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Abstract: In biological research domains, liquid chromatography–mass spectroscopy (LC-MS) has
prevailed as the preferred technique for generating high quality metabolomic data. However, even
with advanced instrumentation and established data acquisition protocols, technical errors are
still routinely encountered and can pose a significant challenge to unveiling biologically relevant
information. In large-scale studies, signal drift and batch effects are how technical errors are most
commonly manifested. We developed pseudoDrift, an R package with capabilities for data simulation
and outlier detection, and a new training and testing approach that is implemented to capture and
to optionally correct for technical errors in LC–MS metabolomic data. Using data simulation, we
demonstrate here that our approach performs equally as well as existing methods and offers increased
flexibility to the researcher. As part of our study, we generated a targeted LC–MS dataset that profiled
33 phenolic compounds from seedling stem tissue in 602 genetically diverse non-transgenic maize
inbred lines. This dataset provides a unique opportunity to investigate the dynamics of specialized
metabolism in plants.

Keywords: maize; metabolomics; LC–MS; signal drift; data normalization

1. Introduction

Metabolomics concerns the study of small molecular compounds or metabolites
(<1500 Da) and is essential for advancements in metabolism research in biological sys-
tems [1]. The metabolome is influenced by complex interactions between the genome,
proteome, and transcriptome with the environment [2], and evoking changes to the
metabolome and the associated effects on metabolic pathways has direct applications
to pharmacology, drug development, and improvements to plant productivity, composi-
tion, and resilience [3,4]. Maize is among the most productive and economically important
crops, with an annual production of over 700 million metric tons globally [5]. Many tools
and technologies have facilitated previous maize improvement efforts, and future improve-
ments will benefit from metabolomics-based research [6]. In particular, valuable insights
are likely to come from larger scale metabolomic experiments and evaluations.

A metabolomic analysis involves identifying and/or quantifying many metabolites
simultaneously either by targeted (metabolite identity known) or untargeted (metabolite
identity unknown) methods [1]. Liquid chromatography coupled with tandem mass
spectrometry (LC–MS) is currently the dominant technique used in biological research
due to its high sensitivity and selectivity [7,8]. However, metabolic profiles from extracts
obtained from genetically identical individuals, or even from the same biological sample
can have significant variability, the sources of which can be traced to extraction efficiency,
changes in the injection volume, inlet interference contamination, column contamination
(due to the complex matrices), or drift in ionization efficiency [8]. Despite taking appropriate
actions during the data acquisition phase to minimize unwanted sources of variation,
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obtaining repeatable measurements across different instruments, and even on the same
instrument, remains a challenging task. Furthermore, these challenges can be compounded
in large-scale studies where LC–MS runs are often split into several analytical batches, each
potentially containing a unique combination of technical variability [9].

Combining data across batches in large-scale studies is imperative for increasing the
statistical power of downstream analyses and interpretation. Therefore, several strategies
have emerged to capture and correct for systematic errors in metabolomics data [10]. The
most robust methods rely on regularly interspersed quality control (QC) samples included
within and between batches [11], which are meant to capture temporal signal drift trends
and detect any additional technical errors. QC data points can then be used to apply a
computationally efficient correction to the entire dataset, for instance, with a QC-Robust
Spline Correction (QC-RSC) [12]. However, there is no universally applicable approach
to predetermine QC sample composition or the frequency at which QC samples should
be included along the LC–MS run sequence; these are typically influenced by practical
and experiment-specific considerations. While a high frequency of QC sample inclusion
may be useful for thoroughly capturing systematic errors, these samples occupy LC–MS
run slots that might otherwise be allocated to experimental samples, increasing the size
of the experiment and subsequently increasing the opportunity for error. To this end,
non-QC-based correction approaches have been attempted [8,13,14]. However, the benefits
from increased experimental throughput come at the expense of a potentially reduced
ability to detect and correct for systematic errors.

