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Abstract: The response of the quartz crystal microbalance (QCM, also: QCM-D for “QCM with Dissi-
pation monitoring”) to loading with a diverse set of samples is reviewed in a consistent frame. After
a brief introduction to the advanced QCMs, the governing equation (the small-load approximation)
is derived. Planar films and adsorbates are modeled based on the acoustic multilayer formalism.
In liquid environments, viscoelastic spectroscopy and high-frequency rheology are possible, even
on layers with a thickness in the monolayer range. For particulate samples, the contact stiffness
can be derived. Because the stress at the contact is large, the force is not always proportional to the
displacement. Nonlinear effects are observed, leading to a dependence of the resonance frequency
and the resonance bandwidth on the amplitude of oscillation. Partial slip, in particular, can be
studied in detail. Advanced topics include structured samples and the extension of the small-load
approximation to its tensorial version.

Keywords: quartz crystal microbalance; QCM-D; EQCM; label-free biosensing; high-frequency
rheology; high-frequency contact mechanics
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1. Introduction

The use of the quartz crystal microbalance (QCM) in diverse areas keeps growing.
Among its advantages is its simplicity. It is not difficult to mount the resonator plate in one
way or another. Electrical interrogation of the resonance parameters is not difficult either.
Simplicity entails versatility. The QCM can easily be combined with electrochemistry, opti-
cal reflectometry, scanning force microscopy, and other instruments of interface analysis.

Reviews on the QCM can be found in [1–6]. The QCM becomes slightly more com-
plicated on second glance. That concerns intricacies in the operation as well as pitfalls in
interpretation. This text is meant to give practitioners a quick start, still going to beyond
the simple Sauerbrey picture. The concepts underlying the more advanced models are
important when carrying the QCM to non-standard applications (such as the freezing of
droplets or the impact of spheres).

The following list summarizes a few applications. (The list anticipates the later text in
so far, as the topics and problems addressed have not been explained yet, but will be.) The
numbers of citations are returns from a search in the Web of Science, where the dates were
limited to January 2019–April 2021. A total of 1067 entries contain the keyword “QCM”.
“QCM-D” returns 419 entries. “QCM-D” here denotes all instruments reporting frequency
as well as bandwidth (or, equivalently, the dissipation factor) on a number of different
overtones. In the majority of these publications, the QCM is one out of a few different
instruments employed to study the respective samples. The QCM in these studies is a
routine device.

Topics of particular relevance with regard to modeling are:

• Numerous publications discuss the mass uptake of nanoporous and other rigid layers
when exposed to a vapor of the analyte [7]. The porous layer takes the role of the
receptor. The limit of detection of the QCM easily suffices for sensing building on
this principle. (It does not easily suffice for similar sensors, building on adsorption
to a planar surface.) These rigid structures swell and soften less than the polymer
films, which took a similar role in the past [8]. While the emphasis in these works
is on gravimetry, an analysis taking viscoelasticity into account (Equation (46)) will
provide for more in-depth information. Also, it will yield a more accurate value for
the mass uptake than the Sauerbrey equation.

• The search term “EQCM” returns 137 citations. These are increasingly concerned
with an analysis beyond gravimetry. The non-gravimetric effects in this context
mostly originate from roughness (Equation (77)), from the viscoelasticity of the double
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layer (Equation (59)), and from the softness of an active polymer layer (if present,
Equation (46)).

• The keyword “QCM-D and brush” returns 37 entries. The brushes often undergo
swelling/deswelling transitions or show electroresponsivity. Brushes should be mod-
eled taking viscoelastic effects into account. The shear modulus varies between the
bottom and the top, which necessitates the use of a viscoelastic profile (Equation (60)).

• 114 publications are returned for “QCM and particles”. The interpretation of such
QCM data is a topic of ongoing research (Sections 6.1 and 6.3). For instance, the
amount of liquid mass contributing to the gravimetric signal (the “trapped mass”)
usually is not known, quantitatively. A few publications explicitly refer to the positive
frequency shift induced by sufficiently large particles (Equation (70)).

• 69 publications mention bacteria, which often implies bacterial adsorption (reviewed
in [9]). In these cases (and also for cell cultures and biofilms) the shear wave often
does not reach to the top of the layer. The QCM then cannot measure the thickness.
If such a thick sample is homogeneous in viscoelastic terms, the QCM reports the
shear modulus of this medium (Equation (31)). For reviews of applications in the life
sciences, in general, see [10,11].

• Interestingly, 247 hits are returned when asking for “QCM and protein”. Protein
adsorption is also routinely and successfully probed with optical techniques such as
surface plasmon resonance (SPR) spectroscopy. The added information contained in
the layer’s viscoelasticity (Equation (52)) is a distinctive advantage of the QCM.

• On the conceptual side, high-frequency rheology on polymers receives considerable
attention. Some of these publications are returned when the keyword is “tribology”
or “viscoelasticity”. A recent review is contained in [12]. The equations applied
for analysis mostly are similar to what is described in Sections 4.5.3 and 4.6.2. For
thick films (microns), Equation (41) is a suitable fit function. Because the frequency
shifts are large, temperature effects are irrelevant. For thin films (tens of nanometers),
Equation (46) is more suitable than Equation (41). One can hope for data from more
than 10 overtones available for analysis. However, the frequency shifts are smaller,
which makes the analysis more susceptible to artifacts, for instance caused by changes
of temperature.

• Rather few (<10) publications mention large amplitudes and nonlinear behavior. While
this is an interesting field in the authors’ opinion, it has not been explored much, yet.

Some recent reviews (such as [11]) cover acoustic sensors other than the QCM (SAW
devices, FBARs, nanoresonators, . . . ). These devices operate at higher frequency than the
QCM, which implies improved sensitivity in gravimetry. Most of them are smaller than the
QCM. Some models of the QCM can be transferred to the smaller devices, but vibration in
a sufficiently clean thickness-shear mode is often in question.

The quartz crystal microbalance is about 60 years old. At that time, people working
with quartz resonators knew that one can lower the frequency by scribbling onto the plate
with a pencil. Günter Sauerbrey turned this practice into an equation and an instrument [13].
The frequency decreases, following the relationω0 ≈ (κR/mR)

1/2 with κR some effective
stiffness and mR some effective mass. By making the crystal heavier, one slows down its
resonant vibration (Figure 1).

Sauerbrey realized that the relation between mass and frequency shift is particularly
simple if, firstly, the resonator is a plate oscillating in the thickness-shear mode and if,
secondly, the sample consists of a thin film. Most resonators at this time indeed were
thickness-shear resonators. Thin films were routinely coated onto these as electrodes.
This insight allowed to develop film-thickness monitors for deposition processes of vari-
ous kinds.

A side remark: Plates of α-quartz may resonate in the thickness-shear mode if the
crystallographic x-axis is in the surface plane. There are certain angles between the crys-
tallographic y-axis and the surface normal, at which the temperature-frequency coupling
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at room temperature almost vanishes. One of these temperature-compensated cuts is the
widely used AT cut.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 83 
 

 

 
Figure 1. (A) The simplest possible harmonic resonator. A mass is linked to a rigid wall across a 
spring. The resonance frequency is ω0 ≈ (κR/mR)1/2. If mR increases, the resonance frequency de-
creases in consequence. (B) A resonator abandoning the rigid wall. Two masses are linked across a 
spring. The resonance frequency is given as ω0 ≈ (κR/µ)1/2, where µ is the reduced mass (µ = 
m1m2/(m1 + m2)). Again, increasing one of the two masses will lower the resonance frequency. 
The diagram in (B) contains discrete elements, similar to the equivalent lumped-element circuits 
discussed in Section 8.4. (C) Contrasting to the resonators in (A,B), the bell does not consist of dis-
crete masses and springs. It is an elastic body with a certain shape, made from materials with a 
certain density and stiffness. Finding its resonance frequencies (plural) is a classical problem of 
acoustics. For any given resonance, one may construct an equivalent lumped-element model con-
taining discrete elements (as in (A) or (B)), which reproduces this one resonance. In principle, one 
might tune the bell by gluing weights to its rim. The common practice rather is to remove metal in 
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Figure 1. (A) The simplest possible harmonic resonator. A mass is linked to a rigid wall across a
spring. The resonance frequency is ω0 ≈ (κR/mR)

1/2. If mR increases, the resonance frequency
decreases in consequence. (B) A resonator abandoning the rigid wall. Two masses are linked across
a spring. The resonance frequency is given as ω0 ≈ (κR/µ)1/2, where µ is the reduced mass
(µ = m1m2 /(m1 + m2)). Again, increasing one of the two masses will lower the resonance frequency.
The diagram in (B) contains discrete elements, similar to the equivalent lumped-element circuits
discussed in Section 8.4. (C) Contrasting to the resonators in (A,B), the bell does not consist of discrete
masses and springs. It is an elastic body with a certain shape, made from materials with a certain
density and stiffness. Finding its resonance frequencies (plural) is a classical problem of acoustics. For
any given resonance, one may construct an equivalent lumped-element model containing discrete
elements (as in (A) or (B)), which reproduces this one resonance. In principle, one might tune the
bell by gluing weights to its rim. The common practice rather is to remove metal in annular rings,
usually from the inside [14]. That changes both the effective mass and the effective spring constant.
The focus then is not usually on the absolute frequency of the fundamental mode, but rather on the
ratios between the overtone frequencies and the fundamental frequency. These ratios govern the
perception of the bell’s sound.

Sauerbrey’s famous formula is:

∆ f
fref

= −mf
mq

(1)

∆f / fref is the fractional frequency shift. mf and mq are the mass per unit area of the film
and the resonator, respectively. One might also talk about “mass” rather than “mass per
unit area”, but the latter term is more practical. For instance, the mass per unit area is easily
converted to thickness, if the density is known. The resonator’s mass per unit area, mq, may
be replaced by Zq/(2n f0), where Zq = 8.8 × 106 kg/(m2s) is the resonator’s shear-wave
impedance, f0 is the frequency of the fundamental (often 5 MHz), and n is the overtone
order. These relations inserted into Equation (1) lead to:

∆ f = −
2n f 2

0
Zq

mf . (2)

The reasoning behind the Sauerbrey equation is sketched in Figure 2. The interesting
vibration modes are standing transverse waves with antinodes at the surfaces. Figure 2
shows the displacement patterns of the fundamental mode and the 3rd overtone as dashed
lines. (An “overtone” here is an eigenmode, that is, a solution to the boundary value prob-
lem, not to be confused with second-harmonic generation or third-harmonic generation.
The latter terminology is also common in acoustics.) The wavelength is 2dq/n with dq the
thickness of the plate and n the number of nodal planes. Only odd overtones (n = 1, 3, 5,
. . . ) can be excited piezoelectrically, because the even overtones lead to a surface charge
with the same sign on both sides. It is customary to label the overtones (the “overtone
order”) with indices equal to the number of nodal planes. The frequency is fres = ncq/(2dq)
with cq the speed of sound.
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Figure 2. (A) A film increases the wavelength of the standing wave, thereby decreasing the resonance
frequency. (B) If the film is softer than the plate, the displacement pattern has a kink at the interface.
In this case, the fractional frequency shift is proportional to the fractional increase in mass (rather
than thickness).

The Sauerbrey mass, m f , is often quoted in units of µg/cm2. More intuitive would
be a thickness (the “Sauerbrey thickness”), the calculation of which, however, requires
knowledge of the density. With 5 MHz crystals and a density of 1 g/cm3, a 1 nm film shifts
the frequency by ∆f /n = −5.7 Hz. With this density, 1 µg/cm2 corresponds to 10 nm.

Consider a film with the exact same acoustic properties as the resonator itself (top in
Figure 2B). In acoustic terms, the film makes the plate thicker. The wavelength increases
correspondingly and the frequency decreases. If the film is much thinner than the plate,
one might expect the relation ∆ f / fref ≈ −df/dq. This is not the Sauerbrey equation. The
Sauerbrey equation makes a statement about mass, not about thickness. Above, the film
was assumed to have the same acoustic properties as the plate (same density, ρ, same shear
modulus, G). If this is not the case, the displacement pattern has a kink at the resonator-film
interface (bottom in Figure 2B). Sauerbrey went through the mathematics and realized that
the fractional thickness must be replaced by the fractional mass in order to let the relation
be applicable to arbitrary materials.

Assume a resonator with a fundamental frequency of 5 MHz. Further, assume that
the frequency can be determined with a precision of 0.5 Hz. This precision in frequency
translates to a precision in mass of about 10 ng/cm2. Because the unit has the prefix “nano”,
people have advocated the term “quartz crystal nanobalance”. In the end, the “quartz
crystal microbalance” became the accepted term. With a density of about 1 g/cm3, the
thickness resolution of this QCM is about 0.1 nm. The QCM has “submonolayer sensitivity”.
Monomolecular layers of typical bio-adsorbates are slightly thicker than 1 nm. The QCM
has submonolayer sensitivity, but the sensitivity is not deep in the submonolayer range. In
order to study the kinetics of adsorption in detail, one would wish for an even better limit
of detection (LOD, Section 3.6). The LOD of the QCM is good, but not strictly fantastic.

Two competitors are worth a mention. For gas sensing, the surface acoustic wave
devices (SAW devices, [15]) have a better LOD. These are used in some electronic noses.
For label-free biosensing in liquids, surface plasmon resonance spectroscopy (SPR spec-
troscopy [16]) also has an LOD better than the QCM. It is a question of both white noise
and drift. Among the reasons to use the QCM is simplicity. Other reasons are connected to
the depth of information. The QCM gives access to physical parameters beyond the mass
per unit area. This is sometimes emphasized by calling the QCM an “instrument of surface
analysis”, rather than a “sensor”.

