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Abstract

Knowledge Distillation (KD) is one of the widely known methods for model compression. In

essence, KD trains a smaller student model based on a larger teacher model and tries to

retain the teacher model’s level of performance as much as possible. However, existing KD

methods suffer from the following limitations. First, since the student model is smaller in

absolute size, it inherently lacks model capacity. Second, the absence of an initial guide for

the student model makes it difficult for the student to imitate the teacher model to its fullest.

Conventional KD methods yield low performance due to these limitations. In this paper,

we propose Pea-KD (Parameter-efficient and accurate Knowledge Distillation), a novel

approach to KD. Pea-KD consists of two main parts: Shuffled Parameter Sharing (SPS) and

Pretraining with Teacher’s Predictions (PTP). Using this combination, we are capable of

alleviating the KD’s limitations. SPS is a new parameter sharing method that increases the

student model capacity. PTP is a KD-specialized initialization method, which can act as a

good initial guide for the student. When combined, this method yields a significant increase

in student model’s performance. Experiments conducted on BERT with different datasets

and tasks show that the proposed approach improves the student model’s performance by

4.4% on average in four GLUE tasks, outperforming existing KD baselines by significant

margins.

Introduction

How can we improve the accuracy of knowledge distillation (KD) with smaller number of param-
eters? KD uses a well-trained large teacher model to train a smaller student model. Conven-

tional KD method [1] trains the student model using the teacher model’s predictions as

targets. That is, the student model uses not only the true labels (hard distribution) but also the

teacher model’s predictions (soft distribution) as targets. This can be implemented by intro-

ducing an additional KL divergence loss term between the student and teacher models’ predic-

tions to the loss function. It is well-known that the student model learns to imitate the teacher

model’s predictions, thereby resulting in an improved performance [1]. Since better KD accu-

racy is directly linked to better model compression, improving KD accuracy is valuable and

crucial.
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Naturally, there have been many studies and attempts to improve the accuracy of KD. Sun

et al. [2] introduced Patient KD, which utilizes not only the teacher model’s final output but

also the intermediate outputs generated from the teacher’s layers. Jiao et al. [3] applied addi-

tional KD in the pretraining step of the student model. However, existing KD methods share

the limitation of students having lower model capacity compared to their teacher models, due

to their smaller size. In addition, there is no proper initialization guide established for the stu-

dent models, which especially becomes important when the student model is small. These limi-

tations lower than desired levels of student model accuracy.

In this paper, we propose Pea-KD (Parameter-efficient and accurate Knowledge Distilla-

tion), a novel KD method designed especially for Transformer-based models [4] that signifi-

cantly improves the student model’s accuracy. Pea-KD is composed of two modules, Shuffled

Parameter Sharing (SPS) and Pretraining with Teacher’s Predictions (PTP). Pea-KD is based

on the following two main ideas.

1. We apply SPS in order to increase the effective model capacity of the student model without

increasing the number of parameters. SPS has two steps: 1) stacking layers that share

parameters and 2) shuffling the parameters between shared pairs of layers. Doing so

increases the model’s effective capacity which enables the student to better replicate the

teacher model.

2. We apply a pretraining task called PTP for the student. Through PTP, the student model

learns general knowledge about the teacher and the task. With this additional pretraining,

the student more efficiently acquires and utilizes the teacher’s knowledge during the actual

KD process.

Throughout the paper we use Pea-KD applied on BERT model (PeaBERT) as an example to

investigate our proposed approach. We summarize our main contributions as follows:

• Novel framework for KD. We propose SPS and PTP, a parameter sharing method and a

KD-specialized initialization method. These methods serve as a new framework for KD to

significantly improve accuracy.

• Performance. When tested on four widely used GLUE tasks, PeaBERT improves student’s

accuracy by 4.4% on average and up to 14.8% maximum when compared to the original

BERT model. PeaBERT also outperforms the existing state-of-the-art KD baselines by 3.5%

on average.

• Generality. Our proposed method Pea-KD can be applied to any transformer-based models

and classification tasks with small modifications.