Here, we present pseudoDrift, a new R package that combines the beneficial aspects
of QC- and non-QC-based technical error correction methods. pseudoDrift relies on a
training and testing procedure to estimate non-observed QC data points (pseudoQC) from
metabolomics data with partial QC (trueQC) representation. pseudoDrift is not a correction
method per se, but rather offers a strategy for estimating pseudoQC reference points that
can be used to make data corrections using other already existing methods. By default,
pseudoDrift uses the QC-RSC correction method [12]. However, the non-adjusted data
containing pseudoQC estimations are also returned and can be exported if alternative
correction methods are preferred by the user. Additional functionality of pseudoDrift
comes in the form of simulation and outlier detection capabilities. Compared to currently
available LC–MS simulation tools [15–18], which aim to simulate raw data that need to
subsequently be processed before generating manipulatable peak matrices, pseudoDrift
allows for direct simulation of peak matrices based on metadata gathered from online
databases such as the MassBank of North America [19]. The outlier detection method
implemented in pseudoDrift relies on absolute differences between sample replicates
to generate an expected tailed distribution, which is used to identify potential outliers.
The pseudoDrift package is publicly available at https://github.com/jrod55/pseudoDrift
(accessed on 11 April 2022). In this study, the main objectives were to demonstrate the
utility of pseudoDrift using simulated data and to apply the workflow to a newly generated
large-scale maize seedling LC–MS phenolic profiling dataset. Although the metabolites
extracted and analyzed were from maize, the development and assessment of this tool are
applicable to any specific organism. We selected maize because of its importance as a crop
and the availability of a well-studied diversity panel [20,21].

2. Results and Discussion
2.1. Simulating Data with pseudoDrift

To compare each of the analysis workflow functions from pseudoDrift with existing
approaches, we used data produced with the ‘simulate_data()’ function, assuming three
batches with sample sizes of 100, 200, and 300, respectively (Figure S1). We set the QC
frequency to have each 25th sample represent a trueQC, and used the default effect severity
settings (slope and batch magnitude set to 1.25). The simulated data corresponded to the
phenolic compound tricin, which we queried using the MoNA [19] accession ID FIO00738.
From the simulated data output, we retained the type 4 signal drift effect data for analysis,

https://github.com/jrod55/pseudoDrift
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and as a control, the data without any signal drift effects (see Materials and Methods). As a
reference, and to depict the inputs and outputs of ‘simulate_data()’, we included a visual
representation of a simple example of three batches that we did not use in our analysis
(Figure 1).
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Figure 1. Simulated data produced by the ‘simulate_data()’ function. For each compound queried in
the user provided structure-data file (SDF), a simulated peak area matrix with arbitrary units of area
(AUA) is returned, along with four additional matrices, each with a different signal drift effect type
applied. SDF files are available through the MassBank of North America (MoNA). The larger points
in each plot represent the simulated QC samples, and smaller points represent non-QC simulated
data points.

2.2. Performance Evaluation of the pseudoDrift Analysis Workflow

For outlier detection, we compared ‘pw_outlier()’ to the commonly used 1.5*Interquar-
tile Range (IQR) method, and a formal statistical testing approach with an iterative evalu-
ation of the Grubbs test statistic [22] with a 0.05 type 1 error rate. With ‘pw_outlier‘, we
used the default 0.95 quantile threshold (Figure 2), and we observed the expected tailed
distribution in each batch of the simulated data (Figure S2).

Between outlier detection methods tested, ‘pw_outlier()’ identified a total of 24 potential
outliers, IQR detected 7, and the iterative Grubbs test identified a single point (Figure S3).
Although ‘pw_outlier()’ detected the largest number of possible outliers, they were not
all necessarily at the extremes of the peak area distribution. The distinguishing feature
of ‘pw_outlier()’, compared to the two conventional outlier detection methods tested,
was that it accounted for the experimental unit (set of three observations) as opposed to
treating the distribution of all observations as a whole. This was particularly relevant given
that extreme observations, when consistent between replicate measures, could represent
biological anomalies that may warrant further investigation. Treating all samples as a whole
and basing outlier detection on their distribution would not necessarily have captured the
within experimental unit variability as ‘pw_outlier()’ did. A noteworthy characteristic of
‘pw_outlier()’ is that the number of potential outliers returned will always be a function of
the quantile threshold set. In our simulated data, the 24 potential outliers represented 5%
(1-quantile threshold) of non-QC observations from each batch. Therefore, the user should
take this into consideration when applying ‘pw_outlier()’ and interpreting the results.
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Figure 2. Visual representation of the outlier detection approach implemented in the ‘pw_outlier()’
function. Given a peak area matrix for a particular compound or feature, all pairwise differences
between sample replicates are computed. The distribution of these differences is expected to be
positively skewed, with values surpassing a given quantile threshold (0.95% shown) marked as
potential outliers.