Gravimetry in air or vacuum was the QCM’s main use until the early 1980s [17]. At
that time, Nomura in [18,19] and also Bruckenstein and Shay in [20] combined a QCM with
an electrochemical cell and measured the mass transfer during electrodeposition. Attempts
into that direction were made earlier but were less successful [21]. The first experiments
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with this “electrochemical QCM” (EQCM) were analyzed with the Sauerbrey equation.
As was shown later, the Sauerbrey equation also applies in liquids as long as the layer is
rigid (Equation (52), [22]). Of course, the liquid itself also has an influence. This influence
is described by what today is called the Gordon-Kanazawa equation [23]. The Gordon-
Kanazawa equation is a rediscovery. In slightly implicit form, it is, for instance, mentioned
in [24]. Quite generally, a considerable body of experience on acoustic resonators in liquids
was gathered in the 1930s to 1950s, using torsional resonators. Part of this knowledge
is collected in Mason’s book from 1948 [25]. The concepts, which underlie our current
understanding of the liquid-phase QCM, mostly date from that period.

Later, there were two more additions to the techniques. Firstly, the resonance band-
width was analyzed in addition to the resonance frequency [26] and the shifts of fre-
quency and bandwidth were compared between overtones. Secondly, the oscillator cir-
cuits were largely replaced by passive interrogation (impedance analysis [27,28] and ring-
down [29–31]). In recent years, the cost of impedance analyzers has come down [32].
These changes lead to the “advanced QCM”. Another term is “QCM-D” for “QCM with
Dissipation monitoring”. “QCM-D” here is the name of a technique, not of one particular
instrument. In this text, QCM is synonymous to QCM-D.

2. Forced Vibrations, Complex Resonance Frequencies

The following section motivates the complex frequency shift, ∆ f̃ = ∆ f + i∆Γ [33].
The variable Γ denotes the half bandwidth at half height (“bandwidth” for short). The tilde
denotes a complex parameter.

Start from the equation of motion of the forced resonator:

mR
..
x(t) = −ξR

.
x(t)− κRx(t) + Fext(t) (3)

mR is the mass. ξR is the friction coefficient, also called “drag coefficient”. In interfacial
sliding, the “friction coefficient” is a ratio of two forces (tangential to normal). In liquid fric-
tion, it is a ratio of force to velocity. Renaming the force-velocity ratio as “drag coefficient”
avoids this ambiguity. κR in Equation (3) is the spring constant.

We bring all terms containing x(t) to the left-hand side. The source term (the external
force, Fext) shall be of the form F̂ext exp(iωt). The hat (ˆ) denotes a complex amplitude.
Instead of exp(iωt), one might have also written exp(−iωt). That is a matter of convention,
addressed in Box 1. For stationary oscillations of the form x(t) = x̂ exp(iωt), the time
derivative turns into a multiplication with iω:

−ω2mR x̂ exp(iωt) + iωξR x̂ exp(iωt) + κR x̂ exp(iωt) = F̂ext exp(iωt) (4)

We divide by exp(iωt), divide by mR, rename ξR/mR as 2γ, and rename κR/mR as ω2
0:

−ω2 x̂ + 2iωγx̂ +ω2
0 x̂ =

F̂ext

mR
(5)

γ is the damping coefficient and ω0 is the natural frequency. Both have units of inverse
seconds. The amplitude of displacement depends onω as:

x̂ =
1

ω2
0 − ω2 + 2iγω

· F̂ext

mR
(6)

Because the resonances of the QCM are extraordinarily sharp, the frequency of excita-
tion,ω, is close to the natural frequency,ω0.

A side remark: For sharp resonances, the frequency of maximum displacement is
the natural frequency. The natural frequency is called the “resonance frequency”, here.
For broad resonances, there is a slight difference between the natural frequency and the
resonance frequency. The latter then is also called the “ringing frequency”, equal toω0(1 −
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2γ2/ω0
2)1/2. One can always compute the ringing frequency from the natural frequency

and the bandwidth. The difference is not of practical importance for the QCM.

Box 1. Sign conventions.

When describing oscillations with complex numbers, one exploits Euler’s relations, which imply
that cos(ωt) = 1/2(exp(iωt) + exp(−iωt)). In principle, all calculations containing the cosine should
be carried out on the sum of exp(iωt) and exp(−iωt). However, the two calculations with +iωt and
with –iωt run in similar ways. One therefore carries out the calculation just once and eventually
computes the (real) outcome of the calculation as Re(ỹ) = 1/2 (ỹ + ỹ*) where ỹ is the outcome of the
calculation for exp(iωt) and the asterisk denotes complex conjugation.
If entropy is supposed to always increase, the imaginary parts of certain complex response functions
must have certain signs. The sign depends on whether the calculation is carried out with exp(iωt)
or with exp(−iωt). If exp(iωt) is chosen, the signs are:

G̃ = G′ + iG′′ σ̂shear = G̃γ̂shear shear modulus
σshear: stress
γshear: strain

η̃ = η′ − iη′′ G̃ = iωη̃ viscosity
J̃ = J′ −

.
1J′′ J̃ = 1/G̃ shear compliance

c̃ = c′ + ic′′ c̃ = (G̃/ρ)
1/2

= (iωñ/ρ)1/2 speed of shear sound
k̃ = k′ − ik′′ k̃ = ω/c̃ wave number, wave travels

towards +z

Z̃ = Z + iZ′′ Z̃ = ρc̃ = (ρG̃)
1/2

= (iωρη̃)1/2 wave impedance
ω̃res = ω0 + iγ = 2π( fres + iΓ)

= 2π( fres + i fresD/2)
resonance frequency

ω is real
A wave propagating towards +z is written as exp(i(ωt – kz̃)) = exp(iωt) exp(−ik′z) exp(−k′ ′z).

If ω ≈ ω0, the denominator can be simplified following
(
ω2

0 −ω2)≈ (ω 0 +ω)
(ω0 − ω) ≈ 2ω0(ω0 − ω). Equation (6) simplifies to:

x̂(ω) =
1

ω2
0 −ω2 + i2γω

· F̂ext

mR
≈ 1

(ω0 −ω) + iγ
· F̂ext

2ω0mR
(7)

A complex resonance frequency can be defined as:

f̃res =
ω0 + iγ

2π
= fres + iΓ (8)

where Γ = γ/(2π) is the half bandwidth at half height (the complex resonance frequency
makes the algebra easier if the resonances are sharp and if ω + ω0 ≈ 2ω0. Otherwise, it
can cause confusion).

Expressed in terms of the complex resonance frequency, Equation (7) turns into:

x̂( f ) ≈ F̂ext

8π2 fres mR

1

f̃res − f
(9)

The prefactor is often multiplied with an i and then hidden behind some normalization
constant. Proceeding this way and separating the real and the imaginary part leads to:

x̂( f ) ∝
Γ(

f − f res
)2

+ Γ2
+ i

f − f res(
f − f res

)2
+ Γ2

f − f res(
f − f res

)2
+ Γ2

(10)

The first and the second term are shown as a black and a red line in Figure 3.
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Figure 3. A typical output from impedance analysis. Panel (A) shows the conductance Gel (black)
and the susceptance, Bel (red). Together, they form the complex electrical admittance, Ỹel = Gel + iBel,
which is equal to Z̃−1

el with Z̃el the impedance. The real part of the admittance forms the well-known,
symmetric resonance curve (assuming perfect calibration). This is different for the real part of Z̃el

because of the parallel electrical capacitance, C0. Gel(f ) peaks at the series resonance frequency, fres.
Panel (B) shows the polar diagram. Of interest in sensing are the shifts in frequency and bandwidth,
∆f and ∆Γ (C).

The complex resonance frequency plays out its strength when it comes to shifts thereof,
called ∆ f̃ in the following (∆ f̃ = ∆f + i∆Γ). The complex shift was proposed by Eggers and
Funk [33]. Just about all equations predicting frequency and bandwidth can be formulated
in terms of ∆ f̃ . These equations cover ∆f and ∆Γ at the same time.

The half bandwidth, Γ, is related to the energy dissipated per unit time,
.
E, as:

Γ =

.
E

4πE
(11)

E is the energy contained in the oscillation.
In the authors’ opinion, Γ is the best parameter for quantification of dissipative

processes at the QCM surface. Γ puts frequency and bandwidth on equal grounds. For
instance, the noise on ∆f and ∆Γ is similar. Other parameters are in use. Some researchers
use the full bandwidth, w = 2Γ, others use the Q-factor Q = fres/(2Γ), and still others
use the inverse Q-factor Q−1 = 2Γ/ fres and give it a new name and a new letter, namely
“dissipation factor”, D. Sometimes the “dissipation factor” is called “dissipation”, for short.
∆ f̃ may also be expressed in terms of the dissipation factor. The conversion is simplest for
the overtone-normalized frequency shift:

∆ f̃
n

=
∆ f
n

+ i
∆Γ
n

=
∆ f
n

+ i
f0

2
∆D (12)

If ∆D is expressed in units of 10−6 and if f0 is 5 MHz, the conversion from ∆D [10−6]
to ∆Γ/n [Hz] amounts to a multiplication with 2.5.

3. Techniques of Read-Out

The methods of interrogation all rely on piezoelectricity and the plate’s electrical
impedance, Z̃el(ω), in the respective frequency range. Z̃el(ω) (and, also, the admittance,
Ỹel(ω) = 1/Z̃el(ω)) form a resonance curve. The interrogation methods are sometimes
grouped into “active” and “passive”. In the active schemes, the resonator is part of an
oscillator circuit. The amplifier contained in this circuit takes a certain influence on the
oscillation frequency. The other schemes are passive. Passive, however, does not mean
that the apparatus would not take an influence on the resonance parameters, at all. (Even
for the “grandfather clock” [34], the way of driving slightly affects the frequency.) For
piezoelectric resonators, this influence is mediated by piezoelectric stiffening (Section 7).
The stiffness of a piezoelectric plate (and hence its resonance frequency) depends on
whether the two electrodes are open, short-circuited, or connected across some electrical
impedance, Z̃ext. The latter situation is realized in all electrical instrumentation controlling
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the resonator. Again, fres depends on Z̃ext. Calculating the impedance, which the crystal
“sees”, is nontrivial.

The different modes of interrogation differ from each other in cost, speed, and suscepti-
bly to artifacts. They do not, actually, differ much from each other in precision (Section 3.6).
References [35–37] cover the interface electronics in more detail.

3.1. Oscillator Circuits

An oscillator circuit is an amplifier with a resonator in the feedback loop. Because
the resonator’s impedance is small on the resonance frequency, the circuit spontaneously
oscillates at this frequency. Oscillator circuits are the method of choice for clocks [38].
QCMs based on oscillators can be cheap, even after the frequency counter is included in
the total cost. For advanced sensing, oscillators are problematic because the frequency
of oscillation is not strictly equal to the frequency at the peak of the conductance curve.
The latter frequency (the acoustic resonance frequency, also “series resonance frequency”)
is the frequency of relevance for interpretation. The parallel electrical capacitance (C0,
Section 8.4) takes an influence on the oscillation frequency. There are more intricacies in
the details. These would not be a problem, if the small difference between the oscillation
frequency and the series resonance frequency was constant, but this difference depends on
damping and on details of the electronics. Oscillator circuits are available, which output
bandwidth in addition to frequency (bandwidth being often converted to the dissipation
factor) [39,40]. Oscillator circuits usually run on one harmonic only, often the fundamental.

3.2. Impedance Analysis

Impedance analysis [27] avoids the complications inherent to oscillator circuits. An
impedance analyzer (synonymous to “vector network analyzer”, “VNA”) sweeps the
frequency of excitation across the resonance. The resonance parameters are obtained from
a fit of a resonance curve to the admittance trace. A suitable fit function is the phase-shifted
Lorentzian, which is:

Gfit = GmaxΓ
(

Γ
( fres− f )2+Γ2 cosϕ+ fres− f

( fres− f )2+Γ2 sinϕ
)
+Goff

Bfit = GmaxΓ
(

Γ
( fres− f )2+Γ2 sinϕ+ fres− f

( fres− f )2+Γ2 cosϕ
)
+Boff

(13)

The phase shift in Equation (13), ϕ, accounts for an asymmetry of the resonance curve.
Imperfect calibration causes such an asymmetry. The asymmetry can be small, but it rarely
vanishes. Gmax is an amplitude. The parameter Gmax does not contribute much to sensing.
The product GmaxΓ is proportional to the effective area of the plate (Equation (113)). GmaxΓ
sometimes varies slightly during experiment. How these variations depend on the sample’s
properties, is poorly understood

Impedance analysis is among the passive techniques. “Passive”, however, does not
imply that the impedance analyzer would not affect the resonance frequency, at all. The
analyzer’s output resistance, its input resistance, and the length of the cables all take an
influence on frequency and bandwidth because of piezoelectric stiffening. A second caveat:
The resonance frequency as determined from the admittance trace depends on the sweep
rate. Impedance analysis is not quite as reliable as one would wish. Still: impedance
analysis is rather transparent. The problems are noticed and their consequences can be
quantified with moderate effort.

For measurements in liquids, the through (“thru”) configuration is advantageous
because it leads to a small current into the impedance analyzer. The small current is
measured against zero background and may by amplified. The background is nonzero in
the “shunt” configuration, which is also common and works well for experiments in air.
In the shunt configuration (depicted in Figure 4C), a large impedance of the device under
test lets the voltage from the output go straight to the input of the VNA. If the resonator’s
impedance is much larger than 50 Ω, it causes small changes to this input against a large
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background. Because the background is amplified as well, amplification lets the detector
run into overload. A resonator immersed in a liquid has a large impedance on resonance
and should be wired in thru configuration. If grounding the front electrode is an issue,
a transformer as shown in Figure 4B can be employed. Grounding the front electrode is
advisable because the electrical properties of the sample may otherwise affect the resonance
via piezoelectric stiffening.
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Figure 4. When working in liquids, wiring the resonator in the thru configuration (A) lowers the
noise. A balun transformer ((B), such as the unit ADT1-1 from Minicircuits) can be used to ground
the front electrode. The shunt configuration (C) is not recommended for use in liquids.

