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Abstract

Recent genetic studies have identified variants associated with bipolar disorder (BD), but it 

remains unclear how brain gene expression is altered in BD, and how genetic risk for BD may 

contribute to these alterations. Here, we obtained transcriptomes from subgenual anterior cingulate 

cortex and amygdala samples from post-mortem brains of individuals with BD and neurotypical 

controls, including 511 total samples from 295 unique donors. We examined differential gene 

expression between cases and controls, and the transcriptional effects of BD-associated genetic 

variants. We found two co-expressed modules that were associated with transcriptional changes 

in BD: one enriched for immune and inflammatory genes and the other with genes related to 

the post-synaptic membrane. Over 50% of BD genome-wide significant loci contained significant 

expression quantitative trait loci (eQTLs), and these data converged on several individual genes, 

including SCN2A and GRIN2A. Thus, these data implicate specific genes and pathways that may 

contribute to the pathology of bipolar disorder.

Introduction

Bipolar disorder (BD) is a highly heritable serious mental illness, with estimates reaching 

as high 80%1. Genome-wide association studies (GWAS) have attained the critical sample 

size needed to begin identifying specific genetic variants that contribute to BD heritability. 

A recent effort from the Psychiatric Genomics Consortium (PGC) reported 31 genome-wide 

significant loci and 850 additional suggestive loci2. As in GWAS of other major psychiatric 

disorders3, the identified variants are common (minor allele frequencies [MAF] > 10%) and 

have small effect sizes (odds ratios [OR] < 1.1). The implicated variants combined explain 

only a small proportion of the genetic contribution to BD and the mechanisms by which they 

increase risk are unclear. Thus, it is critical to translate genetic associations into biological 

mechanisms to lay the foundation for developing new and more effective treatments.

Findings from GWAS of major psychiatric disorders are enriched in regulatory regions 

of the genome4, suggesting that transcriptional mechanisms play an important role in 

their etiology. We therefore investigated the transcriptional changes and mechanisms that 

contribute to BD. As gene expression is differentially regulated across tissue types5, we 

examined transcriptional mechanisms in the etiologically relevant tissue using post-mortem 

brain samples. Furthermore, because the brain is a complex organ composed of multiple 

distinct anatomical and functional regions with gene expression patterns that vary by brain 

region6,7, we focused on samples from brain regions that may be most relevant to BD 

pathology. These included two key regions of the limbic system, the amygdala and the 

subgenual anterior cingulate cortex (sACC), which multiple converging lines of evidence8,9 

suggest underlie mood regulation and BD pathophysiology.

We report results of RNA sequencing (RNA-seq) data from one of the largest single post-

mortem brain sample collections for BD and neurotypical subjects, involving 511 total 

samples across 295 unique donors, all of whom were of European ancestry. We tested 
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for transcriptional differences between BD cases versus unaffected controls and further 

examined the transcriptional effects of genetic variants identified by recent GWAS of BD 

(PGC-BD2)2. The findings converge on biological processes linked with synaptic signaling 

and suggest specific expression and splicing mechanisms by which certain genetic variants 

contribute to risk for BD. These findings provide an evidentiary base to motivate follow-up 

molecular work to elucidate the specific mechanisms that explain the genetic contribution to 

BD.

Results

A total of 511 samples from 295 individuals (138 cases and 157 controls) were available 

for study across the two brain regions, including 268 samples from the sACC (126 cases 

versus 142 controls) and 243 samples from the amygdala (121 cases versus 122 controls). 

The samples were 29% female with a mean age of 45.7 (SD=15.9, min=13.0, max=86.7) at 

death. The skew towards males in these samples is generally consistent with the sex ratio 

of the overall post-mortem brain collection in the Lieber Institute for Brain Development 

Human Brain Repository. See Supplementary Table 1 for further description of the study 

samples.

Differential Expression.

We first tested for differential expression between BD cases and neurotypical controls at 

the gene, transcript, exon, and junction expressed feature levels in each of the two brain 

regions. Results with all features tested are displayed as volcano plots in Supplementary 

Figure 1, and details of the differentially expressed features at FDR<5% are provided 

in Supplementary Table 2. There were 962 unique genes with at least one significant 

(FDR<5%) differentially expressed feature (Figure 1), with the overwhelming majority of 

implicated genes identified in the sACC compared to amygdala (858 vs 145). Most (86.8%) 

were protein-coding genes, while another 6% were long non-coding RNAs (lncRNA) and 

the remainder were other classes of non-coding sequence. Considerably more differentially 

expressed gene features (n=738) were identified compared to transcripts (n=101) in both 

brain regions, and the effect sizes were in general larger for genes (mean |log2FC| 0.18 

vs 0.14 in sACC, P=0.01, K-S Test), in contrast to previous findings10. Furthermore, of 

the 962 unique genes identified as having DE features, 177 (18.4%) were implicated by 

a significant association with an exon or junction feature and would have been missed 

if only gene or transcript features were tested. Although only a small minority of genes 

(n=41; 4.3%) were implicated in both the sACC and amygdala, there was little evidence of 

significant differences in BD-related differential expression between the two brain regions 

(Supplementary Figure 2). In tests of interaction between diagnosis and brain region across 

all four feature types in region-combined analyses (see Methods), only one was FDR<5% 

significant among genes that showed any evidence of BD-related differential expression in 

either of the brain regions.

WGCNA Results.

To help resolve the biological implications of these findings, we carried out a weighted 

gene co-expression network analysis (WGCNA) with gene level data from cases and 
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controls and both brain regions together and tested if modules of co-expressed genes were 

associated with BD (Supplementary Table 3). A total of 20 modules were identified. The 

eigengene of the red module, consisting of 579 genes, was significantly associated with 

BD diagnosis after correction for multiple testing, with a trend towards down-regulation of 

module genes (β=−0.021, SE=0.006, P=2.76×10−4) (Figure 2a). In addition, this module 

was enriched for genes that were differentially expressed with BD at FDR<5% (n=91, 

OR=5.08, P=8.55×10−51), and moreover the differentially expressed genes tended to be 

concentrated among the more highly connected genes (i.e. putative hub genes) of this 

module (P=8.15×10−6, Wilcoxon rank sum tests on module connectivity metric Kwithin). 