We assessed the performance of ‘pseudo_sdc()’ by using the simulated data batch
with the largest sample size as the training batch and then comparing the coefficient of
determination (R2) and root mean squared error (RMSE) from 10-fold cross-validation
between signal drift corrected data and the control. Here, the comparison we made was
between using either pseudoQC or trueQC samples to correct for signal drift with the
QC-RSC [12] method. As a reference, we included a visual representation of parameters
optimized by ‘pseudo_sdc()’ and an example of how the process was carried out (Figure 3).

Gauging the performance of ‘pseudo_sdc()’ solely on its ability to reduce the variability
among the simulated trueQC samples would have underestimated the ability of pseudoQC
samples to capture and correct for signal drift (Figure S4). However, the benefit of using
simulated data was that each observation effectively served as a QC sample since we
knew the originally simulated value. Regressing the signal drift corrected data on the
originally simulated values, we found that using pseudoQCs to correct the data resulted in
a correction (R2 = 0.7404; RMSE = 3810) which was on par with the performance of a trueQC-
based correction (R2 = 0.7499; RMSE = 3744) (Figure S5). Our data-driven approach, which
took advantage of the data variability while training a model on trueQCs as anchors in the
training batch, also reduced systematic bias in how the signal drift correction was applied.
The trueQC correction more effectively corrected a portion of batch 3 in the simulated data
compared to other batches (Figure S5), whereas the pseudoQC correction appeared to have
an equal performance across batches (Figure S5). The bias reduction with the pseudoQC
correction was likely due to the differences between how trueQC and pseudoQC samples
captured the signal drift trend. The trueQC samples were independent of the data as a
whole and were able to capture sharp changes in signal drift, while pseudoQC provided
a more general representation of the trend and captured more subtle signal drift patterns
with information from the data variability.
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user. The parameter name is given in the title of each plot, and all computations are made using
arbitrary units of area (AUA). By default, the mean squared error is minimized between estimated
pseudoQC and true QC samples in the training batch (E).

2.3. Maize LC–MS Phenolic Data Analysis with pseudoDrift

Prior to applying the pseudoDrift analysis workflow to the normalized maize LC–MS
dataset consisting of peak areas for 33 phenolic compounds (Table S1), we identified
five compounds (apigenidin, dihydrokaempferol, luteolin 7-O-glucoside, syringic acid,
and syringol) with limits of detection (LOD) threshold values greater than 25% of all
experimental samples across sub-batches. The LOD for each compound varied by sub-
batch (Table S1), and, therefore, so did the proportion of experimental samples above
the LOD. To avoid a large proportion of missing data for apigenidin, dihydrokaempferol,
luteolin 7-O-glucoside, syringic acid, and syringol, they were completely excluded from
downstream analyses. The remaining compounds were independently analyzed with the
‘pw_outlier()’ function with default arguments. This identified the top 5% of observa-
tions per batch as possible outliers. Importantly, with the conservative action of omitting
all observations identified with ‘pw_outlier()’, no single inbred line was removed com-
pletely from the data. The ‘pw_outlier()’ cleaned data were subsequently processed with
‘pseudo_sdc()’ with batch 4 used as the training batch. The optimal parameters to estimate
pseudoQC samples were determined for each compound (Table S2) and used to apply the
signal drift correction across batches (File S2). Each compound had distinct signal drift
patterns, although the batch-to-batch effect was substantially more pronounced for some
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compounds. For example, caffeic acid and 4-chlorogenic acid in batch 2 were considerably
lower than in other batches (File S2). However, since ‘pseudo_sdc()’ calculated pseudoQC
samples based on quantiles determined in the training batch, we were able to capture this
batch-to-batch effect along with the signal drift trends.

With existing QC-based signal drift and batch correction methods such as QC-RSC [12],
we would have been restricted to analyzing the data from batch 4 alone since it was
the sole batch with trueQC samples represented (Table 1). Compared to the two non-
QC-based methods tested, combatting batch effects (ComBat) [23,24] and batch effect
removal (ber) [25], pseudoDrift substantially reduced the maximum distance between any
two trueQC points when plotted along the first and second principal components (PCs)
(Figure 4). Thus, suggesting an overall improved correction across compounds.

Table 1. Summary of samples per batch, type of standard included, and whether QC samples were
represented or not.