3.3. Ring-Down

Resonant phenomena can always be probed in either the frequency domain or the
time domain. As long as the dynamical equations are linear, the two modes of interrogation
yield equivalent information (Figure 5). One may either sweep the frequency of an AC
excitation across the resonance (as in impedance analysis) or abruptly shut off the driving
signal and watch the decay as a current trace on an oscilloscope (as in ring-down). The
latter principle is implemented in the instrument marketed by Biolin Scientific (Västra
Frölunda, Sweden).
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Figure 5. The time trace in ring-down and the resonance curve as a function of frequency are related
to each other by a Fourier transform. The resonance parameters (mostly fres and Γ or D) can be
obtained from both sets of data. The precision is similar.

3.4. Multi-Frequency Lock-In Amplification

The multi-frequency lock-in amplifier (MLA) stands between ring-down and impedance
analysis. The MLA applies a comb of frequencies to the resonator. The resonance curve can
be reconstructed from the signals returned to the MLA at these frequencies. The raw data
are time-domain data, which are Fourier-transformed on the instrument’s main board. In
the time domain, the excitation amounts to a series of pulses. The current as displayed on
an oscilloscope (lower right in Figure 6) visualizes the ring-down. The left-hand side and
the right-hand side in Figure 6 describe the same process in the frequency domain and the
time domain, respectively.

The time between two pulses, ∆tcomb, sets the time resolution. ∆tcomb is equal to the
inverse frequency spacing between two members of the comb, ∆f comb. The frequency
spacing, in turn, must be smaller than the bandwidth of the resonance. Otherwise, the
comb will miss the resonance. Using 32 frequencies, which are evenly distributed over a
resonance with a width of about 3 kHz, one achieves a time resolution of 10 ms. However,
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one may also let the comb consist of only five frequencies and space those 500 Hz apart.
The time resolution then improves to 2 ms.
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Figure 6. Excitation and response of a resonator in the frequency domain and the time domain as
determined with the MLA. The instrument applies a comb of up to 32 frequencies. The current
response shows the resonance curve (bottom left). Transformed to the time domain (right), the
excitation amounts to a sequence of pulses with a spacing in time of 1/(∆f comb). The response is
similar to a ring-down process (lower right). Downloaded from www.intermodulation-products.
com/applications/lock-in, accessed on 13 February 2019.

Should a comb covering one particular resonance contain only, for example, 5 fre-
quencies, the other 27 frequencies can be invested in the other overtones. The MLA can
interrogate multiple overtones at the same time. In principle, one might worry about
crosstalk between the different overtones excited in parallel, but this does not appear to be
a problem, in practice [41].

3.5. Fast Measurements, Modulation Experiments

Data acquisition rate is critical for the study of transient phenomena. It is particularly
important in analytical electrochemistry, which often exploits transients [42]. Most current
advanced QCMs are not particularly powerful in terms of time resolution. Typical data ac-
quisition rates are between 1 and 10 data points per second (for experiments in liquids) [43].
While the MLA in the comb mode is faster than most other instruments, one would still
wish for more.

The data acquisition rate can be further improved, if the analysis is based on the
electrical admittance at one, fixed frequency [44–48]. Following [47], we call this mode
the “fixed-frequency-drive” (FFD) mode. As sketched in Figure 7, there is a one-to-one
correspondence between the electrical admittance at this one frequency and the complex
resonance frequency, fres + iΓ. This mode of data acquisition suffers from electrical artifacts,
though. The conversion from Gel + iBel to fres + iΓ assumes that the other parameters of
the fit function in Equation (13) (given as Gmax, ϕ, Goff, and Boff) are constant, which is not
always the case.

Even in the fixed-frequency-drive mode, it is difficult to achieve data acquisition rates
beyond 2πΓ because the resonator remembers previous resonance conditions on a time
scale of (2πΓ)−1. The memory is related to ringing up and ringing down after the resonator
is turned on or off. The details are complicated. They can be studied with a varicap diode
wired in series with the resonator. Switching the capacitance of the diode changes the
stiffness of the quartz plate (piezoelectric stiffening, Section 7), thereby rapidly switching
the resonator’s natural frequency. The resonance frequency as determined from impedance
analysis follows with delay. Deconvolution of experimental data with a memory kernel
should be possible but has not been done so far. Without deconvolution, the time per
data point cannot be less than about 100 µs (for experiments in water, where Γ is a few
kHz [47,48]).

Fast measurements may be combined with accumulation and averaging. This requires
an experimental setting, where the sample responds to a periodic stimulus of some kind.
Among others, a suitable parameter for modulation is the electrical DC potential of the front
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electrode when this electrode at the same time is the working electrode of an electrochemical
setup. The instrument then operates as an electrochemical QCM (an EQCM, Section 9.1).
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Figure 7. Impedance analysis requires a determination of the entire admittance trace (full and dashed
lines), which takes time. Fast measurements can build on the conductance, Gel, and the susceptance,
Bel, at one single frequency close to the center of the resonance, fc. Shifts in Gel and Bel are converted
to shifts in fres and Γ (blue arrows). As the top panel shows, a shift in resonance frequency changes
Bel, but leaves Gel unchanged. Conversely, an increase in bandwidth lowers Gel, but leaves Bel

unchanged (bottom).

Figure 8 shows an example. The sample is an aqueous electrolyte. When the voltage
of the front electrode is switched, ∆f and ∆Γ respond, but they do so with a delay. The
delay is linked to the kinetics of double layer recharging [48].
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Figure 8. Shifts in frequency and bandwidth obtained in a modulation experiment, using the fixed-
frequency-drive mode (FFD mode). The stimulus was the electrical potential of the front electrode,
varied between +0.3 V and −0.3 V vs. a platinum pseudo-reference electrode. The sample was an
electrochemically inert electrolyte. After accumulation overnight, the noise was around 20 mHz,
based on a time interval of 100 µs per data point.

Modulation and accumulation avoid a critical problem of the QCM, which is drift.
Typical QCMs drift by about 1 Hz/h when the crystal was mounted carefully and when all
static stresses have relaxed. Otherwise, the drift can be much larger. The drift is mostly
caused by migration of crystal defects, possibly also by insufficient control of temperature.
The drift can hardly be prevented, but it can be circumvented by choosing the target of
research suitably. The study of fast, repetitive processes does not suffer from drift because
the average (taken over the period of the repetitive process) can be subtracted from the time
traces. The average will drift, but the difference from the average can be accumulated over
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extended periods of time. The data shown in Figure 8 have been accumulated overnight.
As a side remark: Oscillators also allow for fast data acquisition, as demonstrated in [49].

3.6. Noise and Drift

According to the conventions in sensing, the limit of detection, LOD, is three times
the rms noise. Noise is one of the reasons, why surface plasmon resonance spectroscopy
(SPR spectroscopy) is more widespread in label-free biosensing than the QCM. A second
reason is drift. Noise has in depth been studied for clocks [50], but not to the same extent
for the liquid-phase QCM.

To the best of the authors’ knowledge, the different techniques and instruments
driving the liquid-phase QCM reach a frequency noise in a similar range. A convenient
way to calculate a drift-corrected noise from any data set builds on the Hadamard variance,
which is:

δ f 2
Hadamard =

1
6

〈(
fi−1 − 2 f i+ f i+1

)2
〉

i (14)

The Hadamard variance is zero for a straight, sloped line. After a linear fit is subtracted
from a sloped line with added white noise, the root-mean-square noise (rms noise) of this
data set is equal to the square root of the Hadamard variance of the original data set.
Basing the definition of the noise on the Hadamard variance avoids the linear fit. The

drift-corrected rms noise is
(
δ f 2

Hadamard

)1/2
.

In the authors’ laboratory, measurements in water lead to an rms noise on ∆f /n of
about 30 mHz/Hz1/2. The noise depends on the time interval of data acquisition, hence the
Hz1/2 in the denominator. One can always lower the noise by averaging over longer times
(assuming white noise). 30 mHz is the noise, if the instrument outputs one data point per
second. Similar noise is seen in most figures in the published literature (which is a rough
estimate, evidently). Reference [51] reports similar noise for resonators in liquids driven
with an oscillator circuit (as opposed to impedance analysis or ring-down). Using a density
of 1 g/cm3, an LOD in frequency of 90 mHz (which is 3 × the rms-noise) corresponds to
an LOD in adsorbate thickness of ~0.05 nm.

In time and frequency control, the Allan variance is employed more commonly than
the Hadamard variance. When frequencies are determined in time intervals of τ = 1 s, the
Allan variance is:

σ 2
y (τ = 1 s) =

1
2

〈(
yi+1 − yi

)2
〉

(15)

y is the fractional frequency shift. Good quartz clocks achieve σy(τ = 1 s) ≈ 10−11 [52].
For the QCM in water, the noise is larger by a factor of about 1000. With a noise of 30 mHz
on a 5 MHz signal, σy(1 s) is 6 × 10−9. The Q-factor, on the other hand, decreases by only a
factor of about 30. The noise is not proportional to Q−1, as one might expect.

One can understand that the frequency noise increases stronger than Q−1 on a qualita-
tive level. The discussion can build on the fixed-frequency-drive mode (Section 3.5). In a liq-
uid environment, the large damping increases Γ and it also decreases Gmax (Equation (13),
Figure 9). More generally, the noise has a white component, which scales as the ratio of the
thermal energy, kBT, to the power going into the device. When immersing a resonator into
a liquid, the power into the device decreases because the resistance (R1) increases. This
amounts to a first factor of about Q−1. A second factor of Q−1 enters, when a noise in Ỹel
is translated to a noise in frequency. With Q decreasing by about a factor of 30, the noise
(following this rough argument) increases by about a factor of 302.

There may be other sources of noise. For instance, the liquid-phase QCM is susceptible
to acoustic vibrations. Slamming the door leaves a trace in ∆f (t). The coupling is mediated
by bending of the plate as described in [53]. More generally: There probably is room for
improvements on the frequency noise of the liquid-phase QCM.
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Figure 9. When a resonance becomes broader, this lowers the precision in the determination of the
frequency shift twice. Γ increases and Gmax decreases (both in proportion to the inverse Q-factor).
The noise on δB is assumed to be independent of Q in this argument.

4. The Acoustic Multilayer Formalism and Its Consequences

The following sections describe the quantitative analysis of QCM data acquired on
planar samples in detail. As long as the samples are homogeneous in the surface plane, the
acoustic multilayer formalism achieves the modeling.

4.1. Qualitative Data Inspection

Before starting a fit, some qualitative considerations are worthwhile:

• Is −∆f � ∆Γ and is −∆f /n ≈ const.? Did the experiment occur in air? If so, the
response is probably dominated by inertia in the sense of the Sauerbrey equation
(“inertial loading”). With a density of 1 g/cm3 and 5 MHz crystals, a layer thickness of
1 nm leads to −∆f /n = 5.7 Hz. Did the experiment occur in liquid? If so, the response
is probably dominated by the formation of a thin layer. However, −∆f /n may be
smaller than 5.7 Hz per nanometer in case the film is soft (Equation (52)).

• Is −∆f ≈ ∆Γ, is −∆f /n1/2 ≈ const., and was the resonator immersed in a liquid? If so,
the response is probably dominated by changes in viscosity (Equation (29), “viscous
loading”). With 5 MHz crystals, −∆f /n1/2 = 716 Hz corresponds to a viscosity of
1 mPa s (slightly more than the viscosity of water).

• Is ∆f > 0 and is ∆f ·n ≈ const.? If so, the response may be dominated by point contacts
(“elastic loading”, Section 5.1).

• Do ∆f and ∆Γ show unexpected patterns? If plots of ∆Γ versus ∆f show circles or
spirals, the data may originate from a coupled resonance (Equation (79), Section 6).

4.2. The Small-Load Approximation in 1D (Parallel-Plate Model)

In the following, we go beyond the equationω0 ≈ (κR/mR)
1/2 and formulate a con-

tinuum model. The lumped-element description from Figure 1B is abandoned (no discrete
springs, no discrete masses). We treat the resonator as a vibrating body, similar to the bell
shown in Figure 1C. Piezoelectric stiffening is ignored, for now. Piezoelectricity at this level
simply is a convenience, which allows to probe acoustic resonances by electrical means.

In the continuum picture, a resonance amounts to a displacement pattern, which
occurs time-harmonically and which is easily excited to a large amplitude. The deformation
pattern u(x,y,z,t) is:

u(x, y, z) = û(x, y, z) exp(iωt) (16)
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The amplitude û(x, y, z) is the mode of vibration. Because the displacement always
occurs along x, û may be viewed as a scalar (rather than a vector). Further simplifying
the problem, we let all gradients in the plane vanish. The “parallel plate” can be viewed
as an “infinite parallel plate”. It can also be a plate with finite area, Aeff, but the edges
must not affect the mode of vibration (which is unrealistic for AT-cut quartz because of
its anisotropic elasticity). Within the parallel-plate model, the amplitude of displacement,
û ≡ ûx, is a function of z, only.

The resonant modes of vibration are solutions of a boundary value problem. The
boundary condition here are surfaces, which are free of stress. Because the shear stress is
proportional to the shear strain, the shear strain must vanish at the surface (at z = 0 and
z = dq):

σ̂
(
z = 0, dq

)
= Gq

dû
dz

∣∣∣∣
z = 0,dq

= 0 (17)

The origin of the z-axis in Equation (17) is at the back of the plate. For the parallel
plate, the modes of vibration are standing waves:

un(z, t) = ûS cos(knz) exp(iωt) (18)

ûS is the displacement amplitude at the surface.
The boundary condition fixes the wavenumber to discrete values, which are:

kn =
nπ
dq

(19)

where n is the overtone order. Expressed differently, the wavelength, λ, must be an integer
fraction of twice the plate’s thickness. Such discrete sets of solutions are characteristic of
boundary value problems. Small deviations of the overtone frequencies from the integer
multiples of the fundamental frequency are discussed in Section 8.1.