This module was also characterized by containing microglia-specific genes (P=7.60×10−39, 

Fisher’s Exact Test), which was consistent with an enrichment of microglia-specific genes 

observed among all differentially expressed genes that were down-regulated in the sACC 

(P=9.36×10−8, Fisher’s Exact Test) and amygdala (P=1.0×10−3, Fisher’s Exact Test). No 

other cell-type specific genes were enriched in the differentially expressed genes or in this 

module after correcting for multiple testing. This module was also enriched in numerous 

immune and inflammatory related GO pathways. Details of all enriched GO pathways at 

FDR<5% are shown in Supplementary Table 4. The 15 most significantly enriched of 

these GO pathways that contain genes with differentially expressed features are shown 

in Figure 2b. There were 31 unique genes with differentially expressed features among 

these selected pathways (Figure 2c). Of note, four of these genes (A2M, TREM2, CTSB, 

and PLCG2) have been associated with Alzheimer’s disease. Another eight of these genes 

(CD4, IKBKB, CX3CR1, PYCARD, NFKBID, SYK, BLNK, and TNFA1P8L2), or over 

25% of the differentially expressed genes in the top pathways, play a role directly or 

indirectly in NF-kB (nuclear factor kappa light chain enhancer of activated B cells) 

activation. In fact, five of these genes converge in the “regulation of I-kappaB kinase/NF-

kappaB signalling” GO pathway, which was also significantly enriched in the red module 

(GO:0007249; Q=2.46×10−7, Hypergeometric test). See Supplementary Table 2 for details 

of the differential expression results with these individual genes.

The second most significant module associated with BD was the pink module, which 

consisted of 224 genes that also tended to be down-regulated with BD (β=−0.014, 

SE=0.005, P=6.126×10−3) (Figure 2d). The pink module did not survive correction for 

multiple testing, but it was also significantly enriched for individual genes that were 

differentially expressed with BD (n=17, OR=2.09, P=5.48×10−3). This module was enriched 

in numerous overlapping synaptic related GO pathways. Details of all enriched GO 

pathways at FDR<5% are shown in Supplementary Table 4. The 15 most significantly 

enriched of these GO pathways that contain genes with differentially expressed features 

are shown in Figure 2e. The most significant was the “synaptic membrane” pathway 

(GO:0097060; Q=2.86×10−10, Hypergeometric test), and it contained one of the most 

significant differentially expressed module genes, GRASP, which interestingly plays an 

important role in the organization of group 1 metabotropic glutamate receptors (mGluRs) 

at synapses. Other module genes in these pathways with significant differentially expressed 

features included PTPRG, CBARP, ACTN1, TRAF3, and LINGO1 (highlighted in Figure 

2e). See Supplementary Table 2 for details of differential expression results with these 

individual genes.
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QTL Results.

Transcriptional differences between BD cases and controls could relate to some combination 

of the causes and/or consequences of illness. Therefore, to further interrogate the 

transcriptional mechanisms that may contribute to BD risk, we next tested for cis eQTLs 

or sQTLs in genetic loci implicated by prior BD GWAS. In particular, we tested for 

QTL associations between 10,777 SNPs and gene (n=4,647), transcript (n=14,434), exon 

(n=76,589) and junction (n=49,188) features related to 5,019 unique genes residing in the 

neighborhoods (as defined in the Methods section) of 881 loci (GWAS p<1×10−4 before 

replication) implicated by the PGC GWAS of BD2. The number of unique genes with 

features tested is more than the number of genes tested because some of the features are in 

genes with insufficient information to test the entire gene. For these analyses we combined 

the data from both cases and controls. Figure 3 shows a summary of the significant cis 
eQTLs/sQTLs (FDR<1%) with the lead SNP for these loci across the two brain regions. See 

Supplementary Table 5 for full results. Significant cis e/sQTLs were identified in at least one 

of the two brain regions in 172 (33.2%) of the 881 GWAS loci (518 with evaluable data), 

including 16 (51.6%) of the genome-wide significant and 156 (32.0%) of the suggestive loci. 

The greater proportion of significant e/sQTLs among the genome-wide significant loci is 

consistent with the notion that they are more enriched for true positive associations. Similar 

to the differential expression analysis, a greater number of significant QTLs was observed 

in the sACC (1,277 different features in 305 unique genes) compared to the amygdala (736 

different features in 216 unique genes), but the findings were largely overlapping across 

the two brain regions. In tests of interaction between brain regions and the most significant 

lead SNP-feature at each locus, only five were observed to be significant after correction for 

multiple testing and each of these were quantitative interactions that showed the same trends 

across brain regions. Approximately 82% of the genes with at least one significant QTL 

across both brain regions were protein-coding, while another 5% were lncRNAs, in line with 

the differential expression analyses described above.

After carrying out a conditional analysis to isolate independent QTL effects11, we identified 

28 genes with significant conditionally independent QTLs in the 16 PGC-BD2 genome-wide 

significant loci and 218 genes in the 156 suggestive loci. In 9 of the 16 genome-wide 

significant loci (56.3%) and 118 of the 156 suggestive loci (75.6%), this QTL evidence 

pointed to at most a single gene when considering both brain regions, helping to narrow 

the identification of the genetic risk-associated genes in these loci and clarify the potential 

transcriptional mechanisms involved in BD risk. Among these 127 implicated genes, 15 

(11.8%) involved an alternative splicing mechanism through an sQTL, 19 (15.0%) involved 

an eQTL associated with overall gene expression, 33 (26.0%) involved an eQTL with a 

specific transcript, and the remaining 60 (47.2%) involved a more ambiguous transcriptional 

mechanism that was identified solely through an altered exon or junction.

Table 1 shows the results for the individual genes implicated in 9 of the 16 genome-wide 

significant loci. Interestingly, two of these genes (SCN2A and GRIN2A) are ion channel 

components of the synaptic membrane pathway (GO:0097060) implicated in the WGCNA 

analysis described above and are predominantly expressed in neuronal cells as suggested 

by data from single nucleus RNA sequencing on 5 brain regions from 8 neurotypical 
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controls (Supplementary Figure 3). The most significant QTLs were observed in SCN2A. 

There are currently 18 annotated transcript isoforms of the gene, including 9 that are protein-

coding (Figure 4a). Six of the protein-coding transcripts are translated into a canonical 

protein (UniProtKB Q99520) which is 2,005 amino acids long. The alternate allele of 

the lead SNP in this locus (rs17183814:G:A), which is associated with a decreased risk 

of BD, is a mis-sense coding variant (R19K0 that results in the substitution of lysine 

for arginine at position 19 of the canonical protein). In addition, it is a splicing variant 

that disrupts the canonical splice acceptor site in intron 1 of an alternative protein-coding 

transcript ENST00000636985, which encodes a truncated form of the protein that is only 

1873 amino acid long (β=−1.75, p=5.47×10−22). This results in reduced expression of the 

junction spanning exons 1 (ENSE00003800530) and 2 (ENSE00003798965) (β=−1.12, 

p=5.08×10−29), which in turn leads to lower expression of the transcript (β=−0.20, 

p=3.23×10−14).