Batch Num.
Samples

External
Standard

Internal
Standard

QC Samples
Represented

B1 165 Yes No No

B2 198 Yes No No

B3 663 Yes No No

B4 1008 Yes Yes Yes
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Independently, even for compounds with severe batch-to-batch effects, such as caffeic
acid and 4-chlorogenic acid (File S2), there were no major differences in the inter-batch
corrections between pseudoDrift and the ComBat and ber methods (Figure 5). However,
as demonstrated by a flatter line among trueQC points in batch 4, pseudoDrift performed
best at simultaneously correcting for intra-batch signal drift effects as well. Together, these
results highlight the improvements to signal drift and batch corrections, which pseudoDrift
achieved by coalescing QC and non-QC approaches into a new correction method.
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3. Materials and Methods
3.1. Plant Material and Experimental Design

We grew a set of 602 genetically diverse maize inbred lines in a controlled environ-
ment room under high-intensity light emitting diode (LED) lights at the Wisconsin Crop
Innovation Center. Our experiment consisted of a completely randomized design (CRD),
with three replications per inbred line, with independent randomization applied per set of
602 lines. We recorded instances where seeds failed to germinate in any of the first three
replicates and re-planted these in a fourth replication. In all replications, we sowed seeds
into 32-cell flats and hand watered them every other day for the first 7 days. On the 8th
day, we transitioned to a daily watering with an automated flood fertigation watering
system, which was programmed to submerge the 32-cell flats for 5 min per day. A total of
21 days passed from planting to harvest. During the growing period, we maintained the
temperature at 28 ◦C and artificially controlled the photoperiod by supplying 16 h of light
followed by 8 h of darkness. At harvest, we used 15 mL conical Falcon tubes to collect the
basal 6 cm of seedling stem tissue and immediately placed samples into liquid nitrogen
prior to lyophilizing.

3.2. Reagents for Stock and Working Solutions

We procured the reagents used in this study from Sigma-Aldrich (Burlington, MA,
USA) Cayman Chemical (Ann Arbor, MI, USA), Indofine chemical (Hillsborough, NJ, USA),
and ChromaDex (Irvine, CA, USA) except apimaysin, maysin, and rhamnosylisoorientin,
which were provided by Michael McMullen (USDA-ARS) and Maurice Snook (Iowa State
University), and when performing dilutions, we used ultrapure (>18 Ω) water generated
through a Milli-Q system. The metabolites we profiled included 33 phenolic compounds
with available chemical standards (Table S1). For each compound, we prepared 1 mM stock
solutions by reconstituting them in 80% (v/v) HPLC grade methanol or 100% dimethyl
sulfoxide (DMSO). We prepared a pooled mixture containing all 33 standards, each at 1 µM,
and through serial dilution produced samples with concentrations between 1000 nM and
1.7 nM that we used as external standards. Following the same procedure, but with a final
concentration of 50 nM, we prepared an internal standard (8-prenylnaringenin). For sample
preparation, we used an extraction solvent consisting of 80% (v/v) HPLC grade methanol
and 0.1% (v/v) formic acid.

3.3. Preparation of Stem Tissue Extracts and QC Samples

The sample preparation occurred in four separate batches, each including a different
number of experimental samples (Table 1). Batch 1 was the smallest with 165 samples,
followed by batch 2 with 198 samples, batch 3 with 663 samples, and batch 4 with
1008 samples. We homogenized the maize seedling stems using liquid nitrogen and PVC
tubes containing a metal bead which a paint shaker (5G-HD Harbil 5-Gallon Shaker model
37600) agitated for 2 min at 60 Hz. To avoid cross-contamination, we washed the PVC tubes
and metal beads with distilled water and soap between samples. We then transferred a
~50 mg subset of the homogenized plant material to a 2 mL Eppendorf tube and combined
it with the extraction solvent. Batch 4 included the 8-prenylnaringenin internal standard,
which was added at the same time that we combined the extraction solvent and the plant
material. Our extraction protocol consisted of a 12 h incubation at 4 ◦C, followed by recon-
stitution by vortexing for 20 s, centrifugation for 5 min at 15,000× g at room temperature,
and recovery of the supernatant for analysis by LC–MS. We prepared a QC sample from
100 randomly selected samples and included it in the analysis for batch 4 alone.