Critical to the above argument was the fact that the resonator surface was stress-free.
The surface must coincide with an antinode. When a sample exerts a periodic stress onto
the surface, the resonance condition changes. Within linear acoustics, the stress, σ̂S, is
proportional to the displacement, ûS. In acoustics, is customary to not discuss the stress-
displacement ratio, but rather the stress-velocity ratio, which is the impedance. Velocity,
v̂S, and displacement, ûS, are related as v̂S = iωûS. The stress-velocity ratio at the
resonator surface is the load impedance, Z̃L. The load impedance is a key variable in the
physics of the QCM. The displacement and the stress at z = dq are ûS cos

(
k̃qdq

)
and

ûSGqk̃q

(
− sin

(
k̃qdq

))
sin
(

k̃qdq

))
, respectively. The stress-velocity ratio follows as:

Z̃L =
−σ̂S

v̂S
=
−Gqd/ dz(û(z))|z = dq

iω̃m
res û(z)|z = dq

=
ûSGqk̃q sin

(
k̃qdq

)
iω̃res ûS cos

(
k̃qdq

)
=

Gqk̃q

iω̃res
tan
(

k̃qdq

)
= −iZq tan

(
k̃qdq

) (20)

The first minus sign occurs because the stress is exerted by the sample onto the
resonator surface (in the direction of −z). It follows that:

Z̃L = −iZq tan
(

k̃qdq

)
= −iZq tan

(
2π
(

fref + ∆ f̃
)dq

cq

)
= −iZq tan

(
2π∆ f̃

dq

cq

)
(21)

The relations cq =
(

Gq/ρq

)1/2
and Zq = (G qρq

)1/2
were used. Zq, cq, and fref

are complex, in principle. However, the resonator’s intrinsic losses are not of interest
in sensing. Writing them as real parameters certainly affects the absolute value of the
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bandwidth, but not its shift induced by the sample. The use of an effective complex k̃q
(rather than kq = ω/cq) is justified in Appendix D.

The relation dq = cq/(2 f 0
)

leads to:

− iZq tan

(
π

∆ f̃
f0

)
= Z̃L (22)

Equation (22) is an implicit equation in ∆ f̃ , which can be solved numerically. It can
also be turned into an explicit equation in ∆ f̃ = ∆ f + i∆Γ by:

– linearizing the tangent as tan
(

π∆ f̃ / f0

)
≈ π∆ f̃ / f0

– evaluating the load impedance Z̃L( f ) at the frequency of the unloaded crystal, rather
than the resonance frequency in the presence of the load.

This explicit equation is:

∆ f̃
f0

=
i

πZq
Z̃L =

i
πZq

−σ̂S

v̂S
(23)

Equation (23) is the small-load approximation applied to the parallel plate. Given its
importance, it is written down in slightly different form one more time:

∆ f + i∆Γ
n f0

=
∆ f + i∆Γ

fref
=

∆ f
fref

+ i
∆D

2
=

1
n

i
πZq

Z̃L (24)

All terms have been normalized to overtone order, as is common in gravimetry. Also,
the shift in the dissipation factor, ∆D, was used in step 3, replacing 2∆Γ/fref.

This section deals with stratified layer systems. For those, the stress-velocity ratio
follows from how the shear wave bounces back and forth inside the sample. Three simple
cases are sketched in Figure 10. However, Equation (23) is more general. Should the sample
be structured, laterally, the load impedance may be replaced by its area average:

∆ f̃
f0

=
i

πZq

〈
Z̃L

〉
area

=
i

πZq

〈
−σ̂S
v̂S

〉
area

(25)
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Figure 10. Three simple experimental configurations, which allow for an analytical prediction of ∆f + i∆Γ. The dashed lines
show the displacement pattern of a shear wave in water (A), in a thin film (B), and in a sample containing a thin film in
water (C). The graph is not to scale. The penetration depth of the shear wave in water, δ, is about 200 nm for a 5 MHz crystal.
Films with a displacement pattern as shown in (C) are a few tens of nanometers thick.

Area averaging is possible, because Equation (23) is linear in the load impedance.
Within the parallel-plate model, 〈. . .〉area is an unweighted area average. For more realistic
resonators, the square of the local amplitude, |ûS(rS)|2, must be included as a weight
function (Section 8.1):

∆ f̃
f0

=
i

πZq

〈
Z̃L

〉
area, weighted =

i
πZq

s
Z̃L(rS)|ûS(rS)|2d2rS
s
|ûS(rS)|2d2rS

(26)
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rS is a point on the resonator surface.
The calculation of the stress-velocity ratio is rather simple for thin rigid films and it is

also simple for semi-infinite media. For layered systems, there are analytical equations (not
all equally simple) [54–56]. Some of them are discussed below. For single contacts with
small contact area, the stress can be replaced by the ratio of the restoring force, F, and the
acoustically active area, Aeff. Should the sample have a more complicated structure, the
stress-velocity ratio needs to be calculated numerically, solving the equations of continuum
viscoelasticity for the given geometry (Section 5.3).

4.3. Inertial Loading

For a thin rigid film as shown in Figure 11, the stress at the resonator surface is
governed by inertia. From Newton’s third law (force = mass × acceleration) it follows
that the stress exerted onto the surface is iωmfv̂S with mf the mass per unit area. The load
impedance is Z̃L = iωmf. This leads to the Sauerbrey equation:

∆ f̃
f0

=
i

πZq
iωmf =

−2n f 0
Zq

mf =
−2n f 0

Zq
〈mf(rS)〉area (27)Sensors 2021, 21, x FOR PEER REVIEW 18 of 83 
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latter case, the mass per unit area must be area-averaged.
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4.4. Semi-Infinite Viscoelastic Media

For semi-infinite, homogeneous viscoelastic media, the load impedance is equal to the
shear-wave impedance, Z̃bulk:

∆ f̃
f0

=
i

πZq
Z̃bulk (28)

The load impedance and the shear-wave impedance must not be confused. Z̃L is
the area-averaged ratio of stress and velocity at the resonator surface. The shear-wave
impedance, Z̃ or Z̃bulk, is the stress-velocity ratio of a propagating shear wave. Z̃ is

a materials constant, given as Z̃ =
(
ρG̃
)1/2

= ρ
(

G̃/ρ
)1/2

= ρc̃. The wave impedance
governs the reflectivity at interfaces (Equation (37)).

The relations Z̃bulk =
(
ρG̃
)1/2

= ρc̃ and G̃ = iωη̃ inserted into Equation (28) lead to:

∆ f + i∆Γ
f0

=
i

πZq

√
iωρη̃ =

−1 + i√
2

1
πZq

√
ωρη̃ =

(−1 + i)√
πZq

√
f0
√

n
√
ρη̃ (29)

Equation (29) is the Gordon-Kanazawa relation [23,24]. If η̃ is independent of fre-
quency, ∆ f and ∆Γ scale as n1/2. The Gordon-Kanazawa relation can be inverted for
viscosity as:
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ρη′ = G′′
ω = −πZ2

q
fres

1
2

∆ f ∆Γ
f 2
0

ρη′′ = G′
ω =

πZ2
q

fres

(∆Γ2 − ∆ f 2)
f 2
0

(30)

In more compact notation, one may write

iωρη̃ = ρG̃ = −
(
πZq

∆ f̃
f0

)2

(31)

The density was moved to the left-hand side in order to emphasize that the QCM
measures the viscosity-density product (or, equivalently, the product ρG̃). The density
often is known and it often varies less than the shear modulus. For instance, adding a
polymer to a solvent much increases the viscosity but leaves the density unchanged within
a few percent. Still: ρ and η cannot be determined separately, using the Gordon-Kanazawa
relation. (Such a separate determination can be achieved with porous coatings [57].)

The reference state must be the resonator in air, if the target of the study is a small
change in the viscosity (for instance caused by a change in pH). That is so, because ρG̃ and
ρη̃ depend on the square of ∆ f̃ . If a change in pH causes a slight change in viscosity, δη̃,
this causes a change in frequency, δ f̃ , following δ(ρη̃) ≈ −1/(iω)

(
πZq/ f 0

)2
[
2∆ f̃ δ f̃

]
.

The term in square brackets is the mixed term of the binomial. A term of the form δ f̃ 2 was
neglected. ∆ and δ have different meanings. ∆ denotes the difference from the dry state, δ
denotes the small shift induced by the change in pH.

For viscoelastic media, ∆Γ is larger than –∆f. For a purely elastic medium (η′ = 0,
η′′ > 0, or G′ > 0, G′′ = 0) the frequency shift vanishes and ∆Γ is equal to (ρG′)1/2 f0/

(
πZq

)
.

This result may appear as counterintuitive, given that the bandwidth is usually associated
with dissipative processes. However, ∆Γ quantifies all forms of energy withdrawn from
the resonator (Equation (11)). The energy may or may not be dissipated inside the medium.
(Of course, it is dissipated eventually, somewhere.) For the semi-infinite elastic medium,
the energy is radiated away towards z = +∞ and ∆Γ is nonzero for that reason.

The displacement pattern in a Newtonian liquid is shown in Figure 12. It is of the form:

û(z, t) = Re
(

ûS exp(i(ωt− k̃z))
)

= ûS cos(ωt− k′z) exp(−k′′z)
= ûS cos

(
ωt− z

δ

)
exp

(
− z
δ

) (32)
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Figure 12. Displacement versus distance for a Newtonian liquid. The blue solid line is the real part,
the red dashed line is the imaginary part of the shear wave. The depth of penetration is about 200 nm.

In the last step, a Newtonian liquid was assumed (η′′ = 0, η′ independent of frequency).
The wave number is then given as k̂ = (1− i)/δ, where δ is the depth of penetration:

δ =

√
2η
ρω

(33)
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With ρ = 103 kg/m3, η = 10−3 Pa s, andω = 2πn × 5 MHz, the depth of penetration
is δ = 252 nm/n1/2. These values inserted into the Gordon-Kanazawa relation predict
−∆f = ∆Γ = 716 Hz/n1/2. Figure 12 clarifies what “semi-infinite” means for the QCM. The
sheared layer seen by the QCM is around 200 nm thick (depending on overtone order
and viscosity).

The finite thickness of the sheared layer turns the liquid-phase QCM into a surface-
specific instrument. This is expressed diagrammatically in Figure 13. If exposed to a fluid,
the QCM does not see the bulk outside the sheared layer. This is strictly correct to the extent
that the QCM indeed vibrates in a pure thickness-shear mode. There are small flexural
admixtures to the mode of vibration (Section 8.1). Because of these, ∆f and ∆Γ are slightly
sensitive to objects outside the sheared layer, whenever these scatter compressional waves.

Can the quartz crystal microbalance be turned into a quartz crystal viscometer? Firstly,
there are other simple ways to measure viscosity. Further working against the QCM are
artifacts, which are caused by compressional waves (Figure 13) and by the adsorption
of debris to the resonator surface, acting as a Sauerbrey load. The Sauerbrey load and
the Gordon-Kanazawa load can be separately quantified with the advanced QCMs, but
only with these. Problems with mass deposition have a characteristic signature in QCM-
based viscometry, which is an apparent negative η′′. η′′ is proportional to ∆Γ2 − ∆ f 2

(Equation (30)). If some adsorbate lowers the frequency following Sauerbrey, this may
drive the apparent η′′ into the negative range when data are analyzed with Equation (30).
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Figure 13. When shear waves dominate the resonator’s response, the QCM response is surface-
specific. Flexural admixtures to the mode of vibration and the concomitant compressional waves
may spoil surface specificity. Compressional waves may be reflected somewhere in the bulk and
return to the crystal.

More conceptually, the QCM determines the viscosity at a frequency of a few MHz.
For small-molecule liquids, the steady-shear viscosity and oscillatory-shear viscosity at a
few MHz are similar. The more interesting fluids, however, often contain soft matter with
varying degrees of complexity, which entails relaxation and viscoelastic dispersion. The
high-frequency viscosity then may be different from what the engineer cares about.

Torsional resonators [58–61] mitigate these problems by virtue of their lower frequency.
They are less sensitive to the deposition of mass than the thickness-shear resonators and
their frequency (tens of kHz) is closer to the frequencies and time scales of practical
relevance. Torsional resonators are commercially available as viscosity sensors [62]. Refer-
ences [63–65] report on the use of kHz resonators for an array of other purposes.

One may envisage a role for the QCM in viscometry, when it comes to small sample
volumes. The problem is of much technical relevance and was addressed with other
miniaturized sensors, as well [66]. One may deposit small droplets onto the resonator
surface. The shifts in frequency and bandwidth are correspondingly small, but they are still
well above the noise. One may determine the contact area, Ac, with a camera and attempt
to derive the viscosity from the relation [67,68]:
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∆ f̃
f0

=
i

πZq
KA

Ac

Aeff
Z̃L =

i
πZq

KA
Ac

Aeff

√
iωρη̃ (34)

Aeff is the acoustically active area of the plate and KA is a function of the droplet area,
which takes the amplitude distribution, v̂S(r S), into account (Section 8.1). Typically, this
function would be determined by calibration, using liquids with known viscosity. A similar
analysis can be applied to a combination of a QCM with a JKR apparatus [68]. The JKR
apparatus pushes a lens of a soft material against a substrate and determines the contact
radius as a function of the normal force. The JKR apparatus targets the contact-mechanics
of soft materials. The substrate may be a QCM, in which case the complex frequency shift
reports the material’s high-frequency shear modulus.