The other gene, GRIN2A, has 15 transcript variants in the genome databases, including 

7 that are protein-coding (Figure 4b). The alternate allele of the lead SNP in this locus 

(rs11647445:T:G) has been associated with an increased risk of BD, and in our data it is 

associated with a decreased expression of exon 11 (ENSE00001327113) of the canonical 

transcript ENST00000396573 (β=−0.07, p=1.32×10−5). Interestingly, the lead SNP, which 

is approximately 10kb away from the affected exon, is not significantly associated with any 

other features in the region.

TWAS Results.

Lastly, we carried out a transcriptome-wide association study (TWAS) analysis to evaluate 

whether imputed gene expression levels were associated with BD allowing for the potential 

of multiple independent SNP-QTLs influencing overall gene transcription. A total of 13,822 

genes passed our SNP-based heritability filter and were tested by TWAS in at least one of 

the two brain regions (see Supplementary Table 6). We identified 247 genes (n=155 in the 

sACC and n=125 in the amygdala) that were significantly associated with BD by TWAS 

at FDR<5% (Figure 5). Approximately 70% of these were protein coding and another 

4.5% were lncRNAs, similar to the analyses reported above. Interestingly, there was little 

concordance between the TWAS and differential expression results (Supplementary Figure 

4). By contrast, over 75% of these genes (n=192) were identified either in the PGC-BD2 

genome-wide significant (n=53) or suggestive (n=139) loci, and the identified genes in these 

loci tended to implicate the same ones as those suggested by the QTL analysis above. 

Almost 40% of them also had a significant SNP-QTL, and in the 9 PGC-BD2 genome-wide 

significant loci where the QTL evidence pointed to a single gene 4 were also implicated 

by TWAS (ASB16-AS1, ZCCHC2, LRRC57, and TRANK1). Interestingly, 55 genes (n=31 

in the sACC and n=27), almost 25% of those identified by TWAS, were outside of the 

PGC-BD2 significant or suggestive loci and represent novel loci of interest not previously 

implicated by the PGC-BD2 findings. See Supplementary Table 7 for a summary overview 

of the significant findings across the different analyses (differential expression, WGNCA, 

e/sQTL, and TWAS) carried out with the data.
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Discussion

We used complementary analytic approaches to investigate transcriptional mechanisms 

underlying BD risk in two brain regions of the limbic system, the subgenual anterior 

cingulate cortex (sACC) and amygdala, thought to subserve mood dysregulation in BD8,9. 

Using WCGNA, we found two co-expressed modules downregulated in BD, one enriched 

with genes involved in immune and inflammatory responses and the other with genes related 

to the synaptic membrane. We further found that approximately 34% of loci reported by 

PGC-BD2, including over 50% of genome-wide significant loci, contained significant QTLs, 

implicating specific transcriptional mechanisms that potentially explain their contribution 

to risk. In 9 of the genome-wide significant loci, the QTL evidence converged on a single 

gene, including two of particular note (SCN2A and GRIN2A) that are membrane proteins 

involved in neuronal signaling. Associated alleles for these loci predicted reduced expression 

of these genes. The current findings thus implicate specific gene pathways in BD pathology 

and provide clues to transcriptional mechanisms that underlie risk and motivate further 

functional follow-up. They also provide circumstantial evidence of the involvement of 

specific cell-types in BD that will require further examination with approaches such as 

single nucleus RNA sequencing.

There have been at least 10 reported RNA sequencing studies of transcriptional changes 

in BD using post-mortem brain samples10,12–20, and all but one had samples considerably 

smaller than the current study. The one exception was from the PsychEncode project which 

focused on the dorso-lateral prefrontal cortex (dlPFC). The findings from these studies 

have been largely inconsistent, possibly due to different brain regions studied, different 

experimental methods (e.g, polyA enrichment versus Ribo-Zero depletion), different 

analytic approaches (in particular qSVA used herein), and significant lack of power for 

most studies. As a result of our relatively larger sample size, we observed considerably more 

significant differentially expressed genes than previous studies. Interestingly, although there 

was little evidence of differences in expression changes with BD across brain regions, we 

observed almost eight times more differentially expressed gene features in the sACC versus 

amygdala. This difference cannot be explained solely by the slightly larger sample available 

for the sACC, nor by greater variability in feature expression levels in the sACC because the 

variability was comparable in both brain regions (Supplementary Figure 5). The magnitude 

of the findings in the sACC may reflect a more prominent role for this brain region both in 

mood regulation in general and BD specifically.

We identified two co-expressed gene modules associated with BD and enriched for 

differentially expressed genes. As mentioned above, one was enriched for a number 

of overlapping pathways traditionally involved in immune activation and inflammatory 

responses. This module, which was also enriched in microglia specific genes, was down-

regulated in BD. Down-regulation of microglia related modules was also highlighted in the 

recent report from the PsychEncode10, which included data on post-mortem brain samples 

from 28 overlapping BD cases with the current study. However, the current study included 

data on nearly four times as many new cases not previously studied from two different 

brain regions selected because of their putative involvement in mood disorders. Thus, the 

current findings provide additional support for the involvement of microglia in BD, although 
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the mechanism of this involvement is unclear. How to interpret the potential pathogenicity 

of down-regulation of the microglia related gene module, especially when contrasted with 

results from other studies that have reported elevation of both peripheral21 and central 

markers of inflammation as well as putative markers of activated microglial cells in the 

brain in BD22–25, is uncertain. We would not expect activated microglia to be represented by 

relative downregulation of their cognate genes.

It is noteworthy that several differentially expressed genes in the most enriched immune/

inflammatory pathways of the microglia specific module have also been implicated 

in Alzheimer’s Disease26–29. There is clinical and epidemiological evidence of a link 

between BD and Alzheimer’s disease30, and a recent re-analysis of GWAS data on 

BD and Alzheimer’s disease found a significant overlap in polygenic risk between the 

two31. It has been hypothesized that common inflammatory processes underlying both 

disorders potentially explain the relationship between them30. Consistent with this, two 

differentially expressed genes, TREM2 and PLCG2, may be of particular interest. Rare 

coding variants associated with Alzheimer’s disease have recently been identified in both 

genes, and they were noted to participate in the same interaction network29. These genes 

are noteworthy because they are primarily expressed in microglia in the brain and contribute 

to microglia-mediated innate immunity and modulate inflammatory responses29. Moreover, 

both genes exert downstream effects on the NF-kB pathway, which was implicated by our 

analysis. PLCG2 may be of additional interest because it encodes a protein that drives 

phosphoinositide recycling which has been proposed as a target of lithium’s therapeutic 

mechanism of action in BD32.

