by Professor Jun-Li Yang’s lab at Lanzhou Institute of Chemical Physics, Chinese Academy
of Sciences. The procedure of extraction and isolation of (−)-NRG-DM can be found in the
Supporting Information. The compound was dissolved and stored in dimethyl sulfoxide
(DMSO) to produce a 20 mM stock solution and then diluted in bath solution to obtain
final concentrations. DMSO, at the final concentrations (≤0.5%), was well tolerated with no
observable toxic effects on cells and neurons. To conduct research on animals, (−)-NRG-DM
was dissolved in a mixture of 5% DMSO, 5% Tween 80, and 90% (0.9% NaCl). TTX was
purchased from Qinhuangdao Aquaculture Technical Developing Company (Qinhuangdao,
China). All other chemicals were purchased from Sigma-Aldrich (St Louis, MO, USA).

4.2. Animals

All mice were obtained from the Beijing Vitalriver Laboratory Animal Technology
Co., Ltd. (Beijing, China). Mice were housed and assayed under controlled temperature
conditions (22 ± 2 ◦C) and a 12 h light/dark cycle with free access to food and water. All
animal procedures were performed according to the National Institutes of Health Guide
for the Care and Use of Laboratory Animals and were strictly followed and approved
by the guidelines of the IACUC (Institutional Animal Care and Use Committees). The
IACUC checked all protocols and approved this study. The animal experiments were
conducted in a blinded manner, i.e., drug administration and behavioral tests were finished
by different investigators.

4.3. Formalin-Induced Inflammatory Model

Adult male ICR mice weighing 20 ± 2 g were randomly divided into 3 groups (n = 10
for each group) and acclimatized in a transparent observation chamber for at least 30 min
before the experiment. Mice were intraperitoneally administrated with vehicle or (−)-
NRG-DM (30 or 50 mg/kg) 30 min prior to formalin injection. Then, 1% formalin solution
(20 µL per site) was subcutaneously injected into the plantar of the left hind paw to induce
acute inflammatory pain. Immediately, mice were put back into the observation chambers.
Nociception caused by formalin was assessed by scoring painful behaviors and licking time
over a period of 60 min. In the present study, the score represented the sum of weighted
formalin-induced pain-related behavior: 1 = flinching, 2 = shaking, and 3 = licking or biting
of the injected paw. Phases were defined as follows: the peak time of the early nociceptive
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response phase (phase I) was 0~10 min, and the late phase (phase II) was 11~60 min after
formalin injection.

4.4. Mustard Oil-Induced Mouse Colorectal Pain Model

Male C57BL/6 mice, weighing 23~25 g, were randomly assigned into 3 groups (n = 10
for each group) and placed in a transparent observation chamber for at least 20 min prior to
the experiment. Mice were intraperitoneally administrated with vehicle or (−)-NRG-DM
(30 or 50 mg/kg) 30 min before the injection of diluted mustard. Subsequently, 50 µL of
diluted mustard oil solution (0.75% in 70% ethanol) was intracolonically administrated
and the number of pain responses was counted for 30 min. In the present study, postures
defined as pain-related behaviors were in agreement with previous descriptions: (1) licking
of the abdomen, (2) stretching the abdomen, (3) squashing of lower abdomen against the
floor, (4) abdominal wall retractions.

4.5. Rotarod Test

To determine the neurotoxicity effects of (−)-NRG-DM, the standardized rotarod test
was conducted in male ICR mice weighted 20 ± 2 g. The mice were divided at random into
4 groups (n = 10 for each group). The mice were placed on a rotarod appliance (YLS-4C,
Bio-will, Shanghai, China) with a rod of 3 cm diameter, rotating at a constant speed of
6 rpm. The day before the compound test, all mice were pre-trained and only the animals
able to remain on the rod for at least 1 min every time in three consecutive trials (3 min)
were retained. During the test, the mice were measured in the rotarod test 0.5 h and 1 h
after intraperitoneal administration of (−)-NRG-DM. The animals unable to remain on the
rod for 3 consecutive periods were considered motor coordination impaired.

4.6. Pharmacokinetic Study

The pharmacokinetic study was performed in male ICR mice weighted 20 ± 2 g.
The mice were fasted for 12 h before intraperitoneal administration of (−)-NRG-DM at
50 mg/kg. Blood samples (0.5 mL) were collected at 0.5, 1, and 1.5 h from the abdominal
aorta into the heparinized tubes after drug administration. The plasma was separated by
centrifugation (11,000 rpm for 5 min) and then stored at −80 ◦C until analyzed. Plasma
samples (20 µL) were treated with the addition of the internal standard solution (20 µL) and
acetonitrile (300 µL), then vortexed for 15 min (1000 rpm, RT), and centrifuged of 15 min
(3700 rpm, 4 ◦C). The supernatants were collected for analysis using LC−MS/MS. The data
were processed using Analyst software version 1.6.3 (Sciex, ON, Canada).

4.7. Preparation of Dorsal Root Ganglion Neurons

Dorsal root ganglia (DRG) were dissected from male C57BL/6 mice aged 4~6 weeks.
The ganglia were first cut into small pieces and then digested at 37 ◦C for 20 min in DMEM
containing 1 mg/mL collagenase type I and 0.25 mg/mL trypsin (Sigma-Aldrich). Subse-
quently, the digested small fragments were terminated and resuspended with DMEM/F12
growth medium (Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco). Finally,
the dissociated DRG neurons were seeded onto 24-well plates with poly-L-lysine-coated
coverslips and placed in a 37 ◦C, 5% CO2 incubator for at least 1 h before electrophysiologi-
cal experiments.