Related work

Pretrained language models

The framework of first pretraining language models and then finetuning for downstream tasks

has now become the industry standard for Natural Language Processing (NLP) models. Pre-

trained language models, such as BERT [5], XLNet [6], RoBERTa [7] and ELMo [8] prove how

powerful pretrained language models can be. Specifically, BERT is a language model consisting

of multiple transformer encoder layers. Transformers [4] can capture long-term dependencies

between input tokens by using a self-attention mechanism. Self-attention calculates an atten-

tion function using three components, query, key, and value, each denoted as matrices Q, K,
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and V. The attention function is defined as follows:

A ¼
QKT

ffiffiffiffiffi
dk

p ð1Þ

AttentionðQ;K;VÞ ¼ softmaxðAÞV ð2Þ

It is known that through pretraining using Masked Language Modeling (MLM) and Next

Sentence Prediction (NSP), the attention matrices in BERT can capture substantial linguistic

knowledge. BERT has achieved the state-of-the-art performance on a wide range of NLP tasks,

such as the GLUE benchmark [9] and SQuAD [10].

However, these modern pretrained models are very large in size and contain millions of

parameters, making them nearly impossible to apply on edge devices with limited amount of

resources.

Model compression

As deep learning algorithms started getting adopted, implemented, and researched in diverse

fields, high computation costs and memory shortage have started to become challenging fac-

tors. Especially in NLP, pretrained language models typically require a large set of parameters.

This results in extensive cost of computation and memory. As such, Model Compression has

now become an important task for deep learning. There have already been many attempts to

tackle this problem, including quantization [11] and weight pruning [12]. Two promising

approaches are KD [13, 14] and Parameter Sharing, which we focus on in this paper.

Knowledge Distillation (KD)

As briefly covered in the introduction, KD [1, 15] transfers knowledge from a well-trained and

large teacher model to a smaller student model. KD uses the teacher model’s predictions on

top of the true labels to train the student model. It is proven through many experiments that

the student model learns to imitate the soft distribution of the teacher model’s predictions and

ultimately performs better than learning solely from the original data. There have already been

many attempts to compress BERT using KD. Patient Knowledge Distillation [2] extracts

knowledge not only from the final prediction of the teacher, but also from the intermediate

layers. TinyBERT [3] uses a two-stage learning framework and applies KD in both pretraining

and task-specific finetuning. DistilBERT [16] uses half of the layers of BERT-base model and

applies KD during pretraining and finetuning of BERT. BERT-of-Theseus [17] attempts to

compress the BERT model by progressively replacing each consecutive two layers to one dur-

ing training. Although BERT-of-Theseus might not be seen as a direct KD approach, it still

shares the same objective of compressing the BERT model and shows comparable results with

the previous works. Despite several related works to improve the performance of KD, insuffi-

cient capacity and the absence of a clear initialization guide are some of the existing KD meth-

od’s area of improvement.

Parameter sharing

Sharing parameters across different layers is a widely used idea for model compression. There

have been several attempts to apply parameter sharing in transformer architecture and BERT

model. However, the existing parameter sharing methods exhibit a large tradeoff between

model performance and model size. They reduce the model’s size significantly but also suffers

from a great loss in performance as a result.
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Proposed method

In the following, we provide an overview of the main challenges faced in KD and our methods

to address them. We then discuss the precise procedures of SPS and PTP in detail. Lastly, we

explain our final method, PeaBERT and the training details. The code for Pea-KD is available

at https://github.com/snudm-starlab/Pea-KD.

Overview

BERT-base model contains over 109 million parameters. Its extensive size makes model

deployment often infeasible and computationally expensive in many cases, such as on mobile

devices. As a result, industry practitioners commonly use a smaller version of BERT and apply

KD. However, the existing KD methods face the following challenges:

1. Insufficient model capacity of the student model. Since the student model contains fewer

number of parameters than the teacher model, its model capacity is also lower. The smaller

and simpler the student model gets, the gap between the student and the teacher grows,

making it increasingly difficult for the student to replicate the teacher model’s accuracy.