Including TREM2 and PLCG2, over a quarter of the differentially expressed genes in the 

most enriched immune/inflammatory pathways of the microglia specific module converge 

on the NF-kB pathway. NF-kB is a transcription factor complex that regulates multiple 

aspects of innate and adaptive immune functions and mediates inflammatory responses33. 

The previous report from the PsychEncode project also highlighted NF-kB related modules 

in association with BD, as well as schizophrenia and autism10. Curiously, that study found 

an up-regulation of NF-kB related modules, whereas we observed primarily down-regulation 

of specific genes along the pathway. As a result, while the evidence suggests a possible role 

of the NF-kB pathway in BD pathology34, more work is needed to confirm this and untangle 

the precise molecular mechanisms that may be involved.

In interpreting these results, it may be relevant that microglia play a role in neuronal circuit 

activity and synaptic function independent of their traditional classification as “immune 

cells” of the central nervous system. In the adult brain, microglia can influence neuronal 

activity acutely and over the long term, and appear to monitor the integrity of synaptic 

function35. It may be that downregulation of microglia in BD produces changes in both 

neuronal activity and synaptic function, rather than altering classic inflammatory processes 

associated with infection and autoimmune diseases. In line with this, the NF-kB pathway 

is also known to have pleiotropic effects on structural and synaptic plasticity in the brain 

that may play a role in cognitive behaviors, including learning and memory36. Because these 

effects appear to be highly cell dependent, it will be crucial to follow-up the current findings 
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with single cell RNA sequencing approaches to unravel the pathogenic role of disruption of 

this pathway in BD.

The other BD associated module identified from our study was enriched for a number of 

overlapping gene sets related to the synaptic membrane. Several of these pathways were 

reported in previous RNA sequencing studies of BD with post-mortem brain samples, 

lending credence to their role in BD. Of note, two postsynaptic pathways - GO:0014069 

(postsynaptic density) and GO:0045211 (postsynaptic membrane) - were found to be 

enriched in a gene co-expression module associated with BD in a previous study of 

dlPFC samples from 11 cases versus 11 controls16. A similar postsynaptic density specific 

module was also associated with BD by the much larger study from PsychEncode10. In 

addition, the regulation of neuron projection development pathway (GO: 0010975) was 

reported to be enriched in one of two gene co-expression modules associated with BD in 

another study of samples from the dorsal striatum of 18 BD cases versus 17 controls19. 

The postsynaptic density pathway, in particular, has been the focus of increased interest 

in psychotic disorders. Several recent sequencing studies have implicated genes in these 

pathways in both schizophrenia37 and now also in BD38,39. Our current findings add to this 

evidence. It is noteworthy, and perhaps not surprising, that across the various sequencing 

studies there has been less convergence of significant findings for specific genes than at 

the level of pathways. However, we anticipate that as sample sizes for both DNA and 

RNA sequencing studies increase there will be greater consistency of findings that point 

to specific genes driving BD pathology among the interacting network of neurotransmitter 

receptors and cytoskeletal and signaling proteins that spatially and functionally organize 

them at the postsynaptic membrane. In the meantime, it is tempting, to proffer that our 

results, both the evidence of downregulation of microglia related molecular activity and of 

synaptic signaling genes, converge on the hypothesis that synaptic signaling and plasticity 

are core genetic and molecular underpinnings of BD.

The QTL analyses may help in this regard as they provided further evidence for the 

contribution to BD risk of specific genes implicated by the latest GWAS. Using a conditional 

analysis approach, we identified 246 potentially relevant genes from the reported GWAS 

loci, including 28 genes in 16 PGC-BD2 genome-wide significant loci. In almost a quarter 

of the genome-wide significant loci, the evidence pointed to a gene that was involved in 

synaptic membrane pathways highlighted in the co-expression module described above.

Perhaps the most compelling individual finding was the eQTL association with SCN2A. 

This gene encodes the alpha subunit of a voltage-gated sodium ion channel (Nav1.2), 

a transmembrane glycoprotein complex that is highly expressed in the brain, especially 

in the axon initial segment of excitatory glutamatergic neurons7,40. De novo and rare 

loss-of-function and missense coding variants in this gene have been associated with 

infantile epileptic encephalopathy (IEE), benign familial infantile seizures (BIS), and autism 

spectrum disorders and intellectual disabilities (ASD/ID)41–43. The association of SCN2A 
with three disorders of early brain development suggests that perturbations in this gene may 

produce dysmaturation of brain circuits resulting in life-long effects with the potential to 

profoundly alter adult behavior. Moreover, there is evidence suggesting an increased risk of 

BD in high-functioning individuals with ASD44.
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The canonical protein isoform of Nav1.2 is 2,005 amino acids long and coding mutations 

associated with IEE, BIS and ASD/ID have been identified along the entire length of the 

protein. The genetic variant associated with reduced risk of BD causes a coding change 

in six known transcripts that encode the canonical protein isoform leading to a lysine for 

arginine substitution at position 19, residing in the N-terminal cytoplasmic domain where 

other mis-sense mutations have been observed to predominantly cause ASD/ID43. While 

the R19K alteration substitutes one basic amino acid for another, it could have functional 

consequences, for instance via alterations of post-translational modifications45. Interestingly, 

the implicated variant in SCN2A also disrupts the splice acceptor site of an alternative 

transcript (ENST00000636985) which encodes an isoform of the protein that is only 1,873 

amino acids long. This leads to a significant reduction in expression of the truncated 

transcript. It is unclear how the mis-sense coding change to the canonical isoform and/or 

reduction in expression of the truncated isoform reduce BD risk, but further investigation is 

warranted.

Another gene implicated by the eQTL analysis, GRIN2A, encodes a postsynaptic density 

protein (GluN2A) that makes up a subunit of the NMDA receptor, a glutamate-gated ion 

channel involved in synaptic plasticity, learning, and memory. Several lines of evidence 

suggest that dysregulation of glutamatergic transmission plays a role in a range of 

neuropsychiatric conditions46, and may contribute to BD as well47. In the current analysis, 

we found that the identified risk allele for BD was associated with reduced expression of an 

exon that is constitutive to all of the protein’s known full-length transcripts and is central to 

encoding the glutamate binding domain of the protein. More work is needed to determine 

the biological significance of this finding, but it is generally consistent with prior reports 

of reduced expression of GRIN2A48 and reduced NMDA-mediated glutamatergic activity 

in general in BD49. It is noteworthy that we would not have observed any finding with 

GRIN2A if we had not analyzed exon features.