From Equation (34), one would expect the prefactors to be the same for frequency and
bandwidth. If that was so, the ratio ∆Γ/(−∆f ) would be independent of contact area and
related to the material’s loss tangent, tan(δL) = G′′/G′. Experiment shows, however, that
the ratio slightly depends on contact area. The problem has to do with the fact that the
degree of energy trapping changes when a sample contacts the resonator in the center, only.
Energy trapping increases the resonance frequency (see the discussion in in Section 8.1). Its
effect on bandwidth is different from its effect on frequency [69]. These problems must be
kept in mind when analyzing ∆ f̃ with Equation (34).

QCM-based viscometry amounts to high-frequency rheology on bulk samples. When
applied to engine oils, the QCM’s high frequency is a disadvantage. For other complex
fluids, the high-frequency viscoelasticity actually is of interest because it depends on
the fluid’s internal organization. Pharmaceuticals for parenteral administration are often
formulated as concentrated protein solutions, which display viscoelastic relaxation in the
MHz range [70]. Protein-protein interactions (PPIs) may turn these solutions into weak
gels. High-frequency rheology is among the techniques probing such interactions [70–72].
Figure 14 shows an example, taken form a study on pharmaceutical formulations. For the
data in Figure 14A, the shear modulus as derived with Equation (31) displays viscoelasticity
with a characteristic dependence on frequency. The data could be fitted with the Maxwell
model (a lumped-element model consisting of a spring in series with a dashpot). The
relaxation time was in the range of a few tens of nanoseconds. The data shown at the
bottom did not show this kind of viscoelasticity. This formulation looked like a Newtonian
liquid to the QCM.

Sensors 2021, 21, x FOR PEER REVIEW 21 of 83 
 

 

the degree of energy trapping changes when a sample contacts the resonator in the center, 
only. Energy trapping increases the resonance frequency (see the discussion in in Section 
8.1.). Its effect on bandwidth is different from its effect on frequency [69]. These problems 
must be kept in mind when analyzing Δf̃ with Equation (34).  

QCM-based viscometry amounts to high-frequency rheology on bulk samples. When 
applied to engine oils, the QCM’s high frequency is a disadvantage. For other complex 
fluids, the high-frequency viscoelasticity actually is of interest because it depends on the 
fluid’s internal organization. Pharmaceuticals for parenteral administration are often for-
mulated as concentrated protein solutions, which display viscoelastic relaxation in the 
MHz range [70]. Protein-protein interactions (PPIs) may turn these solutions into weak 
gels. High-frequency rheology is among the techniques probing such interactions [70–72]. 
Figure 14 shows an example, taken form a study on pharmaceutical formulations. For the 
data in Figure 14A, the shear modulus as derived with Equation (31) displays viscoelas-
ticity with a characteristic dependence on frequency. The data could be fitted with the 
Maxwell model (a lumped-element model consisting of a spring in series with a dashpot). 
The relaxation time was in the range of a few tens of nanoseconds. The data shown at the 
bottom did not show this kind of viscoelasticity. This formulation looked like a Newto-
nian liquid to the QCM.  

Note that time-temperature-superposition (TTS) is not needed to interpret these ex-
periments. For certain types of polymers, one may study the “high-frequency” viscoelas-
ticity with conventional, low-frequencies rheometers by cooling the sample, such that the 
relaxations of interest slow down and then are accessible to the instrument. Complex liq-
uids often are not thermorheologically simple in this sense. For these, acoustic instrumen-
tation operating at high frequencies (such as the QCM, but not limited to the QCM [73]) 
is needed. 

 

 

 

Figure 14. The complex shear modulus of two concentrated antibody solutions as determined with 
a QCM and Equation (31). The lines are fits with a Maxwell model (G’+iG’’=G∞’/(1 − ωτ)). The top 
and the bottom show data obtained on a viscoelastic liquid (A) and on a Newtonian liquid (B), 
respectively. Adapted from [70]. 

4.5. Films in Air 
If the sample contains interfaces with some impedance contrast, the reflected wave 

contributes to the periodic stress at the resonator surface in proportion to –Z�fv�←, where 
v�← is the amplitude of the reflected wave, evaluated at the resonator surface (Figure 15). 
Z�f is the film’s wave impedance. There is a minus sign because the reflected wave travels 
towards –z. Dividing by the total velocity, v�→ + v�←, the load impedance is found to be: 

The ratio r̃S = v�←/v�→ is the complex reflectivity evaluated at the resonator surface. The 
QCM may be viewed as an acoustic reflectometer (and may compete with other reflec-
tometers, for instance described in [74,75]). In particular, there is a close correspondence 

0

4

8

0 20 40 60
0

4

8  G'
 G''

 

 

A) Viscoelastic liquid

 

f [MHz]

 G
', 

G
'' [

kP
a]

B) Newtonian liquid

Z�L = Z�f
v�→ − v�←
v�→ + v�←

v�→  −  v�←
v�→ + v�←

 = Z�f

1 − v�←
v�→

1 + v�←
v�→

1 −  v�←
v�→

1 + v�←
v�→

 = Z�f
1 − r̃S

1 + r̃S

1 −  r̃S

1 + r̃S
  (35) 

Figure 14. The complex shear modulus of two concentrated antibody solutions as determined with a
QCM and Equation (31). The lines are fits with a Maxwell model (G′ + iG′′ = G∞

′/(1−ωτ)). The
top and the bottom show data obtained on a viscoelastic liquid (A) and on a Newtonian liquid (B),
respectively. Adapted from [70].

Note that time-temperature-superposition (TTS) is not needed to interpret these exper-
iments. For certain types of polymers, one may study the “high-frequency” viscoelasticity
with conventional, low-frequencies rheometers by cooling the sample, such that the relax-
ations of interest slow down and then are accessible to the instrument. Complex liquids
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often are not thermorheologically simple in this sense. For these, acoustic instrumentation
operating at high frequencies (such as the QCM, but not limited to the QCM [73]) is needed.

4.5. Films in Air

If the sample contains interfaces with some impedance contrast, the reflected wave
contributes to the periodic stress at the resonator surface in proportion to −Z̃fv̂←, where
v̂← is the amplitude of the reflected wave, evaluated at the resonator surface (Figure 15).
Z̃f is the film’s wave impedance. There is a minus sign because the reflected wave travels
towards –z. Dividing by the total velocity, v̂→ + v̂←, the load impedance is found to be:

Z̃L = Z̃f
v̂→ − v̂←
v̂→ + v̂←

v̂→ − v̂←
v̂→ + v̂←

= Z̃f
1− v̂←

v̂→

1 + v̂←
v̂→

1− v̂←
v̂→

1 + v̂←
v̂→

= Z̃f
1− r̃S

1 + r̃S

1− r̃S

1 + r̃S
(35)
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Figure 15. The stress at the surface of a resonator coated with a film contains a contribution from the
reflected wave.

The ratio r̃S = v̂←/v̂→ is the complex reflectivity evaluated at the resonator surface.
The QCM may be viewed as an acoustic reflectometer (and may compete with other reflec-
tometers, for instance described in [74,75]). In particular, there is a close correspondence
between the physics of the QCM and optical reflectometry (Section 9.2). The reflectivity of
the sample can be inferred from Equation (35), solved for r̃S:

r̃S =
1 − α̃

1 + α̃
, α̃ =

πZq

iZ̃f

(∆ f + i∆Γ)
f0

(36)

Equation (23) was used when expressing α̃ as a function of ∆f + i∆Γ.
The calculation of r̃S for a film in air is sketched in Figure 15. r̃S is given as exp

(
−2ik̃fdf

)
× r̃ where the exponential covers the propagation through the film (twice, hence the factor
of 2) and r̃ is the reflection amplitude at the film-air interface. The reflectivity of a wave at
an interface between two media with different wave impedances, Z̃1 and Z̃2, is:

r̃12 =
v̂←
v̂→

=
Z̃1 − Z̃2

Z̃1 + Z̃2
(37)

The proof exploits that the velocity and the stress are continuous at the interface. Equiva-
lently, the reflectivity can be calculated from the conservation of energy and momentum. It
is worthwhile to remind oneself of two related situations:

– When an optical wave hits an interface at normal incidence, the reflectivity is
(nr,1 − nr,2)/(nr,1+nr,2). While one might think so, the refractive index, nr, is not
strictly the same as the impedance of the optical wave, but it is related to this impedance.

– Upon a central elastic collision of two spheres, the velocity of the first sphere after col-
lision is v̂← = v̂→(m1 −m2)/(m1+m2). The mass takes the role, which the impedance
has for waves.
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Because Z̃air = 0, the reflectivity at the film-air interface is unity. From Equations (35)
and (37), the load impedance follows as:

Z̃L = Z̃f

1 − exp
(
−2ik̃fdf

)
1 + exp

(
−2ik̃fdf

) (38)

Euler’s relation implies:

Z̃L = Z̃f

exp
(
+ik̃fdf

)
− exp

(
−ik̃fdf

)
exp

(
+ik̃fdf

)
+ exp

(
−ik̃fdf

)
= Z̃f

2isin
(

k̃fdf

)
2 cos

(
k̃fdf

) = iZ̃f tan
(

k̃fdf

) (39)

This result inserted into Equation (22) yields:

iZq tan
(
π

∆ f + i∆Γ
f0

)
= iZ̃f tan

(
k̃fdf

)
(40)

Equation (40) was first derived by Lu and Lewis [76]. The Lu-Lewis equation does not
invoke the small-load approximation. It is an implicit equation in ∆f + i∆Γ, which must
be solved numerically. An analysis of frequency shifts based on the Lu-Lewis equation
is implemented in some commercial film-thickness monitors. The algorithm is called
“Z-match method” [77,78]. Film-thickness monitors often become heavily loaded when
crystals are not replaced between deposition runs.

A side remark on film thickness monitors: The frequency shift in these instruments
can be above 1 MHz. Resonators with plane-convex surfaces are used, which tolerate large
loading but only work reliably on the fundamental. This is one of the cases, where the
small-load approximation does not apply.

In order to apply the Z-match algorithm to these data (∆f determined on a single
overtone), the wave impedance of the layer must be known. Some values for metals
are tabulated in [79]. One might also use a numerical solution of the Lu-Lewis equation
(Appendix C.2) as part of a fitting process, determining not only the thickness, but also
the layer’s viscoelastic parameters [80]. This analysis of course requires experimental
values of frequency and bandwidth on a few overtones as input. Otherwise, the problem is
underdetermined.

The Lu-Lewis equation does not make use of the small-load approximation. If the
small-load approximation is employed (which amounts to inserting Equation (39) into
Equation (23)), the following result is found:

∆ f + i∆Γ
f0

=
i

πZq
iZ̃f tan

(
k̃fdf

)
(41)

Figure 16 shows ∆f and ∆Γ as predicted by Equation (41). The following sections
address the four different regimes indicated with arrows in Figure 16.
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Figure 16. ∆f and ∆Γ as a function of thickness, following Equation (41). The medium is as-
sumed to be lossy, hence the broad film resonance. The loss tangent used in the calculation was
tan(δL) = G′′/G′ = 0.84.

4.5.1. Very Thin Films (Sauerbrey Limit)

At very low thickness, a Taylor expansion of the tangent in Equation (41) as tan(x) ≈ x
leads to:

∆ f + i∆Γ
f0

=
i

πZq
iZ̃f tan

(
k̃fdf

)
≈ i

πZq
iρf c̃f

ω

c̃f
df = −ωmf

πZq
(42)

This is the Sauerbrey result. The relations Z̃f = ρf c̃f and k̃f = ω/c̃f were used. −∆f /n
is proportional to the film’s mass per unit area. ∆Γ vanishes because the film does not
undergo shear deformation to any appreciable extent under its own inertia. Again, the
Sauerbrey result is more general than Equation (42) because area averaging may be applied.

4.5.2. Infinite Thickness

In the limit of infinite thickness, Z̃f turns into Z̃bulk. The tangent turns into −i as long
as kf

′′ > 0:

∆ f + i∆Γ
f0

=
i

πZq
iZ̃bulk lim

d f→∞
tan
((

kf
′ − ikf

′′)df
)
=

i
πZq

Z̃bulk (43)

The Gordon-Kanazawa relation is recovered.

4.5.3. Thin Viscoelastic Films

If the film is thin, but still thick enough to let viscoelasticity be noticeable, the tangent

can be expanded to 3rd order as tan(k̃fdf) ≈ k̃fdf +
(

k̃fdf

)3
/3. This regime is of much

practical importance. The Taylor expansion leads to:

∆ f + i∆Γ
f0

≈ −1
πZq

Z̃f

(
k̃fdf +

1
3

(
k̃fdf

)3
)

=
−1
πZq

ωmf

[
1 +

(nπ)2

3

Z2
q

Z̃2
f

(
mf
mq

)2
]

=
−1
πZq

ωmf

[
1 +

(nπ)2

3
J̃f
ρf

Z2
q

(
mf
mq

)2
] (44)

The relations k̃f = ω/c̃f = ω
(
ρf J̃f

)1/2
,ω = 2πn f0 = πnZq/mq, and Z̃f = (ρ f/ J̃f

)1/2

were used. J̃ = 1/G̃ is the shear compliance.
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It is instructive to express ∆ f̃ /n as a function of n2:

∆ f̃
n
≈

2 f 2
0

Zq
mf

[
1 + n2 J̃f

(
π2Z2

q

3ρf

)(
mf
mq

)2
]

(45)

Clearly, both −f /n and ∆Γ/n depend on n2 [81]. If (!) Jf
′ and Jf

′′ themselves do not
depend on frequency, Equation (45) describes a linear relation between −f /n and ∆Γ/n,
on the one hand, and n2, on the other. The slopes then are proportional to the elastic
compliance, Jf

′, and the viscous compliance, Jf
′′ (Figure 17). However, Jf

′ and Jf
′′ may

depend on frequency, in which case the lines in Figure 17 have some curvature.
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Figure 17. Plots of ∆f /n and ∆Γ/n versus n2 as motivated by Equation (46). The film thickness as
derived from the offset in panel (A) is about 1.6 µm. The slope d(∆f /n)/d(n2) is almost constant,
indicating that Jf

′ only weakly depends on frequency. There is such a dependence on frequency in (B).
The data were taken on a spin-cast film of polyisobutylene. Adapted from [81].