The limited capacity hinders the student model’s performance. How can we enlarge the stu-

dent model’s capacity while maintaining the same number of parameters?

2. Absence of proper initial guide for the student model. There is no widely accepted and

vetted guide to selecting the student’s initial state of the KD process. In most cases, a trun-

cated version of pretrained BERT-base model is used. In reality, this hinders the student

from reproducing the teacher’s results. Can we find a better method for the student’s KD

initialization?

We propose the following main ideas to address these challenges:

1. Shuffled Parameter Sharing (SPS): increasing ‘effective’ model capacity of the student.

SPS consists of two steps. Step 1 increases the student’s effective model capacity by stacking

parameter-shared layers. Step 2 further improves the model capacity by shuffling the shared

parameters. Shuffling enables more efficient use of the parameters by learning diverse set of

information. As a result, the SPS-applied student model achieves much higher accuracy

while still using the same number of parameters.

2. Pretraining with Teacher’s Predictions (PTP): a novel pretraining task utilizing teach-

er’s predictions for student initialization. To address the limitation of the initial guide, we

propose PTP, a novel pretraining method for the student by utilizing teacher model’s pre-

dictions. Through PTP, the student model pre-learns knowledge latent in the teacher’s soft-

max output which is hard to learn during the conventional KD process. This helps the

student better acquire and utilize the teacher’s knowledge during the KD process.

The following subsections describe the procedures of SPS, PTP, and PeaBERT in detail.

Shuffled Parameter Sharing (SPS)

SPS improves student’s model capacity while using the same number of parameters, address-

ing the capacity limitations of a typical KD. SPS is composed of the following two steps.

In the first step, we double the number of layers in the student model. We then share the

parameters between the bottom half and the upper half of the model, as graphically repre-

sented in Fig 1a. The motivation behind this first step is to increase the model capacity with a

more complex structure without introducing any additional parameters. By applying step 1,

the student model now has more layers while maintaining the same number of parameters
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used. This leads to a higher model complexity, which we expect will increase model capacity

and performance.

In the second step, we shuffle the Query and Key parameters between the shared pairs as

shown in Fig 1b. That is, for the shared upper half of layers we use the original Query parame-

ters as Key parameters, and the original Key parameters as Query parameters. The motivation

behind step 2 is that parameter shuffling allows the model to have increased parameter effi-

ciency and additional regularization effect. The intuition behind shuffling becomes clear when

we compare the model with and without step 2. Let us consider the case depicted in Fig 1b. In

step 1, the first layer’s Query parameter is used as a Query parameter in both the first layer and

in the shared fourth layer. Since this parameter is used only as a Query parameter throughout

the model, it will only learn the information relevant to Query. In step 2, on the other hand,

this parameter’s function changes due to shuffling. The first layer’s Query parameter is used as

a Key parameter in the shared fourth layer. Thus it has the opportunity to learn the important

features of both the Query and the Key, gaining a more diverse and wider breadth of knowl-

edge. The shuffling mechanism allows the parameters to learn diverse information, thereby

maximizing learning efficiency. We can also view this as a type of regularization or multi-task

learning. Since these parameters need to learn the features of both the Query and the Key, this

prevents overfitting to either one. Therefore, we expect the shuffling mechanism to improve

the generalization ability of the model.

SPS is depicted in Fig 1b. For the 6-layer student case we slightly modify the architecture as

shown in Fig 1c; we apply SPS only on the top 3 layers.

Pretraining with Teacher’s Predictions (PTP)

There can be several candidates for KD-specialized initialization. We propose a pretraining

approach called PTP, and experimentally show that it improves KD accuracy.

Most of the previous studies on KD do not elaborate on the initialization of the student

model. There are some studies that use a pretrained student model as an initial state, but those

pretraining tasks are irrelevant to either the teacher model or the downstream task. To the best

of our knowledge, our study is the first case that pretrains the student model with a task rele-

vant to the teacher model and its downstream task. PTP consists of the following two steps.