Human post-mortem brain samples are an increasingly important resource for studying 

neurogenetic mechanisms underlying risk for psychiatric disorders10,50. In the current 

analysis, we used one of the largest individual collections of post-mortem brain samples in 

BD that is also part of the PsychENCODE effort. By examining differential expression and 

QTL effects across multiple expression features in this large sample, we comprehensively 

surveyed the potential transcriptional changes in BD. The findings reported herein should 

help guide follow-up functional work to further elucidate the mechanisms by which 

implicated transcriptional changes in these genes contribute to risk for BD. Such work will 

advance our understanding of the etiology of BD and, hence, provide a stronger foundation 

for improved treatments.

Methods

Sample Collection

The post-mortem brain samples were supplied by the Lieber Institute for Brain Development 

Human Brain Repository, all collected with informed consent of next of kin. A number of 

brains in the LIBD Human Brain Repository were transferred from the National Institute 

of Mental Health Clinical Brain Disorders Branch under a material transfer agreement, 
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after having been collected under NIMH Protocol 90-M-0142 and processed approved by 

the NIMH/National Institutes of Health Institutional Review Board. Additional cases in the 

LIBD repository were collected from the Office of the Chief Medical Examiner for the 

State of Maryland under State of Maryland Department of Health and Mental Hygiene 

Protocol 12–24, and from the Kalamazoo County Michigan Medical Examiners’ Office 

under Western Institutional Review Board Protocol 20111080. All samples were collected 

and processed using a protocol specifically developed to minimize sample heterogeneity and 

technical artifacts. In the current study, we used only samples from individuals of European 

ancestry to further minimize sample heterogeneity and maximize power of downstream 

analyses.

The procedures for sample collection, curation and diagnosis have been described in 

detail elsewhere51. Briefly, clinical and demographic information was gathered by the 

review of medical and psychiatric records52 and via a structured interview53–55 with 

next of kin conducted within 1 week of donation. Psychiatric narratives were prepared 

on each case, summarizing information obtained from all available sources, and each 

case was independently reviewed by two board-certified psychiatrists, who arrived at 

consensus DSM-IV Axis I lifetime diagnoses56. History of cigarette smoking at the 

time of death was collected during the initial telephone screening and verified through 

toxicological analysis of nicotine and cotinine levels in blood or brain tissue. Toxicological 

analyses of blood, vitreous humor fluid, occipital pole, and/or urine were conducted by 

a forensic toxicologist. Neuropathological examination was performed on each case by a 

board-certified neuropathologist. Subjects with evidence of clinically or neuropathologically 

significant cerebrovascular disease (infarcts or hemorrhages), subdural hematoma, neuritic 

pathology, or other significant pathological features were excluded from further study. 

Subjects with acute subarachnoid hemorrhages that were directly related to the immediate 

cause of death were not excluded. The cause and manner of death and any contributory 

causes were obtained from medical examiner documents. Neurotypical controls had no 

history of significant psychiatric symptoms or substance abuse, as determined by both 

telephone interviews with next of kin and medical examiner documentation. By definition, 

cases were excluded from the neurotypical control group if the manner of death was suicide, 

if death was due to drug overdose or poisoning, or toxicology results were positive. Agonal 

state was assessed by gathering data regarding specific medical conditions and treatment 

proximate to the date of death (e.g., coma, hypoxia, seizures) and the duration of the 

terminal phase. Age at death was verified by obtaining both date of birth and date of death 

through medical records, medical examiner documents, and family interviews. Postmortem 

interval (PMI) was defined as the time elapsed, in hours, between the pronounced time of 

death and time of tissue freezing. In the final sample, the manner of death among cases 

was 38.0% suicide, 21.2% natural 21.2% accidental, and 19.7% undetermined; while among 

controls it was 77.7% natural, 21.0% accidental, and 1.3% homicide.

Sample Preparation

After removal from the calverium, brains were wrapped in plastic and cooled on wet ice. 

A detailed macroscopic inspection was performed of the brain, meninges, attached blood 

vessels, and when possible, the pituitary and pineal glands. After removal of the brainstem 
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and cerebellum, the forebrains then were hemisected, cut into 1.5 cm coronal slabs, flash 

frozen in a pre-chilled dry-ice/isopentane slurry bath (−40°C), and stored at −80°C. The time 

from when the tissue was stored at −80°C until the RNA was extracted was considered the 

freezer time (mean ± SD: 43.8 ± 2.8 months). A block of lateral superior cerebellar cortex 

was cut transversely to the folia. pH was measured by inserting a probe into the right parietal 

neocortex and again into the right cerebellar hemisphere. The amygdala was identified on 

the frozen coronal slabs from the medial temporal lobe and dissected from one hemisphere 

with a hand held dental drill. The temporal lobe was sectioned in the coronal plane at a level 

designed to expose the amygdala at its largest circumference. The whole amygdala was then 

dissected out at the level of its largest circumference - including all subnuclei at this level 

- just anterior to the hippocampus, ventral to the anterior commissure and claustrum, and 

medial to the entorhinal cortex. Given the size of the dissected region it is unlikely there 

would be significant variation in the subnuclei included in the dissection between cases and 

controls that might lead to false positive associations in downstream analyses, although it is 

possible the combining of different subnuclei in bulk tissue may obscure true associations. 

The subgenual anterior cingulate cortex (sACC) also was dissected under visual guidance 

from the medial aspect of the forebrain at the level of the rostrum of the corpus callosum, 

using a hand held dental drill. It was dissected ventral to the corpus callosum, and dorsal 

to the orbital frontal cortex (BA11). Medially it is bounded by the interhemispheric fissure 

while laterally it is bounded by the corona radiata/centrum semiovale. Approximately 60% 

of both the amygdala and sACC samples were dissected from the left hemisphere and these 

were equally balanced between cases and controls. Moreover, all dissections were performed 

by one of us (TH), and they were performed blind to the case/control status of each brain, 

helping to minimize the potential for systematic differences that could confound downstream 

analyses.

RNA Sequencing

RNA was extracted from the above tissue dissections, and sequencing libraries constructed 

using Illumina TruSeq Stranded Total RNA Ribo-Zero sample Prep Kit following the 

manufacturer’s protocol. Briefly, after ribosomal RNA depletion, we generated 200 base 

pair (bp) fragments, added paired end adapters, and added a unique nucleotide index/barcode 

to permit multiplexing. The sequencing libraries underwent quality control steps, and then 

were sequenced using an Illumina HiSeq 2000.