3.4. LC–MS Data Acquisition

The instrument used for data acquisition was a Waters ACQUITY TQD Tandem
Quadrupole UPLC/MS/MS (Waters Corporation, Milford, MA, USA). We created a 10 min
targeted multiple reaction monitoring (MRM) method for detecting 33 phenolic compounds
(Table S1) and ran samples in accordance with their corresponding preparation batch. The
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method was based on a modification of the MRM method previously described [26] Within
batches, we designated samples to sub-batches based on the preceding external standards
set (Figure 6). Across the four batches, we ran a total of 13 external standards sets. For each
inbred maize line, we ran the three biological replicates consecutively of one another (e.g.,
Line 1 rep1, then Line 1 rep2, Line 1 rep 3, Line 2 rep1, etc.). While in the queue, samples
and external standards remained at −10 ◦C in an autosampler. The instrument used a
10 µL injection volume, and the liquid chromatographic separation occurred at 30 ◦C using
a reverse phase Waters Symmetry C18 column (4.6 × 75 mm; 3 µm) with a Symmetry C18
prep-column (3.9 × 20 mm; 5 µm) (Waters Corporation, Milford, MA, USA). We integrated
peak areas for all compounds using MassLynx (v 4.2) with vendor-specific data files (.raw)
to produce the raw peak area matrix.
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Figure 6. Experimental design, data acquisition, and data processing steps. Samples labeled as QC
represent a pooled mixture from 100 randomly selected experimental samples. A representation of
the LC–MS measurement sequence for each batch and sub-batch during the data acquisition phase is
shown. During data processing, the depiction represents the instrument response as a function of the
retention time (RT).

3.5. PseudoDrift Workflow

The pseudoDrift R package consisted of three main functions, including ‘simulate_data()’,
‘pw_outlier()’, and ‘pseudo_sdc()’. We wrote these functions to run independently of one
another, although here we defined the analysis workflow as applying the ‘pw_outlier()’,
and ‘pseudo_sdc()’ functions in sequential order.

We wrote the ‘simulate_data()’ function to accept a structure-data file (SDF) as input,
such as those obtained from the MassBank of North America (MoNA) [19], and to return
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the queried compound metadata as output, along with a simulated peak area matrix,
and four distinct signal drift and batch effect types applied to the simulated data. The
simulated peak area patterns among QC samples were used to define the four effect types.
A monotonic increase or decrease was characteristic of a type 1 effect, a type 2 effect
described changes in magnitude occurring between batches, a type 3 effect was random,
and a type 4 effect consisted of a combination of type 1 and type 2 effects and represented
what is most commonly encountered in metabolomics datasets. To provide user flexibility
and ensure reproducible simulation results, we included arguments for seed setting, QC
frequency, batch size, and effect type severity.

The first analysis function we developed was ‘pw_outlier()’, which served as an
outlier detection method to accommodate common features of metabolomic data, including
skewed distributions and limited biological or technical replication. Our approach relied on
assessing pairwise absolute differences within and between replicate measures of samples.
To illustrate, we considered a hypothetical metabolite or feature and a single sample with
three biological replicates. The ‘pw_outlier()’ function computed the pairwise differences
between replicates as |rep1-rep2|, |rep1-rep3|, and |rep2-rep3| and then extended this
computation to each sample within a given batch. This generated a distribution of pairwise
differences, which we assumed to be positively skewed with observations at the upper tail
representing potential outliers. The default threshold, which we set for ‘pw_outlier‘ to use,
was the 0.95 quantile of all sample pairwise differences in a batch. We included arguments
allowing the user to have flexibility over the quantile threshold and grouping factor used
for calculations.

We developed the second analysis function, ‘pseudo_sdc()’, to work with a variable
representation of trueQC samples across batches. Using data corresponding to the batch
where trueQC samples were most represented, or the batch designated as the training batch,
‘pseudo_sdc()’ optimized four parameters that were used to calculate pseudoQC points
that effectively captured the signal drift pattern in the training batch. To effectively capture
signal drift in this context meant to minimize the criterion set by the user, which, by default,
we set to use the mean squared error (MSE) between the trueQC samples and the estimated
pseudoQC points in the training batch. The four parameters, which ‘pseudo_sdc()’ op-
timized, concerned the range of values used in the calculation (quantile.increment), the
number of equally sized breaks to divide the batch into (test.breaks), the window size
to calculate a rolling median over (test.window), and the positional offset (test.index) of
pseudoQCs, relative to test.window. With the optimized parameters from the training
batch, ‘pseudo_sdc()’ applied the same parameters to the remaining batches to estimate the
pseudoQC points from the data variability. We integrated the QC-RSC [12] method into
‘pseudo_sdc()’ with an auxiliary function from the pmp R package [27] to perform the data
correction with pseudoQC samples in lieu of the trueQC samples.