In the first step, we generate PTP labels for our data based on the teacher’s predictions. We

first input the training data in the teacher model and collect the teacher model’s predictions.

We then define “confidence” as the following. We apply softmax function to the teacher

Fig 1. Graphical representation of SPS. Each figure represents (a) first step of SPS (b) second step of SPS, and (c) modified SPS for a 6-layer student,

respectively.

https://doi.org/10.1371/journal.pone.0263592.g001
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model’s predictions, and the maximum value of the predictions is defined as the confidence.

Next, with a specific threshold “t” (a hyperparameter between 0.5 and 1.0), we assign a new

label to the training data according to the rules listed in Table 1. We call these new artificial

labels as PTP labels.

In the second step, using the artificial PTP labels we created, we now pretrain the student

model to predict the PTP label when for a given input. We train the student model until con-

vergence. Once these two steps are complete, we use this PTP-pretrained student model as the

initial state for the KD process.

The motivation behind PTP is that it can serve as a prior before moving on to the actual KD

process by allowing the student model to learn the high-level knowledge of the teacher’s pre-

dictions in advance. The core idea is to make PTP labels by explicitly expressing important

high-level information from the teachers’ softmax outputs, such as whether the teacher model

predicted correctly or how confident the teacher model is. Pretraining using these labels would

help the student acquire the teacher’s generalized knowledge latent in the teacher’s softmax

output. This pretraining makes the student model better prepared for the actual KD process.

For example, if a teacher makes an incorrect prediction for a data instance x, then we know

that x is generally a difficult one to predict. Since this knowledge is obtainable only by directly

comparing the true label with the teacher’s output, it would be difficult for the student to

acquire this in the conventional KD process. Representing this type of information through

PTP labels and training the student to predict them could help the student acquire such deeply

latent knowledge included in the teacher’s output much easily. Intuitively, we expect that a stu-

dent model that has undergone such a pretraining session is better prepared for the actual KD

process and will likely achieve better results.

PeaBERT: SPS and PTP combined

Overall framework of PeaBERT. PeaBERT applies SPS and PTP together on BERT for

maximum impact on performance. Given a student model, PeaBERT first transforms it into

an SPS model and applies PTP. Once PTP is completed, we use this model as the initial state of

the student model for the KD process. The overall framework of PeaBERT is depicted in Fig 2.

Learning details of PeaBERT. For the starting point of the KD process, a well-finetuned

teacher model should be used. We use the 12 layer BERT-base model as the teacher. The

learned parameters are denoted as:

ŷt ¼ arg min
yt

X

i2N

LCEðyi; sðztðxi; y
t
ÞÞÞ ð3Þ

The θt denotes parameters of the teacher, σ denotes the softmax function, xi denotes the train-

ing data, zt denotes the teacher model’s output predictions, yi denotes the true labels, and LCE

denotes cross-entropy loss.

Table 1. Assigning new PTP labels to the training data.

Teacher’s prediction is correct? confidence > t? PTP label

True True confidently correct

True False unconfidently correct

False True confidently wrong

False False unconfidently wrong

https://doi.org/10.1371/journal.pone.0263592.t001
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We then pretrain the student model with PTP labels using the following loss:

ŷs
PT P
¼ arg min

ys

X

i2N

LCEðy
PT P
i ; sðzsðxi; y

s
ÞÞÞ ð4Þ

where yPT P
i denotes the PTP labels and the subscript s denotes the student model. When PTP

is completed, we use the ŷs
PT P

as the initial state of the KD process. Our KD process uses three

loss terms in total: a cross-entropy loss between student model’s final predictions and ground-

truth labels, a Kullback-Leiber divergence loss between the final predictions of student and

teacher models, and a mean-squared error loss between the intermediate layers of student and

teacher models.

The loss function is as follows (more details can be found in [2]):

L ¼ ð1 � aÞL
CE
ðyi; sðzsðxi; y

s
ÞÞ þ aL

KL
ðsðzsðxi; y

s
Þ; sTðztðxi; ŷ

t
ÞÞÞÞ þ b

X

ðk1 ;k2Þ2K

jjzk1s � z
k2
t jj

2

2 ð5Þ

where LKL denotes the Kullback-Leibler divergence loss, K denotes the index pairs of layers

we use for intermediate layer-wise distillation, and zk denotes the output logits of the k-th

layer. α and β are hyperparameters.