4.8. Cell Culture and Transfection

Human embryonic kidney 293 (HEK293) cells stably expressing human Nav1.7 and
Nav1.8 channels were grown in a high-glucose DMEM medium (Gibco) containing 10%
FBS (Gibco). The media were respectively supplemented with 50 mg/mL and 100 mg/mL
hygromycin B (Invitrogen, Carlsbad, CA, USA). The cDNA encoding human Kv2.1 channels
was synthesized by Sangon Biotech Co., Ltd. (Shanghai, China) based on the GenBank
(Kv2.1 Gene ID: 25736) and was subcloned into the pcDNA3.1(+) vector. Chinese hamster
ovary (CHO) cells were cultured in DMEM/F12 medium (Gibco) supplemented with



Molecules 2022, 27, 1735 14 of 17

10% FBS. To transiently express the Kv2.1 channels for electrophysiological studies, the
constructs encoding the EGFP and the Kv2.1 were co-transfected into the CHO cells with
Lipofectamine 2000 reagent (Invitrogen) referring to the manufacturer’s instructions. The
transfected cells were seeded onto poly-L-lysine-coated glass coverslips before they were
used for the electrophysiological study. All cells were grown under standard tissue culture
conditions (5% CO2, 37 ◦C).

4.9. Electrophysiological Recordings

A standard whole-cell voltage-clamp technique was used to record membrane currents
from the heterologous expression cells and the acutely isolated DRG neurons. A standard
whole-cell current-clamp mode was applied to record the action potential (AP) firing in
DRG neurons. Pipettes were pulled from borosilicate glass capillaries and the resistances of
pipettes were 3~5 MΩ when they were filled with the intracellular solution and placed in
the bath. For the recording of potassium currents from the transfected CHO cells, the pipette
or intracellular solution contained (in mM): 145 KCl, 10 HEPES, 1 MgCl2, 5 EGTA, 1 CaCl2,
and 10 HEPES (pH 7.2 adjusted by KOH); bath or extracellular solution contained (in mM):
140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 glucose, and 10 HEPES (pH 7.4 adjusted by NaOH).
For the recording of sodium currents from the stable cell lines, the pipette or intracellular
solution contained (in mM): 140 CsF, 10 NaCl, 20 glucose, 1.1 EGTA, and 10 HEPES (pH
7.3 adjusted with CsOH); bath or extracellular solution contained (in mM): 140 NaCl,
3 KCl, 1 CaCl2, 1 MgCl2·6H2O, 20 glucose, and 10 HEPES (pH 7.3 adjusted by NaOH). For
recordings of the action potential firing properties and potassium currents in DRG neurons,
the pipette or intracellular solution contained (in mM): 140 KCl, 1 CaCl2, 1 MgCl2, 10 EGTA,
and 10 HEPES (pH 7.2 adjusted with KOH); the extracellular solution contained (in mM):
140 NaCl, 5 KCl, 1 CaCl2, 1.25 MgCl2, 10 glucose, and 10 HEPES (pH 7.4 adjusted with
NaOH). For the recording of neuronal sodium currents from DRG neurons, the pipette or
intracellular solution contained (in mM): 120 CsCl, 10 NaCl, 10 TEA-Cl, 1 CaCl2, 1 MgCl2,
10 EGTA, and 10 HEPES (pH 7.2 adjusted with CsOH); bath or extracellular solution
contained (in mM): 120 NaCl, 5 KCl, 1 CaCl2, 1.25 MgCl2, 20 TEA-Cl, 10 glucose, and
10 HEPES (pH 7.4 adjusted by NaOH). During the recordings, a BPS perfusion system
(ALA Scientific Instruments, Westbury, NY, USA) was used to continuously perfuse bath
solutions. Data acquisition was performed at room temperature with the Axopatch-200B
amplifier (Axon Instruments, Burlingame, CA, USA), and the signals were filtered at 2 kHz
and digitized with a Digidata 1440 A interface (Axon Instruments) at 50 kHz.

4.10. Statistics

Patch-clamp data were processed using Clampfit 10.6 (Molecular Device, Sunny-
vale, CA, USA) and then analyzed in GraphPad Prism 5 (GraphPad Software, San Diego,
CA, USA). Voltage-dependent activation curves were fitted to the Boltzmann equation:
G = Gmin + (Gmax − Gmin)/[1 + exp (V − V1/2)/S], where Gmax is the maximum conduc-
tance, Gmin is the minimum conductance, V1/2 is the voltage to reach 50% of the maximum
conductance, and S is the slope factor. Steady-state inactivation curves were constructed by
plotting the normalized peak currents during the test pulses as a function of the prepulse po-
tentials. The data were fitted to the Boltzmann equation: I/Imax = 1/{1+ exp [(V − V1/2)/Ki]},
where I is the amplitude of peak currents at each voltage, Imax is the maximal value of peak
currents, V and V1/2 are the prepulse potential and the half-maximal potential for inactiva-
tion, respectively, and Ki is the inactivation slope factor. Dose–response curves were fitted
with the Hill equation: Y = Bottom + (Top − Bottom)/{1+10[(LogIC50 − X) × k]}, where
Bottom and Top are the minimum and maximum inhibition, respectively; X is the log of
the concentration; Y is the value of IDrug/IControl; IC50 is the drug concentration producing
a half-maximum response, k is the Hill Slope. The data are shown as the mean ± SEM, and
the significance was estimated using paired two-tailed Student’s t-test unless otherwise
stated. Statistical significance: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.
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