Reads were quality checked with FastQC57, and where needed, leading bases were trimmed 

from the reads using Trimmomatic58 as appropriate. Quality checked reads were mapped 

to the hg38/GRCh38 human reference genome with splice-aware aligner HISAT2 version 

2.0.459. We then generated estimates of expression at the gene, exon, junction, and 

transcript levels based on GENCODE release 25 (GRCh38.p7) annotation. Gene and exon 

expression levels were calculated with featureCounts v1.5.0-p360 which implements the 

popular HTseq61 python-based approach in a fast and parallelizable framework. We also 

generated consensus junction locations, and the number of reads that support each junction 

in each sample, using regtools62 v. 0.1.0 and the bed_to_juncs program from TopHat263 

to retain the number of supporting reads (in addition to returning the coordinates of the 

spliced sequence, rather than the maximum fragment range). These junction reads have the 
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ability to approximate transcript-level expression without incurring the known inaccuracies 

in transcript assembly and abundance estimations64. Lastly, we used the program Salmon 

v0.7.2 to estimate transcript abundances65. Synthetic ERCC transcripts were quantified with 

Kallisto version 0.43.066.

Estimated feature expressions levels were normalized to reads per kilobase of feature per 

million mapped reads (RPKM) for genes and exons, reads per 10 million mapped reads 

(RP10M) for junctions and transcripts per million (TPM) for transcripts. Features were then 

filtered if they did not exceed the following mean expression thresholds: 0.25 RPKM for 

genes, 0.30 RPKM for exons, 0.35 RP10M for junctions and 0.40 TPM for transcripts as 

determined with the expression_cutoff() function from the jaffelab R package67. Cutoffs 

were applied based on samples from the amygdala and subgenual anterior cingulate cortex.

SNP Genotyping

Genotype data was processed and imputed as previously described for this brain 

collection11. Briefly, genotype imputation was performed on high-quality observed 

genotypes (removing low quality and rare variants) using the prephasing/imputation 

stepwise approach implemented in IMPUTE268 and Shape-IT269, with the imputation 

reference set from the full 1000 Human Genomes Project Phase 3 dataset70 separately by 

Illumina platform using genome build hg19. We retained common variants (MAF > 5%) that 

were present in the majority of samples (missingness < 10%) and were in Hardy Weinberg 

equilibrium (at p>1×10−6) using the Plink tool kit version 1.90b3a71. Multidimensional 

scaling (MDS) was performed on autosomal LD-independent SNPs to construct genomic 

ancestry components on each sample, which can be interpreted as quantitative levels of 

ethnicity, but can also measure other technical factors. This processing and quality control 

steps resulted in 5,980,012 common variants in this dataset of 295 unique subjects. We 

remapped variants to hg38 first using dbSNP databases72 from v142 on hg19 then to v149 

on hg38, and then used the liftOver tool73 for unmapped variants (that were dropped in 

dbSNP v149).

Analysis Sample

Data on a total of 540 amygdala and sACC samples was generated. From these, five samples 

were removed as outliers based on alignment metrics, including overall map rate<0.5, gene 

assignment rate<0.3, or mitochondrial map rate>0.1. Another eight samples were removed 

due to mis-labelled sample numbers based on comparisons of DNA genotype data above 

with a panel of 740 exonic/coding SNPs called with the RNA-seq data; two samples 

were removed due to low microarray quality data; and 14 samples were removed due to 

apparent region discrepancy based on comparisons of expression levels of the 1,000 most 

region associated genes. This left a total of 511 samples (268 sACC and 243 AMYG) for 

downstream analyses.

Data Analysis

Quality surrogate variable analysis (qSVA).—We used quality surrogate variables 

to account for potential latent RNA quality confounding and adapted a previous multi-

region strategy for defining quality surrogate variables74. First, we performed tissue 
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degradation experiments in tissue dissected from sACC and amygdala from a common 

set of 5 neurotypical donors from both sexes (2 males and 3 females) between ages 27–

69 containing multiple ancestries. Each dissection created four tissue aliquots that were 

placed on ice, and either never taken off ice (0 minutes) or left at room temperature for 

15, 30 and 60 minutes. RNA was extracted, sequenced, and processed as above, resulting 

in 20 RNA-seq samples in each brain region (5 donors and 4 degradation time points). 

RNA integrity numbers (RINs) dropped from a mean of 7.74 to 6.06 in AMYG and from 

8.36 to 7.3 in sACC across this tissue degradation experiment. We then combined all 40 

RNA-seq samples to identify common degradation regions across these two brain regions 

for calculating quality surrogate variables in our larger target dataset, since we needed to 

use the same set of qSVs for direct comparisons of differentially expressed genes across 

the two brain regions. We therefore calculated mean coverage separately by strand across 

all 40 combined samples to define expressed regions with greater than 5 normalized reads 

and greater than 50bp75. We then fit a linear model to each expression region as a function 

of degradation time adjusting for brain region and donor as fixed effects. We then ranked 

the expressed regions by the degradation effect and created an input bed file with the top 

1000 degradation-susceptible regions for coverage-based quantification in the 511 post-QC 

RNA-seq samples described above. Subsequently, quality surrogate variables (qSVs) for 

each sample were calculated once for the entire project from the top principal components 

(PCs) of the expression in these 1000 degradation regions across all 511 samples, where 

k was calculated as selected to be 18 using the BE algorithm76 with the sva Bioconductor 

package77.

Differential Expression.—We tested for expression differences in both brain regions 

between BD cases and unaffected controls at the gene, transcript, exon and junction feature 

levels with a series of linear regression models using the limma package and “voom”78,79. 

Given their distribution, feature level data were modeled as log2 of the reads counts 

normalized as described above. To control for potential confounding, we included in the 

models terms for age at death, sex, mitochondrial rate, ribosomal RNA rate, total gene 

assignment, RIN, ERCC spike-in rates, the top 3 principal components of the genotype 

data (calculated using ~100,000 LD-independent SNPs), and 18 quality surrogate variables 

(qSVs) described above74,80. We restricted the analyses to White European samples, so 

concerns about confounding by population stratification should be minimized, but we 

included ancestry related principal components of the genotype data to further protect 

against possible residual confounding and potential differences in microarray platforms in 

the imputation procedure. We could not control for certain factors such as substance abuse 

because by our selection criteria they could only occur among cases and there was no 

variability among the controls. However, we note that in previous work on similar outcomes 

sensitivity analyses suggested that accounting for these factors did not materially change the 

results (10.1101/2021.01.12.426438). We accounted for multiple testing by controlling the 

false discovery rate (FDR) via the Benjamani-Hochberg algorithm81, and used FDR<5% to 

declare findings genome-wide significant.