Note that during the KD process, we use a softmax-temperature T, which controls the soft-

ness of teacher model’s output predictions introduced in [13].

sTðziÞ ¼
ezi=T
X

j

ezj=T ð6Þ

Experiments

We discuss experimental results to assess the effectiveness of our proposed method. Our goal

is to answer the following questions.

• Q1. Overall performance. How does PeaBERT perform compared to the currently existing

KD methods?

• Q2. Effectiveness of SPS. To what extent does SPS improve the effective capacity of the stu-

dent model without increasing the number of parameters?

Fig 2. Overall framework of PeaBERT. The bottom left box represents applying SPS to the student model. The middle box illustrates applying PTP to

the SPS-applied student model. The last box represents applying KD on the PTP-trained and SPS-applied student model. The final output is our

PeaBERT model.

https://doi.org/10.1371/journal.pone.0263592.g002
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• Q3. Effectiveness of PTP. Is PTP a good initialization method? Compared to the conven-

tionally-used truncated version of the BERT-base model, what is the impact of PTP on the

model’s performance?

Experimental settings

Datasets. We use four of the most widely used datasets in the General Language Under-

standing Evaluation (GLUE) benchmark [9]: SST-2 (https://nlp.stanford.edu/sentiment/index.

html), QNLI (https://rajpurkar.github.io/SQuAD-explorer/), RTE (https://aclweb.org/aclwiki/

RecognizingTextualEntailment), and MRPC (https://www.microsoft.com/en-us/download/

details.aspx?id=52398). For sentiment classification, we use the Stanford Sentiment Treebank

(SST-2) [18]. For natural language inference, we use QNLI [10] and RTE. For paraphrase simi-

larity matching, we use Microsoft Research Paraphrase Corpus (MRPC) [19]. Specifically,

SST-2 is a movie review dataset with binary annotations where the binary label indicates posi-

tive and negative reviews. QNLI is a task for predicting whether a pair of a question and an

answer is an entailment or not. RTE is based on a series of textual entailment challenges and

MRPC contains pairs of sentences and corresponding labels, where the labels indicate the

semantic equivalence relationship between the sentences in each pair.

Competitors. We use Patient Knowledge Distillation (PatientKD [2]) as our baseline

learning method to compare and quantify the effectiveness of PeaBERT. PatientKD is one of

the most widely used baselines and is a variant of the original Knowledge Distillation method

[1]. We conduct experiments on BERT model [5] and compare the results of PeaBERT to the

original BERT. In addition, we compare the results with other state-of-the-art BERT-distilla-

tion models, including DistilBERT [16] and TinyBERT [3].

Training details. We use the 12-layer original BERT model [5] as a teacher model and

further finetune the teacher for each task independently. The student models are created using

the same architecture as the original BERT, but the number of layers is reduced to either 1, 2,

3, or 6 depending on experiments. That is, we initialize the student model using the first n-lay-

ers of parameters from the pretrained original BERT obtained from Google’s official BERT

repo (https://github.com/google-research/bert). We use the standard baseline PatientKD and

the following hyperparameter settings: training batch size from {32, 64}, learning rate from {1,

2, 3, 5}�10−5, number of epochs from {4, 6, 10}, α between {0.1 and 0.7}, and β between {0 and

500}.

Metrics. We followed the official GLUE leaderboard’s metric for each dataset. We use

accuracy for RTE, SST-2, and QNLI. For MRPC, we decided to use F1 score as our main met-

ric following the previous works [3, 16]. We followed this convention for exact and fair com-

parison with the previous works. For each model and dataset we ran 10 experiments with

random seeds and chose the one with the best validation score.