When the film is not much softer than the crystal, a correction to Equation (45) is
needed because the assumptions inherent to the small-load approximation produce a size-
able error. In the derivation of Equation (23), the term tan(π∆ f̃ / f 0) was linearized, while

the term tan
(

k̃fdf

)
from Equation (41) was expanded to 3rd order. This is an inconsistency,

which can be removed with a systematic perturbation calculation [82]. Box 2 addresses the
issue in more detail.

3rd-order perturbation leads to:

∆ f + i∆Γ
f0

≈ −ωmf
πZq

[
1 +

(nπ)2

3

(
J̃f
ρf

Z2
q − 1

)(
mf
mq

)2
]

(46)

The difference between Equations (45) and (46) is essential for stiff films (with small
J̃). Analyzing data from thin, glassy polymer films with Equation (45) can easily produce
a negative apparent shear modulus. The analysis becomes even more complicated if the
viscoelastic properties of the electrode are taken into account. For more details see [80].

Equation (46) is the basis of quantitative rheometry on thin films [83,84]. The QCM
as an instrument is unique in this regard because it does not require a clamp on the other
side of the film. Thin layers can be clamped from both sides [85], in principle, but these
experiments (using the surface forces apparatus, SFA) are more demanding than the QCM.

Films in air shear under their own inertia, hence the proportionality to m2
f in the

viscoelastic correction. A film thickness of a few tens of nanometers is needed to see visco-
elasticity. Thinner films would have to be extremely soft to show such effects. If−∆f /n does
not agree between overtones for such films, this may go back to an overtone-dependent
modal mass (Section 8.6). An increase in bandwidth has been seen in experiments on
monolayers of noble gases [86]. This increase in damping is not easily explained in the
standard framework of molecular interactions. Superlubricity may be an explanation [87].
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Box 2. 3rd-order perturbation applied to the films on a parallel plate.

On the way to Equation (44)), a tangent contained in the load impedance was Taylor-expanded
to 3rd order, while a similar tangent contained in the Lu-Lewis equation (Equation (40))) was
linearized. This is an inconsistency, which can be removed [82]. At the same time, one needs
to deal with the fact that the load should be evaluated at the resonance frequency of the loaded
crystal, rather than the reference frequency. Dealing with these complications, one should also take
electrode effects into account, that is, treat the 2-layer system (electrode plus film).
For the 2-layer system, the Lu-Lewis equation turns into

− iZq tan
(

π
∆ f
f0

)
= i

Z̃e tan
(

k̃ede

)
+ Z̃f tan

(
k̃fdf

)
1− Z̃f/Z̃e tan

(
k̃fdf

)
tan
(

k̃ede

)
The indices e and f denote the electrode and the film, respectively. The equations become more
compact if the following variables are used:

µf =
mf
mq

, µe =
me

mq
, ζ̃f(ω) =

J̃f(ω)

ρf
Z2

q − 1, ζ̃e(ω) =
J̃e(ω)

ρe
Z2

q − 1

3rd-order perturbation leads do

∆ f̃
n f0
≈ −

(
1− 2µe + 3

(
1 +

(nπ)2

3
ζ̃e

)
µ2

e

)
µf +

(
1− 3

(
1 +

(nπ)2

3
ζ̃e

)
µe

)
µ2

f −
(

1 +
(nπ)2

3
ζ̃f

)
µ3

f

Importantly, the coefficient to n2 contains the thickness and the wave impedance of the electrode. If
the electrode is neglected, the equation simplifies as

∆ f̃
n f0
≈ −µf + µ

2
f −

(
1 +

(nπ)2

3
ζ̃f

)
µ3

f

The terms independent of n slightly modify the Sauerbrey equation. They are negligible in practice.
The n-dependent term leads to Equation (46)).
In view of these complications, one might also go back to the Lu-Lewis equation, solve it numerically,
and use this solution when fitting a model to experimental data. The Python code in Appendix C.2
solves the Lu-Lewis equation.
The above remarks mostly concern films in air. For films in liquids, Equation (49)) can be trusted.
At least, it is not grossly invalidated in quantitative terms by the full numerical solution to the
Lu-Lewis equation.
Piezoelectric stiffening is not covered by this formalism. Piezoelectric stiffening does affect the
result, in principle, but the changes are small [80].

4.5.4. The Film Resonance

At df ≈ λ/4, Equation (41) hits the “film resonance” [88–90]. The film resonance is an
example of a coupled resonance (Section 6) and is therefore labeled with subscript CR. In
the thickness range of the film resonance, ∆f increases with thickness and ∆Γ goes through
a maximum. The dependence of ∆f + i∆Γ on df looks like a resonance (cf. Figure 3A) and
we briefly convince ourselves that the algebra confirms that. If the imaginary part of k̃f is
small, the real part of the tangent at the pole first goes to +∞ and later returns from −∞.
Close to the pole, one may write tan(x) = 1/cot(x) = 1/cot(y + π/2). The variable x was
substituted by y = x− π/2. Taylor expansion of the cotangent to 1st order in y leads to cot(y
+ π/2) = −y. The tangent turns into −1/(x − π/2) and Equation (41) is approximated by

∆ f̃
f0

= −1
πZq

Z̃f tan
(

k̃fdf

)
≈ −Z̃ f

πZq
1

π
2 −k̃fdf

=
−Z̃ f
πZq

1
π
2 −ω

df
c̃f

= −Z̃f
πZq

c̃f
df

c̃fπ
2df
−ω

= −Z̃f
πZq

2
π

ω̃CR
ω̃CR−ω

(47)

The resonance frequency of the film,ω′CR, is governed by the condition kf
′df = π/2.

An experimental example of a film resonance is shown in Figure 18. For the study of
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soft films, the film resonance mostly is a problem. The data can rarely be fitted well by
Equation (41). 
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Figure 18. An experimental example of a film resonance. The sample consisted of a polyelectrolyte
multilayer, the thickness of which was gradually increased by repeated dipping. When displayed in
polar form, the data form a spiral. These authors display the load impedance rather than the complex
frequency shift. The load impedance here has the unit “Rayl”, in the honor of John William Strutt,
3rd Baron Rayleigh. 1 MKS-Rayl is equal to 1 kg/(m2s). Red and black data denote results obtained
with an even number of layers and with an odd number of layers, respectively. The difference occurs
because anionic and cationic layers alternate. Adapted from [91].

The film resonance is among the examples, where the small-load approximation is not
quite good enough. The problem occurs if the film is not lossy, that is, if kf

′′ � kf
′. In the

range of the film resonance, the Lu-Lewis equation then has two solutions, corresponding
to a “symmetric” and an “antisymmetric” mode (Figure 19). For kf

′df < π/2, the mode
with negative ∆f has the larger amplitude. When kf

′df≈ π/2, the mode with positive
∆f grows in amplitude and eventually takes over. This picture emerges in the frame of
parallel-plate model (not using the small-load approximation). More specifically, it emerges,
when the calculation of the electrical admittance is done with the Mason equivalent circuit,
briefly mentioned at the end of Section 8.4. For the details, we refer the reader to the
literature [54,92].

Modes growing and shrinking in magnitude are seen in experiment when swelling
polymer films with df≈ λ/4 in solvent vapor. However, an antisymmetric mode as shown
in Figure 19 is not easily identified. Most often, one of the anharmonic sidebands grows
and eventually becomes the largest peak in the conductance trace. A full understanding of
the film resonance would require a realistic model of the resonator in 3D. That is difficult,
in the first place. Also, the patterns of the anharmonic sidebands (Section 8.2) show some
variability between crystals and batches. Crystal imperfections play a role.

If the details of the film resonance are so difficult, why even bother? Firstly, the film
resonance is an instructive example of a coupled resonance. The coupled resonance will
concern us further in Section 6. Also, the film resonance is occasionally seen in experiment.
Figure 20 shows an example. These authors were interested in the dissolution of polymer
films and in the preservation of old paintings. The QCM worked well, basically, but the
frequency at some point jumped. Knowing about the film resonance, one understands
the jump.
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Figure 19. If the small-load approximation is abandoned, a film resonance produces two separate
peaks in the conductance trace, Gel(ω), corresponding to two separate modes of vibration. The shear
gradients inside the film have opposite sign for the two modes, hence the labels “symmetric” and
“antisymmetric”. Far away from the coupling condition,ω0 andωCR are not affected by coupling
(to the right and to the left in panel (A)). If the two frequencies match and if the two modes indeed
couple, anticrossing results. For a more quantitative treatment see Chapter 4.63 in [5]. Panel (B)
shows an enlargement of panel (A) in the region of anti-crossing. If the bandwidth is large, the two
modes are not actually resolved (sketched in orange in panel (B)). When the film becomes thicker,
ωCR approaches the coupling condition from above (green arrow). ∆f is less than zero, following
Sauerbrey. Because the two modes are not resolved at the coupling condition, the peak in Gel(ω)

is broad. The center of the peak gradually moves up, because the antisymmetric mode becomes
stronger. Eventually, the peak sharpens again and returns to the original frequency from above. A
similar behavior is seen in Figure 16, based on Equation (41).

4.6. Layers Adsorbed from a Liquid Phase
4.6.1. General

Many adsorbates from the liquid phase do not have a sharp interface with the bulk.
Still, the viscoelastic box profile (that is, the homogeneous film with thickness df) is a good
starting point. Using the reflectivity at an interface from Equation (37), the frequency shift
is [93–95]:

∆ f + i∆Γ
f0

=
i

πZq
Z̃f

1− exp
(
−2ik̃fdf

)
Z̃f−Z̃bulk
Z̃f+Z̃bulk

1 + exp
(
−2ik̃fdf

)
Z̃f−Z̃bulk
Z̃f+Z̃bulk

(48)

Applying Euler’s relation to the right-hand side (similar to Equation (39)) yields

∆ f + i∆Γ
f0

=
−Z̃f
πZq

·
Z̃f tan

(
k̃fdf

)
− iZ̃bulk

Z̃f + iZ̃bulk tan
(

k̃fdf

) (49)

While not immediately evident, Equation (49) is equivalent to the Voigt-model from [56]
and, also, to [54,91].

Equation (49) also leads to a film resonance, but the resonance condition is different
from kf′df = π/2 (which is the resonance condition for dry films). The film resonance
can be seen while films grow from a liquid phase or while they dissolve into a liquid
phase [96]. It is also observed when surface-attached gels [97] or polymer brushes [89]
swell and deswell. In the latter case, however, the layer becomes softer as it swells. k̃f and
Z̃f vary strongly.

For thick gels swelling in a solvent, ∆ f̃ as a function of the swelling degree can also be
qualitatively portrayed as a transition from Sauerbrey-type behavior to Gordon-Kanazawa-
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type behavior. The compact layer obeys the Sauerbrey relation, possibly with a small
viscoelastic correction. –∆f /n becomes larger as the layer swells. At some point, the layer
thickness is comparable to the depth of penetration of the shear wave. Beyond this point,
the layer appears as a soft semi-infinite medium. ∆f and ∆Γ then report the medium’s
complex shear modulus, regardless of its thickness. The shear wave no longer reaches to
the top of the film. An example for this behavior is shown in [97].

Cell cultures behave like soft gel layers in this regard. The shear wave usually does
not reach to the top. It probes the layer’s shear stiffness at the bottom rather than the
layer thickness. Cell cultures have been extensively studied with the QCM [98–100].
The interpretation is usually based on certain correlations between ∆f and ∆Γ, on the
one hand, and the conditions of the experiment, on the other. Quantitative modeling is
difficult. −∆f /n may certainly be converted to an apparent mass, but the emphasis here is
on “apparent”.
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Figure 20. An example of a film resonance. At some point, the frequency jumps, as discussed in the caption to Figure 19.
Reprinted with permission from [96]. Copyright 2017 American Chemical Society. These experiments occurred in liquid.

Film resonances can occur in liquids, as well, because Equation (49) also contains terms of the form tan
(

k̃fdf

)
.

4.6.2. Thin Adsorbates

We now turn to thin viscoelastic layers. When the tangent in Equation (49) is expanded
to 1st order in df, one arrives at:

∆ f + i∆Γ
f0

≈ i
πZq

(
Z̃bulk + iZ̃fk̃fdf

[
1−

Z̃2
bulk

Z̃2
f

])
(50)

It is convenient to choose the resonator immersed in the liquid as the reference state, which
results in:

∆ f+i∆Γ
f0

= i
πZq

iZ̃fk̃fdf

[
1− Z̃2

bulk
Z̃2

f

]
= −ωmf

πZq

[
1− J̃f(ω)

ρf
iω(ρbulkηbulk]

= −ωmf
πZq

[
1− 2πin J̃f(ω)

ρf
f0ρbulkηbulk

] (51)

The relation k̃fZ̃f = ωρf was used in line 2. Equation (51) can be rearranged as:

∆ f
n

+ i
∆Γ
n
≈
−2 f 2

0
Zq

mf

[
1− n

(
Jf
′(ω)− iJf

′′(ω)
)(

2πi f 0
ρbulk
ρf

ηbulk

)]
(52)

If the film is much stiffer than the liquid (if
∣∣∣Z̃f| � |Z̃bulk

∣∣∣), this relation reduces to
the Sauerbrey equation. For rigid layers and even moderately rigid layers, the Sauerbrey
contribution and the Gordon-Kanazawa contribution to the complex frequency shift simply
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are additive [101,102]. This analysis approach is applied to electrogravimetry [103]. Elec-
trodeposition and electroetching can be analyzed with the Sauerbrey equation. (Roughness
may take an effect, though [104].)