To illustrate the functionality of pseudoDrift, we included a tutorial (File S1), where
we walked through each of the analysis functions of pseudoDrift. In the tutorial, we used
several additional R packages, including ChemmineR [28] for SDF file indexing, ggpubr [29]
and cowplot [30] for plotting, data.table [31] and tidyverse [32] for data manipulation, and
caret [33] for regression modeling.

3.6. LC–MS Data Normalization and Processing with pseudoDrift

We set the limits of detection (LOD) for each phenolic compound as three times
the peak area of the blank (extraction solvent alone) and established the thresholds on a
per compound and sub-batch basis, with the blank reference value for each compound
calculated as the mean peak area across blank samples within the corresponding sub-
batch. If cumulatively across sub-batches more than 25% of samples were below the
respective compound LOD thresholds, we removed the compounds from the data matrix
and completely excluded them from the downstream analyses. Rather than using absolute
values, we opted for relative peak area values to ensure compounds were uniformly
analyzed, including those that accumulated at high levels in maize stem tissues (outside the
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upper range of external standards). We normalized the data by the weight of each sample
to provide arbitrary units of area (AUA) and removed blanks and external standards from
the data matrix prior to analyzing with the pseudoDrift workflow. When applying the
analysis workflow, we processed one compound at a time, first with ‘pw_outlier()’, then
with ‘pseudo_sdc()’ using batch 4 as the training batch to estimate pseudoQC samples
across all batches, and to correct for signal drift and batch effects in the data. We tested
two additional non-QC correction methods, specifically the ComBat [23,24] and ber [25]
methods implemented in the dbnorm R package [14], and compared the data corrections
based on the maximum distance of trueQC points (maxDist) along the first two PCs
calculated from the full peak area matrix. A smaller maxDist indicated trueQC samples
had less variability, and thus, a better correction of technical errors.

4. Conclusions

The number and impact of MS-based metabolomics studies in the biological sciences
are likely to rise as methods improve and accessibility to instrumentation by researchers
increases. This is particularly true for systems biology, which now has a plethora of com-
plementary omics tools available to investigate previously unexplored areas of research. In
metabolomics, however, there are still currently various limitations, which, if not addressed,
result in abnormally noisy data. Here, we developed a simulation and analysis tool for ap-
plying statistical techniques in a training and testing framework, to calculate and correct for
technical errors in a dataset and to identify potential outliers. We applied this analysis tool
to maize phenolic compounds, including phenylpropanoids and flavonoids, since they play
important functions in the interaction of maize with the environment and provide health
benefits to humans [34–36]. The here-developed tool has numerous applications, such as
combining datasets across studies with differing levels of trueQC sample representation,
identifying irregular observations in data, and as an experiment planning resource. An
advantage of pseudoDrift is that it is written in R and includes an extensive tutorial (File
S1), which makes it accessible to all users, including those without extensive programming
experience. Since pseudoDrift uses a train–test procedure, a disadvantage might come from
users attempting to apply the method to estimate pseudoQC points from small training
batches. To offer the greatest flexibility to users, pseudoDrift does not have any batch
restrictions, but rather we include a warning to users within the software documentation
in R. While the focus of our study was on a targeted LC–MS method applied to samples
prepared from a very large number of maize seedlings, the methods described can be
broadly applied to other metabolomics datasets, or any temporally variable data prone to
technical errors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12050435/s1, File S1: Tutorial for pseudoDrift and ac-
companying supplementary figures corresponding to simulated data and analyses conducted with
pseudoDrift functions. File S2: Signal drift trends for all compounds retained after data cleaning.
In each plot, arbitrary units of area (AUA) are plotted against the injection order. On each page,
(A) is the data before applying the signal drift and batch correction with pseudoQCs, and (B) is the
plot after applying the correction. Table S1: Targeted multiple reaction monitoring (MRM) method
for 33 phenolic compounds investigated in maize seedling (21-day-old) stem tissue. Included for
each compound are the name, CAS Registry Number, retention time, polarity mode used during
data acquisition, MS/MS (+/−) fragments, and the molecular weight. Additional columns desig-
nate the limit of detection (LOD) determined for each sub-batch. Table S2: Parameters solved for
‘pseudo_sdc()’ when applied to the maize seedling (21-day-old) data, which minimize the mean
squared error between pseudoQC and trueQC samples when using batch 4 (B4) as the training batch.
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