We carried out an additional cell-type deconvolution analysis to explore if the differential 

expression results were potentially confounded by cell proportion differences between the 
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cases and controls. We estimated the proportion of major brain cell types of the bulk samples 

using a single-nucleus RNA sequence reference sample generated with the 10X protocol 

from 5 brain regions (the, sACC, AMYG, DLPFC, hippocampus and nucleus encumbens) 

on 8 neurotypical controls (10.1101/2020.10.07.329839). We used the combined data from 

all five brain regions for our reference sample to maximize the sample size of the reference 

sample for determining cell-types profiles82. Combining data from all five brain regions 

and using only controls may add “noise” into the selection of cell-type specific marker 

genes for subsequent deconvolution of the bulk sACC and AMYG samples as described 

below. However, because we have found that cell-type differences typically contribute a 

greater proportion of variance in gene expression than either brain region or disease status, 

we concluded it was reasonable to proceed with this reference sample, especially given 

larger, more appropriate reference samples for these brain regions were not available. The 

deconvolution was performed with the ReferenceBasedDecomposition function from the 

R package BisqueRNA version 1.0.4 (10.1038/s41467-020-15816-6), using the use.overlap 

= FALSE option. The cell types considered in the deconvolution of the bulk samples 

were astrocytes, microglia, oligodendrocytes, oligodendrocyte progenitor cells, excitatory 

neurons, inhibitory neurons, T-cells, vascular smooth muscle cells and endothelial cells. 

Marker genes were selected by first filtering for genes common between the bulk data and 

the reference data, then calculating the ratio of the mean expression of each gene in the 

target cell type over the highest mean expression of that gene in a non-target cell type. 

The 25 genes with the highest ratios for each cell type were selected as markers. We found 

that the estimated proportion of major cell types did not systematically differ between cases 

and controls (Supplementary Figure 6). Moreover, when we explored differential expression 

models that additionally controlled for cell proportion estimates per sample over and above 

the covariates described above, the results were nearly unchanged with correlations greater 

than 0.95 (Supplementary Figure 7). As a result, we reported results without the estimated 

cell-type proportions.

We further carried out a weighted gene co-expression network analysis (WGCNA) using 

the gene level count data from both cases and controls and both brain regions analyzed 

together to identify modules of genes that were co-expressed across conditions83. Before 

running the WGCNA, the unwanted fixed effect covariates controlled for in the differential 

expression analysis were first regressed out, while preserving the wanted biological/clinical 

effects of diagnosis, brain region, their statistical interaction, age and sex. We then tested 

whether the identified modules of genes were enriched in genes that were differentially 

expressed between BD cases and unaffected controls using simple logistic regression, or 

whether the eigengene of each module was associated with BD status using linear mixed 

effects models adjusting for the wanted biological effects above and treating donor as a 

random intercept to account for the correlations in WGCNA sample eigengenes from the 

same donor. We further tested whether the modules implicated by the above analyses were 

enriched for genes of specific GO pathways using simple hypergeometric tests, and whether 

the more highly connected genes (i.e. hub genes) in the implicated modules were further 

enriched for differentially expressed genes over the background of all genes in the module 

using Wilcoxon rank sum tests with the Kwithin metric to define intramodular connectivity. 

We also tested for cell type enrichments of implicated modules and FDR<5% significant 
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differentially expressed genes in either brain region using Fisher’s exact tests with cell 

type-specific genes for each reported cell type (astrocytes, endothelial cells, excitatory 

neurons, inhibitory neurons, microglia, oligodendrocytes, oligodendrocyte progenitor cells, 

T-cells, and vascular smooth muscle cells) defined based on the single nucleus RNA-seq 

data described above.

Expression/Splicing QTLs.—In subsequent analyses, we modeled the gene, transcript, 

exon and junction feature level data as a function of SNP genotypes using linear regression 

to identify candidate expression quantitative trait loci (eQTL) in each brain region. SNP 

genotypes were coded as the number of minor alleles (0, 1, or 2). All models controlled 

for diagnosis, sex, the top principal components of the expression data at each feature level 

to adjust for technical and potential “batch” effects, and the top 5 principal components 

of the genotype data to adjust for population sub-structure as above. Given the limited 

power to detect trans eQTL effects, and the more opaque mechanisms underlying their 

associations, we focused on cis effects and tested for associations with features within 1 Mb 

of each SNP (500kb up- and down-stream). For our primary analysis, we examined SNPs 

in 881 loci implicated by the PGC study of bipolar disorder with suggestive associations 

at p<1×10−4 before replication, including 31 loci that were genome-wide significant at 

p<5×10−8 after replication2. The loci were defined by an index SNP with the strongest 

p-value of association in the PGC analysis plus all nearby proxy SNPs with r2> 0.8 with the 

index SNP. Statistical significance for genotype effects on each feature type was controlled 

using false discovery rate (FDR) considering all tests with that feature type across the 881 

loci.

We retained for further analyses those loci with significant SNP-feature associations at 

FDR<1%, focusing specifically on associations with the lead SNP, defined as the index SNP 

or the closest proxy SNP with the most significantly associated feature if the index SNP 

was not genotyped or not significantly associated with a feature. Given the considerable 

correlation between features in a given locus, we carried out a conditional analysis in 

which we sequentially conditioned on the most significantly associated feature and tested 

the remaining features to determine which were independently associated with the lead 

SNP11. We also tested for differences in the association of the lead SNP with the most 

significant feature across brain regions by combining data from the brain regions and 

including interaction terms between SNP genotype and indicator variables for each region.

We also analyzed the data for splicing QTLs (sQTL) using leafcutter.v.0.2.884 to process 

the filtered junction read counts generated above and FastQTL85 to test for sQTLs with 

SNPs in the 881 loci implicated by PGC-BD2. Per leafcutter recommendations, we filtered 

any junction reads that were found in less than 40% of the sample. In the sQTL tests we 

controlled for the same covariates as included in the models testing for eQTLs, except 

we included the top principal components of an analysis of the intron ratios generated by 

leafcutter. As with the eQTLs, we focused on lead sQTLs at FDR<1%.