The second term in the square brackets in Equation (52) is a viscoelastic correction. This
term differs characteristically from the viscoelastic correction in Equation (46) (experiments
in air). The difference goes back to the fact that a film immersed in a liquid feels a stress
from the other side. It is partially clamped by the liquid. In air, films are sheared by their
own inertia, only. For films in air, viscoelastic effects are seen after expanding the tangent to

3rd order as k̃fdf +
(

k̃fdf

)3
/3. In liquids, viscoelastic effects enter the picture in 1st-order

Taylor expansion, already. Even molecularly thin films are sheared by the adjacent liquid
and can be studied with regard to their softness.

For soft films in liquids, the apparent mass as derived with the Sauerbrey equation is
smaller than the film’s mass [105]. Voinova et al. call this the “missing-mass effect” [106].
Viscoelastic effects can be recognized by plotting ∆f /n and ∆Γ/n versus n (Figure 21). A
positive slope indicates a finite Jf

′′. A nonzero ∆Γ/n indicates finite Jf
′.

Why does the slope have positive sign? (It has negative sign in air, Figure 17.) The
missing-mass effect is caused by the film being clamped from the other side. The stress
exerted by the liquid is proportional toωη, meaning, increases with overtone order.
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Figure 21. Soft adsorbates from a liquid phase produce sloped lines in plots of ∆f /n in panel (A) and
∆Γ/n in panel (B) versus n. As opposed to the case of the soft film in air (Figure 17), the apparent
mass as derived with the Sauerbrey equation is smaller than the true mass. Panel (C) shows ∆Γ/(−∆f )
normalized to overtone order. ∆Γ/(−∆f )/n is proportional to Jf

′ (Equation (54)). The slope in this
log-log plot is the power law exponent β′ (Section 4.7). The sample is a block copolymer adsorbed to
the gold surface, where the soluble part forms a brush-like structure. Data kindly shared by Anna
M.C. Maan, University of Groningen, FSE-Zernike Institute for Advanced Materials.

Ideally, one would wish to derive Jf
′ and Jf

′′ (or equivalently, the moduli, Gf
′ and

Gf
′′) on each overtone. This would amount to a rheological spectrum, albeit in a limited

frequency range. Unfortunately, the problem is underdetermined as long as the film
thickness is not known. The elastic compliance alone, however, can be determined on
each overtone, at least approximately. In the thin-film limit, mf can be eliminated from
Equation (52) by taking the ratio of ∆Γ and –∆f :

∆Γ
−∆ f

≈ Jf
′ωηbulk

1 − Jf
′′ωηbulk

(53)

It was assumed that ρbulk ≈ ρfilm. For such thin layers, the ratio ∆Γ/(∆ f ) is indepen-
dent of layer thickness. It is a materials parameter. Equation (53) further simplifies if the
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denominator is about unity. That is often an acceptable approximation because polymer
films (even when swollen) are much stiffer than the ambient liquid. (They are stiffer at
MHz frequencies than at low frequencies.) The denominator in Equation (53) can be rewrit-
ten as 1− Jf

′′/Jbulk
′′ where Jbulk

′′ = (ωηbulk)
−1 is the liquid’s viscous compliance. If

Jf
′′ � Jbulk

′′, the denominator is unity, leading to [107]:

∆Γ
∆ f
≈ Jf

′ωηbulk = Jf
′2πn f 0ηbulk (54)

Jf
′ can be rather robustly inferred from QCM data. This will be important for the discussion

of viscoelastic dispersion at the end of Section 4.7.
In linear rheology, viscoelasticity is commonly expressed in terms of the shear modulus

G̃ = G′ + iG′′. For the QCM, it is more convenient to instead use the shear compliance,
J̃ = 1/G̃ = J′ − iJ′′, because the compliance occurs in the numerator in Equations (51)
and (46). The trivial case (Sauerbrey-like behavior) corresponds to zero compliance. The
conversion between G̃ and J̃ is nontrivial because they are complex:

J′ = G′

G′2+G′′2
, J′′ = G′′

G′2+G′′2

G′ = J′

J′2+J′′2
, G′′ = J′′

J′2+J′′2
(55)

Writing J′ ≈ 1/G′ often is grossly inaccurate. The conversion is easier for the absolute
values and the loss tangent:

|J| = 1
|G| , tan(δL) = G′′/G′ = J′′/J′ (56)

The loss tangent is the same for the modulus and the compliance. Another relation
worth remembering is η̃ = G̃/(iω) with η̃ = η′ − iη′′ = G′′/ω− iG′/ω the viscosity.

Because the film thickness enters Equation (51) as a linear term, shifts in frequency and
bandwidth resulting from multiple films are additive (assuming k′idi � 1 for all layers):

∆ f + i∆Γ
f0

≈ ω

πZq
∑

i
mi

[
1− J̃i
ρi

iωρbulkηbulk

]
(57)

Equation (57) holds in an integral sense:

∆ f + i∆Γ
f0

≈ −ω
πZq

∫ ∞

0

[
1− J̃(z)
ρ(z)

iωρbulkηbulk

]
ρ(z) dz

=
−ω
πZq

∫ ∞

0

[
Z̃2(z)− Z̃2

bulk

Z̃2(z)

]
ρ(z) dz

≈ −ωρbulk
πZq

∫ ∞

0

[
G̃(z)− G̃bulk

G̃(z)

]
dz

≈ −ωρbulk
πZq

∫ ∞

0

[
η̃(z)− ηbulk

η̃(z)

]
dz

(58)

ρ(z) ≈ ρbulk was assumed in lines 3 and 4. Equation (58) may also be expressed in terms of
density and viscosity:

∆ f + i∆Γ
f0

≈ ω

πZq
ρbulk

∫ ∞

0

[
ρ(z)
ρbulk

− ηbulk
η̃(z)

]
dz (59)

The term in square brackets is a contrast function. The integral can be viewed as
a “shear-wave acoustic moment” of a profile of the polymer volume fraction, φ(z), as
displayed in Figure 22.
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Figure 22. The frequency response induced by thin adsorbates is proportional to an integral of the
response function from Equation (59). The z-range, in which ρ(z) and η(z) are significantly different
from the corresponding bulk values, must be much below the depth of penetration of the shear wave,
δ, in order to let the integral formulation be applicable. The displacement profile is sketched at the
bottom. For most polymers, ρ(z) is similar to ρbulk. The dependence of the viscosity, η̃(z), on the
polymer volume fraction, φ(z), is strong and not easily guessed based on simple models.

Separating real and imaginary parts in Equation (59) leads to:

∆ f
f0
≈ ωρbulk

πZq

∫ ∞
0

(
ρ(z)
ρbulk

−J′′(z)ωηbulk

)
dz

∆Γ
f0
≈ ωρbulk

πZq

∫ ∞
0 (J′(z)ωηbulk) dz

(60)

One can apply the Sauerbrey equation to adsorbates and derive an apparent mass,
m̃app(n), which is:

m̃app(n) =
Zq

2n f 2
0

∆ f̃ (n) ≈
∫ ∞

0
ρbulk

[
ρ(z)
ρbulk

− ηbulk
η̃(n, z)

]
dz (61)

In principle, the parameter m̃app is a complex function of n. Application of the
Sauerbrey equation is most meaningful, if the imaginary part of m̃app is small and if m̃app
weakly depends on n.

For sufficiently rigid layers, the apparent acoustic thickness, mapp/ρ, is close to the
geometric thickness. It is slightly smaller because of the missing mass effect (Equation (52)).
There is, however, another situation which also lets m̃app be real and independent of n. If
there is a near-surface layer of a purely Newtonian liquid with increased viscosity (possibly
also with an increased density), the contrast function in Equation (59) is again real and
independent of n. In this case, the apparent acoustic thickness may be much smaller than
the range with increased viscosity because the contrast function is less than unity. This
situation is encountered in electrochemistry. The diffuse double layer is viscoelastic, in
principle, but sometimes modeling it as a layer with increased Newtonian viscosity (no
elasticity) matches the experimental data well [48]. This frequency shift should not be
misinterpreted as the consequence of adsorption and desorption.

A side remark: If the near-surface viscosity is lower than the bulk viscosity, Equation (59)
predicts a negative apparent Sauerbrey thickness. This situation is further discussed in
Section 4.8.
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Similar to the apparent mass, an apparent elastic shear compliance can be derived
following Equation (54) as:

Japp
′(n) =

∆Γ
−∆ f

1
ωηbulk

≈
∫ ∞

0 J′(z)ρ(z) dz∫ ∞
0 (1−ωηbulk J′′(z))ρ (z)dz

≈ ρbulk
m′app

∫ ∞

0
J′(z)dz (62)

Japp
′ may well depend on n. If it does, this may have to do with viscoelastic dispersion

(Figure 21C, Section 4.7).
It is instructive to remind oneself of the differences between Equation (52) (thin film

in a liquid) and Equation (46) (thin film in air):

• For the thin film in air, the Sauerbrey mass is larger than the true mass. It is smaller
for the thin film in a liquid (because of the missing-mass effect).

• The viscoelastic correction scales as n2 in air, while it scales as n in liquids (constant
compliance assumed).

• In both cases, Jf
′ and Jf

′′ are the coefficients to the viscoelastic correction. In air, Jf
′

enters the correction for −∆f /n, while Jf
′′ enters the correction for ∆Γ/n. The roles of

Jf
′ and Jf

′′ are reversed in liquids.
• In air, the viscoelastic correction scales as the square of the film’s mass because the

film shears under its own inertia. Viscoelastic effects are only seen for films with a
thickness of at least a few tens of nanometers. The film in a liquid is clamped from the
other side. Viscoelastic effects are seen even for layers with a thickness corresponding
to a few molecules.

In air, the 3rd-order perturbation analysis (Box 2) makes significant correction to the
small-load approximation. In liquids, this difference exists, in principle, but it is negligible
in practice.

4.6.3. Thick Layers

We now turn to adsorbates, which are comparable in thickness to the depth of penetra-
tion, δ. One might apply the multilayer formalism and depict the profiles, G̃(z) and ρ(z),
as a sequence of many thin films with the wave being reflected at the numerous interfaces.
It is easier to solve the wave equation directly. If the functions G’(z), G”(z), and ρ(z) are
given, one may calculate the displacement profile, û(z), with one of the software packages,
which numerically solve ordinary differential equations (Scipy being among them). One
infers the complex frequency shift from û(z = 0) and dû/dz(z = 0) as:

∆ f + iΓ
f0

=
i

πZq
Z̃L =

i
πZq

−σ̂S

v̂S
=

i
πZq

−ρG̃ (z = 0)dû(z)
dz

∣∣∣
z = 0

iωû(z = 0)
(63)

The function û(z) is obtained by solving the wave equation, which is

− ρ(z)ω2û(z) =
dσ̂

dz
=

d
dz

(
G̃(z)

dû(z)
dz

)
= G̃(z)

d2û(z)
dz2 +

dG̃(z)
dz

dû(z)
dz

(64)

Note that the shear modulus appears inside the outer derivative because G̃(z) itself is a
function of z. Appendix C.1 contains Python code solving this problem. The bottom of
Figure 23 shows a velocity profile, v̂(z), obtained with this code. The top shows the shear
modulus, G′(z) + iG′′(z), which entered this calculation.
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4.7. Viscoelastic Dispersion and High-Frequency Rheology

Given that the QCM can determine shear stiffness, one wonders whether it can also
do viscoelastic spectroscopy. The term “viscoelastic spectroscopy” here is synonymous to
“high-frequency rheology”. To cut a longer argument short, the QCM cannot explicitly do
viscoelastic spectroscopy on thin films, even if one makes peace with the power laws from
Equation (65) or Equation (66). It can, in principle, but the error bars are large.

The viscoelastic constants depend on frequency if the sample undergoes relaxations
with rates comparable to the frequencies of excitation. (G̃ and J̃ then are complex for
the same reason.) The QCM can yield spectroscopic information, but only to a limited
extent. Firstly, the frequency range is only about one decade wide. Also, it is impossible to
determine J′ and J′′ on every overtone separately, because this problem is underdetermined.
As long as the thickness is not a priori known, 2n + 1 parameters would have to be derived
from ∆f and ∆Γ on n overtones.

At this point, one can exploit the narrow frequency range and the fact that rheo-
logical spectra usually are smooth. Rheological spectra are displayed on a logarithmic
scale (Figure 24). Over a single decade, the frequency dependence of Gf

′ and Gf
′′ can be

approximated by power laws with power law exponents γ’ and γ”:

Gf
′( f ) ≈ Gf

′( fcen)
(

f
fcen

)γ′
Gf
′′( f ) ≈ Gf

′′( fcen)
(

f
fcen

)γ′′ (65)

The subscript “cen” refers to a frequency in the center of the range accessible to the
QCM. Typical is fcen = 30 MHz. Jf

′(ω) and Jf
′′(ω) are approximated as:

Jf
′( f ) ≈ Jf

′( fcen)
(

f
fcen

)β′
Jf
′′( f ) ≈ Jf

′′( fcen)
(

f
fcen

)β′′ (66)

The power law exponents in Equation (65) and Equation (66) differ. Worse, power
laws in Gf

′ and Gf
′′ do not turn into power laws in Jf

′ and Jf
′′ after transformation from G̃

to J̃ with Equation (55). A set of power laws in Gf
′ and Gf

′′ is not strictly equivalent to the
corresponding set in Jf

′ and Jf
′′.