Overall performance

We summarize the performance of PeaBERT against the standard baseline PatientKD in

Table 2. We also compare the results of PeaBERT to the competitors DistilBERT, TinyBERT

and BERT-of-Theseus in Table 3. We observe the following from the results.

First, we see from Table 2 that PeaBERT consistently yields higher performance in down-

stream tasks across all three model sizes. Notably, PeaBERT shows improved accuracy by an

average of 4.7% for the 1-layer student, 5.1% for the 2-layer student, and 3.3% for the 3-layer

student (Note that we use F1 score for MRPC when calculating the average accuracy through-

out the experiments). A maximum improvement of 14.8% is achieved in PeaBERT1-QNLI.
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These results validate the effectiveness of PeaBERT across varying downstream tasks and stu-

dent model sizes.

Second, using the same number of parameters, PeaBERT outperforms the state-of-the-art

KD baselines DistilBERT, TinyBERT, and BERT-of-Theseus by 5.6%, 1.3%, and 2.1% on aver-

age. We use a 6-layer student model for this comparison. An advantage of PeaBERT is that it

achieves remarkable accuracy improvement just by using the downstream dataset without

touching the original pretraining tasks. Unlike its competitors DistilBERT and TinyBERT,

PeaBERT does not touch the original pretraining tasks, Masked Language Modeling (MLM)

and Next Sentence Prediction (NSP). This reduces training time significantly. For example,

DistilBERT took approximately 90 hours with eight 16GB V100 GPUs, while PeaBERT took a

minimum of one minute (PeaBERT1 with RTE) to a maximum of one hour (PeaBERT3 with

QNLI) using just two NVIDIA T4 GPUs.

Finally, another advantage of PeaBERT is that it can be applied to other transformer-based

models with minimal modifications. The SPS method can be directly applied to any trans-

former-based models, and the PTP method can be applied to any classification task.

Effectiveness of SPS

We perform ablation studies to verify the effectiveness of SPS. We compare three models

BERT3, SPS-1, and SPS-2. BERT3 is the original BERT model with 3 layers, which applies none

of the SPS steps. SPS-1 applies only the first SPS step (paired parameter sharing) to BERT3.

SPS-2 applies both the first step and the second step (shuffling) to BERT3.

The results are summarized in Table 4. Compared to the original BERT3, SPS-1 shows

improved accuracy in all the downstream datasets with an average of 1.1%, verifying our first

motivation. Comparing SPS-1 with SPS-2, we note that SPS-2 consistently shows even better

performance with an average of 1.9%, which validates our second motivation. Based on these

Table 2. Overall results of PeaBERT compared to the state-of-the-art KD baseline, PatientKD.

Model RTE (Acc) MRPC (F1) SST-2 (Acc) QNLI (Acc) Avg

BERT1-PatientKD 52.8 80.6 83.6 64.0 70.3

PeaBERT1 53.0 81.0 86.9 78.8 75.0

BERT2-PatientKD 53.5 80.4 87.0 80.1 75.2

PeaBERT2 64.1 82.7 88.2 86.0 80.3

BERT3-PatientKD 58.4 81.9 88.4 85.0 78.4

PeaBERT3 64.5 85.0 90.4 87.0 81.7

The results are evaluated on the test set of GLUE official benchmark. The subscript numbers denote the number of independent layers of the student.

https://doi.org/10.1371/journal.pone.0263592.t002

Table 3. PeaBERT in comparison to other state-of-the-art competitors.

Model # of params RTE(Acc) MRPC(F1) SST-2(Acc) QNLI(Acc) Avg

DistilBERT 42.6M 59.9 87.5 91.3 89.2 82.0

TinyBERT 42.6M 70.4 90.6 93.0 91.1 86.3

BERT-of-Theseus 42.6M 69.0 91.4 91.5 89.9 85.5

PeaBERT 42.6M 73.6 92.9 93.5 90.3 87.6

The cited results of the competitors are from the official papers of each method. For accurate comparison, model dimensions are fixed to six layers across all models

compared. The results are derived from GLUE development set.

https://doi.org/10.1371/journal.pone.0263592.t003
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results, we conclude that both steps of the SPS process work as intended to increase the student

model’s capacity without increasing the number of parameters used.