Transcriptome-wide Association Study (TWAS).—We adapted a previously-

developed TWAS workflow74 that was, in turn, modified from the published TWAS 

approach by Gusev and colleagues86. We first filtered target SNPs from the sACC and 
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amygdala samples to those present in our eQTL analyses and harmonized the names and 

coordinates of the SNPs across sample datasets and GWAS summary statistics. We also 

converted the GWAS summary statistics from hg19 to hg38 coordinates2. We then computed 

feature weights at the gene level separately for the amygdala and sACC and applied 

the weights to the GWAS summary statistic SNPs and calculated the functional-GWAS 

association statistics using modified versions of TWAS-FUSION R scripts provided by 

Gusev and colleagues (http://gusevlab.org/projects/fusion/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of FDR<5% significant differentially expressed features overall and by brain 

region. A total of 25,136 genes, 73,214 transcripts, 396,818 exons, and 266,197 junctions 

were tested in the sACC and amygdala. Results shown include: a) Venn diagram of the 

overlap in the number of unique genes with a significant feature by brain region; b) 

breakdown of gene types for the unique set of genes represented in a); and c) breakdown of 

the significant features (gene, transcript, exon or junction) in the implicated genes.
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Figure 2. 
Results of WGCNA analysis: a) boxplot of red module eigengene values for each sample 

by case-control status controlling for age and brain region; b) top 15 enriched pathways in 

the red module containing genes with FDR<5% significant differentially expressed features; 

c) volcano plot of fold change in gene level expression by −log10pvalue for genes in the 

red module, with those genes in the top 15 pathways that have a significant differentially 

expressed features highlighted in red (note some may have differentially expressed features 

other than at the gene level which is shown here); d) boxplot of pink module eigengene 

values for each sample by case-control status, controlling for age and brain region; e) 

top 15 enriched pathways in the pink module containing genes with FDR<5% significant 

differentially expressed features; and f) volcano plot of fold change in gene level expression 

by −log10pvalue for genes in the pink module, with those genes in the top 15 pathways that 

have a significant differentially expressed features highlighted in red (note some may have 

differentially expressed features other than at the gene level which is shown here). Boxplots 

in a) and d) show data on 126 BD cases and 142 controls in the sACC (green circles) 

together with 121 BD cases and 122 controls in the amygdala (blue circles). The boxplots 

display the median as the center line, the interquartile range (IQR; 25th – 75th percentile) 

as the box range, and 1.5 times the IQR as the whiskers unless a minimum/maximum is 

reached.
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Figure 3. 
Summary of FDR<1% expression (eQTL) and splicing (sQTL) quantitative trait loci in loci 

suggested by the latest Psychiatric Genomics Consortium (PGC) genome-wide association 

study of bipolar disorder. Tests were carried out for QTL associations between 10,777 

SNPs and gene (n=4,647), transcript (n=14,434), exon (n=76,589) and junction (n=49,188) 

features in these loci, and results summarized for the lead SNP in each locus. a) Overlap 

of loci with significant eQTL/sQTL by brain region among the 30 genome-wide significant 

loci. b) and c) Breakdown of gene types for the implicated genes in a) and the features that 

are associated in the genome-wide significant loci. d) Overlap of loci with significant eQTL/

sQTL by brain region among the 850 suggestive genome-wide loci. e) and f) Breakdown of 

gene types for the implicated genes in d) and the features that are associated in these loci.

Zandi et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2022 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Gene visualization plots and accompanying SNP-feature scatterplots for the lead SNP with 

significant e/sQTLs (FDR<1%). The gene visualization plots show the location of the 

lead SNP in blue and exon/intron models in black for all protein coding transcripts and 

the union gene model for each gene. Specific gene features are shown in red if they are 

down-regulated in the e/sQTL and in green if they are up-regulated. Red/green highlighted 

boxes over introns represent down/up regulated junctions between corresponding exons. The 

SNP-feature boxplots show residualized expression levels (from the eQTL linear regression 

models described in the Methods) of the most significant feature with the lead SNP, with 

SNP genotypes shown from most to least common: a) SCN2A (β=−1.12, p=5.08×10−29) 

and b) GRIN2A (β=−0.07, p=1.32×10−5). Boxplots for a) and b) show results based on 

262 samples (126 BD cases and 142 controls) from the sACC and display the median as 

the center line, the IQR as the box range, and 1.5 times the IQR as the whiskers unless a 

minimum/maximum is reached.
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Figure 5. 
Scatterplot of Z-score test statistics from TWAS of genes in the sACC versus amygdala. A 

total of 13,822 genes were tested across both brain regions. Points highlighted in colors are 

FDR<5% significant in the amygdala (n=125), sACC(n=156), or both regions (n=34). Points 

along the X=0 or Y=0 axes were not estimated in the amygdala or sACC, respectively, 

typically because heritability estimates failed in one of the regions and subsequent models 

could not be estimated.
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Table 1.

Details of the FDR<1% cis eQTLs with Lead SNPs in GWAS Significant Loci by Brain Region*

Index SNP Chr:Pos:Ref:Alt AMYG sACC Best P GWAS Effect (+/−) e/sQTL Effect (+/−)

rs17183814 Chr2:166152389:G:A SCN2A (Sp) SCN2A (Sp) 5.47E-22 − −

rs11557713 Chr18:60243876:G:A ZCCHC2 (Ex) ZCCHC2 (Tx) 3.25E-13 + −

rs112114764 Chr17:42201041:G:T ASB16-AS1 (Gn) ASB16-AS1 (Gn) 9.85E-08 + −

rs9834970 Chr3:36856030:T:C N/A TRANK1 (Gn) 2.32E-07 − −

rs4447398 Chr15:42904904:A:C LRRC57 (Gn) LRRC57 (Gn) 5.54E-07 − −

rs11647445 Chr16:9926966:T:G N/A GRIN2A (Ex) 1.32E-05 + −

rs57195239 Chr2:97376407:A:AT LMAN2L (Gn) LMAN2L (Jx) 2.19E-05 − +

rs3804640 Chr3:107793709:A:G BBX (Ex) N/A 2.45E-05 − −

rs10035291 Chr5: 80796368:T:C SSBP2 (Jx) SSBP2 (Ex) 1.01E-04 − −

Gn=gene; Tx=transcript; Ex=exon; Jx=Junction; Sp=Splicing

*
Shown are conditionally independent associations with the lead SNPs at FDR<1% across the 2 brain regions where the evidence points to a single 

gene in one of the 31 genome-wide significant loci from PGC-BD22. Gene symbols and the features in these genes that are associated are shown. 
The feature in parenthesis is the most significant feature in the specific brain region, and the bolded feature is the most significant feature across 
the 2 brain regions. The Best P shows the p-value for the most significant SNP-feature across both brain regions. GWAS and e/sQTL effects show 
the observed direction of effect of the alternate allele with + for increased risk/up-regulation and − for decreased risk/down-regulation. Results are 
based on QTL models described in the Methods.
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