Effectiveness of PTP

We perform an ablation study to validate the effectiveness of using PTP as an initial guide for

the student model. We use BERT3+SPS, which is SPS applied on BERT3, as our base model.

We compare the results of PTP to its variants PTP-1 and PTP-2. Note that PTP uses four labels

constructed from two types of information latent in the teacher model’s softmax prediction:

(1) whether the teacher predicted correctly and (2) how confident the teacher is. PTP-1 is a

variant of PTP that uses only two labels that state whether the teacher predicts correctly or not.

PTP-2 is another PTP variant that uses two labels to state whether the teacher’s predictions is

confident or not. PTP-1 and PTP-2 contain different type of teacher’s information in their

labels, respectively. From the results summarized in Table 5, we see that PTP-1 and PTP-2

increase the student’s accuracy by 0.5% and 0.8% on average, respectively. Combining PTP-1

and PTP-2, which is essentially our proposed PTP method, further improves model accuracy

by an average of 1.5%. This study supports the efficacy of our PTP method.

These results prove two things: (1) The student that goes through only the conventional KD

process does not fully utilize the knowledge included in the teacher model’s softmax outputs,

and (2) PTP does help the student better utilize the knowledge included in teacher’s softmax

outputs. This firmly supports the efficacy of our PTP method and also validates our main

claim that initializing a student model with KD-specialized method prior to applying KD can

improve accuracy. As existing KD methods do not place much emphasis on the initialization

process, this finding highlights a potentially major, undiscovered path to improving model

accuracy. Further and deeper researches related to KD-specialized initialization could be

promising.

Conclusion

In this paper, we propose Pea-KD, a new KD method for transformer-based distillation, and

show its efficacy. Our goal is to address and reduce the limitations of the currently available

Table 4. An ablation study to validate each step of SPS.

Model # of params RTE (Acc) MRPC (F1) SST-2 (Acc) QNLI (Acc) Avg

BERT3 21.3M 61.4 84.3 89.4 84.8 80.0

BERT3+SPS-1 21.3M 63.5 85.8 89.6 85.5 81.1

BERT3+SPS-2 21.3M 68.6 86.8 90.2 86.5 83.0

The results are derived using GLUE dev set.

https://doi.org/10.1371/journal.pone.0263592.t004

Table 5. An ablation study to verify PTP.

Model # of params RTE (Acc) MRPC (F1) SST-2 (Acc) QNLI (Acc) Avg

BERT3+SPS 21.3M 68.6 86.8 90.2 86.5 83.0

BERT3+SPS+PTP-1 21.3M 69.0 88.0 90.4 86.6 83.5

BERT3+SPS+PTP-2 21.3M 69.3 88.3 90.9 86.8 83.8

BERT3+SPS+PTP 21.3M 70.8 88.7 91.2 87.1 84.5

The results are derived using GLUE dev set.

https://doi.org/10.1371/journal.pone.0263592.t005
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KD methods: insufficient model capacity and absence of proper initial guide for the student.

We first introduce SPS, a new parameter sharing approach that uses a shuffling mechanism,

which enhances the capacity of the student model while using the same number of parameters.

We then introduce PTP, a KD-specific initialization method for the student model. Our pro-

posed PeaBERT comes from applying these two methods SPS and PTP on BERT. Through

extensive experiments conducted using multiple datasets and varying model sizes, we show

that our method improves KD accuracy by an average of 4.4% on the GLUE test set. We also

show that PeaBERT works well across different datasets, and outperforms the original BERT

as well as other state-of-the-art baselines on BERT distillation by an average of 3.0%.

One limitation of this work is that the proposed method is verified only on the BERT

model. As a future work, we plan to apply our technique to other pretrained language models

as well. We also plan to delve deeper into the concept of KD-specialized initialization of the

student model. Also, since PTP and SPS are independent processes on their own, we plan to

combine PTP and SPS with other model compression techniques, such as weight pruning and

quantization.
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