Following from the Kramers-Kronig relations, β′, β′′, γ′, and γ′′ must be in certain
ranges. If viscoelasticity is expressed in terms of compliance (Jf

′ and Jf
′′ as in Equation (66)),

one has −2 < β′ < 0 and −1 < β′′ < 1. If moduli are used (Gf
′ and Gf

′′), one has 0 < γ′ < 2
and −1 < γ′′ < 1. The software packages supplied by Biolin use the variables “µ” and “η”.
µ is equal to Gf

′ and η is equal to Gf
′′/ω. The power law exponent for η is between −2

and 0.
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Figure 24. The shear modulus of viscoelastic media depends on frequency. The plot shows a typical
rheological spectrum of a solution of a long-chain linear polymer. The frequency scale extends over
many decades, while the QCM only covers about one decade. In this limited frequency range, G′(ω)

and G′′(ω ) can be approximated by power laws (dashed blue lines). The chosen example displays
what is called the rubber plateau. Would the frequency scale extend further to the right, there would
be a second maximum in G′′(ω ), caused by segmental relaxations and the glass transition.

In the context of the QCM, power laws applied to the compliance, J̃, are closer to
experiment because one of the corresponding power law exponents (only one, β′) can be
determined from experiment with good accuracy. It is often difficult to obtain a robust fit
with all five fit parameters free (thickness,

∣∣∣J f

∣∣∣, tan(δL), β′, β′′). Robust fits are obtained,

though, if β′′ is fixed. β′ alone often is fitted with fair accuracy, because the film’s mass, mf,
enters the imaginary part of Equation (52) as a prefactor, only. (It enters the real part of
Equation (52) as a prefactor and as an additive term.)

Rather than fixing β′′, one might also fix the difference between β′ and β′′. For
polymers, the Rouse model and the Zimm model both predict β′ ≈ β′′ in the high-frequency
regime, see the right-hand side in Figure 24.

A side remark: For experiments in air, the situation is reversed. β′′ rather than β′

can be determined with good confidence from the curvature in Figure 17B. One may read
a curvature from Figure 17A, as well, but the accuracy suffers from the unknown offset
(proportional to the mass).

Determination of both β′ and β′′ would be attractive because thin films are not
easily studied with conventional rheology. Demanding equipment is needed [85] and
others. Again: the unknown layer thickness is the problem. If the layer thickness can
be determined independently, this will help. The power law exponents give access to
spectroscopic information. One of them (β′) can be derived from the fits. With a model at
hand (Zimm, Rouse, reptation, . . . ) the value of β′ can be interpreted.

4.8. Slip

“Slip” here denotes slip of a simple liquid at a solid wall. Slip in that sense is the
exception rather than the rule. Often, the “no-slip condition” is a suitable boundary
condition for liquid flows. In the following, slip does not denote sliding between solid
surfaces and, also, does not denote wall slip of complex liquids, induced by shear thinning
under large stress [108]. Slip in simple liquids is associated with a near-surface layer of
reduced viscosity. The above statements are phrased in terms of the continuum picture.
Arguably, a molecular description would be more appropriate. That would make no
difference for the experiment.
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Given constant shear stress, the shear gradient in the low-viscosity region is larger
than the shear gradient in the bulk (Figure 25). When extrapolating the linear portion of
the velocity profile to v(z) = 0, the intercept is negative. The negative intercept is the “slip
length”, bsl [109]. The reverse situation with a near-surface viscosity higher than the bulk
viscosity causes a positive intercept, which may be viewed as the hydrodynamic thickness
of the respective adsorbate.
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Figure 25. A decreased viscosity close to an interface moves the extrapolated plane of zero shear to
negative z. The distance between the plane of zero shear and the surface is the slip length, bs1.

More quantitatively, the slip length is defined as:

bs1 =
∫ ∞

0

(
ηbulk
η(z)

− 1
)

dz (67)

Slip of this kind might appear as exceptional because the density of a liquid close to a
wall tends to be larger than the density of the bulk due to the attractive forces exerted by the
wall. The question has caused much debate, but the evidence for slip in special situations
has now solidified [110]. These situations include water at hydrophobic surfaces [111] and
various flows inside hollow carbon nanotubes [112]. The slip length typically is of the order
of a few diameters of the respective molecules, meaning, a few nanometers. Experimentally
determining the slip length therefore is a challenge. At this point, the QCM plays out an
advantage, which is the small depth of penetration of the shear wave. To the QCM, slip
looks like an apparent negative Sauerbrey thickness. A Sauerbrey thickness (positive or
negative) is easily determined with an accuracy of 1 nm or better. This being said: The
slip length as determined with the QCM is different from bs1 as defined in Equation (67).
Following Equation (59), the negative Sauerbrey thickness (termed bs1,ac here, “ac” for
acoustic) is:

bs1,ac =
∫ ∞

0

(
ηbulk
η(z)

− ρ(z)
ρbulk

)
dz (68)

For the QCM, the density enters. The density of a slipping layer may be lower than
the density of the bulk if slip is caused by nanobubbles or nanopancakes [113]. There are
two more complications with nanobubbles:

• Nanobubbles constitute a sample with lateral structure, while Equation (68) assumes
lateral homogeneity.

• This discussion ignores the surface energy of air-water interfaces (between the nanobub-
bles and the bulk liquid). Surface tension does play a role on the nanoscale. Surface
tension turns nanobubbles into stiff objects [114,115]. (For macroscopic droplets
or bubbles, the surface energy does not affect the resonance frequency because the
associated oscillatory capillary pressure is small compared to the viscous stress.)

5. Non-Planar Samples
5.1. Point Contacts with Large Objects Clamped in Space by Inertia

By touching the resonator with a sharp tip, one increases the resonance frequency.
This was first recognized by Dybwad in 1985 [116]. On an elementary level, the increase
can be explained with the relationω0(κR/mR)

1/2. When operated in the gravimetric mode,
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κR is about constant and the added mass lets the frequency decrease. When the resonator
is touched with a tip (or with a sphere), the restoring force exerted by the contact lets
the effective stiffness increase more strongly than the effective mass, thereby increasing
the frequency.

The small-load approximation makes this understanding more quantitative. Within
the parallel-plate model, the load impedance of a point contact is:

Z̃L,elas =
nP

Aeff

F̂
v̂S

=
nP

Aeff

κ̃PûS

iωûS
=

nP

Aeff

κ̃P

iω
(69)

nP is the number of contacts and Aeff is the plate’s effective area. The subscript elas
stands for elastic loading (to be distinguished from inertial loading). The transverse stress
is replaced by the transverse force, F̃, multiplied by the number density of the particles,
nP/Aeff. The contact is modeled as a Hookean spring (F = κ̃PûS = κ̃Pv̂S/(iω)) with ûS
the displacement). The spring constant, κ̃P, can be complex, in which case the contact
increases the bandwidth. The term κ̃P/iω is the mechanical equivalent of a capacitor’s
electrical impedance, which is 1/(iωC). Within Mindlin-theory, the contact stiffness of a
sphere-plate contact is κ̃P = 2G̃ ∗ rC with G̃∗ an effective modulus, similar in magnitude
to the shear modulus, and rC the contact radius [117].

The contact stiffness results from a small-scale deformation in the immediate vicinity
of the contact. The deformation involves both the external object and the substrate (close
to the contact). The relation κ̃P = 2G̃ ∗ rC requires a small contact area, that is, a “point
contact“. Contacts are small if the displacement pattern has spherical symmetry and decays
as about 1/r2 with r the distance from the contact. This requires rC to be much smaller
than the local radius of curvature of the external object (often called R) and it also requires
rC to be much smaller than the wavelength of sound, λ. In the opposite limit of rC � λ

(“sheet contact” in Figure 26) the resonator launches a plane wave into the external object
and ∆ f̃ should be analyzed with Equation (34).
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Figure 26. Point contacts and sheet contacts are characterized by spherical waves and planar
waves, respectively.

Inserting the load from Equation (69) into the small-load approximation leads to:

∆ f + i∆Γ =
1

2nπ2Zq

nP

Aeff

(
κP
′+iκP

′′) (70)

where ∆f is positive and scales as 1/n, which is indeed observed [118]. The contact stiffness
as derived with Equation (70) was compared to the expectations resulting from JKR theory
in [119].

Equation (70) neglects effects of added mass. It also assumes that the object supporting
the contact from the back is fixed in space. This assumption is reasonable for contacts with
sufficiently large spheres (R ≈ 200 µm). These are clamped by inertia.

5.2. Large Amplitudes, Partial Slip

Many piezoelectric devices can act as both sensors and actuators. The piezo effect
works in both directions. The QCM, on the contrary, rarely is an actuator. Concerning
static actuation, the piezoelectric coefficient of quartz is small compared to the competing
materials such as lead zirconate titanate, PZT. One might still hope that the vibration would
take some effect. A typical application would be sonolubrication [120–122]. Sliding of
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powders induced by a QCM vibrating at large amplitude has been studied experimentally
in [123]. Generally speaking, kHz vibrations are better suited to sonolubrication than MHz
waves [120].

Amplitude effects have been studied with the QCM on a few occasions. An incomplete
list follows:

• Unbinding of virus particles at high amplitudes was studied in [124].
• Adsorption was prevented at high amplitudes in [125] and other publications by the

same group.
• Cell adhesion as a function of amplitude was studied in [126]. Cell adhesion was

delayed by high amplitudes, but cells, which had already adhered, did not detach
when shaken vigorously.

• High amplitudes can induce steady streaming, as shown in [127]. More generally, the
Reynolds number at high amplitude can be large enough to let the nonlinear term in
the Navier-Stokes equation (of the form ρ(v·∇)v) be significant. This term can cause
an oscillatory Bernoulli pressure. There may be a net attractive force onto colloidal
particles, mediated by a high-frequency version of the Magnus force [128].

The following text is concerned with a quantitative discussion of nonlinearities in
high-frequency contact mechanics as evidenced in QCM experiments. For linear resonators
(also: “simple harmonic resonators”, SHOs), the resonance frequency is independent of
amplitude. A “linear resonator” is characterized by the restoring force being proportional
to displacement. An example for a slightly nonlinear resonator is the pendulum. The
restoring force is mRg sin(θ), where g = 9.81 m/s2 is the earth’s gravitational acceleration
and θ is the angle of swing. If θ� 1, one has sin(θ) ≈ θ and the pendulum operates as
a linear resonator. The “grandfather clock” (named that way in Wikipedia) employs a
long pendulum in order to ensure small angles. The amplitude is constant. Should the
amplitude become large, this will decrease the clock’s frequency. The effect can also be
observed, watching children on a swing.

Speaking of clocks, the current quartz clocks are slightly nonlinear, as well. The stress
inside a deformed quartz plate is not strictly proportional to the strain. The deviations are
small, but they are noticed when driving quartz clocks with too much electrical power. The
problem carries the name “drive level dependence”, DLD [129]. The DLD constrains the
maximum voltage when interrogating the crystal’s resonance properties. The nonlinearity
is such that the resonance frequency increases quadratically with the driving voltage. The
DLD is of considerable concern in time and frequency control. Actually, the nonlinear
elasticity of crystalline quartz is only of concern in this context because it can only be
measured based on the resonance frequency. This is an example, where frequency-based
metrology plays out its strength.

A nonlinear force displacement relation may also originate from the sample. This
is not usually the case with films, with liquids, or with adsorbates from the liquid phase
because the amplitude is too small. Typical amplitudes are a few nanometers at most
(Section 8.5). With a penetration depth of 200 nm, the shear angle is less than 1%. Shear
gradients of this magnitude typically are in the linear regime (stress proportional to strain).
This is good news in some ways (no need to worry) and is a disappointment in others.
Nonlinear rheology is of much interest in polymer science, but high-frequency rheology on
polymer films using the QCM [12] is bound to be linear rheology.

Nonlinear force displacement relations are commonplace in contact mechanics [118,130].
In contact mechanics, the local stress at the points of contact is large. Also, the contact
area can vary in response to the load. Nonlinear high-frequency contact mechanics can
be studied with the QCM. The experiments are rather simple. Frequency and bandwidth
are determined as a function of amplitude. Figure 27 sketches one particular mechanism
(partial slip), which softens contacts at large amplitudes. Partial slip lets the resonance
frequency decrease.
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When rough surfaces make contact, the stress distribution is strongly heterogeneous.
The stress is large at the tips of the asperities, giving rise to nonlinear force-displacement
relations and even plastic flow, also called “asperity creep” [133]. Less well known is the
heterogeneous stress distribution at contacts between smooth spheres and plates (more
generally, at the edges of extended contacts between smooth surfaces). When these contacts
are sheared or loaded in some other way, a stress singularity develops at the edge. A
similar singularity exists at crack tips in fracture mechanics. The stress—under certain
conditions—scales as r−1/2 with r the distance from the crack tip. The open wedge outside
the sphere-plate contact in Figure 27B can be viewed as a crack.

When the resonator exerts a periodic transverse force onto a sphere-plate contact, the
stress at the edge may be so high that the contact starts sliding at the edge. Partial slip
is useful when heavy objects hit piles of gravel. Such piles rarely fall over because the
energy of the impact is dissipated efficiently in partial slip (and, also, in gross slip, which is
still local) [134]. Partial slip can be detrimental in engineering. Contacts, which have seen
prolonged vibrations, may suddenly fail because partial slip has turned into what is called
“fretting wear” [135].

Partial slip was modelled in the 1950s by Mindlin [131], building on earlier work by
Cattaneo [136]. The calculation leads to a friction loop as shown in Figure 28B (a lens-
shaped loop, rather than an ellipse). The target is to turn this function into a prediction for
∆f and ∆Γ as a function of oscillation amplitude. The oscillation amplitude will be called
uS in the following (no hat, because its complex nature is unessential). One may guess that
∆f and ∆Γ will decrease and increase with uS, respectively, because the force-displacement
relation in Figure 27C bends downward and because energy is dissipated in sliding. The
Cattaneo-Mindlin model will confirm that. Further, it will predict these changes to be
proportional to amplitude.

Some background is needed. If the relation between stress and displacement is
nonlinear, the area average (always inherent to the small-load approximation) must be
complemented by a time average, following:

∆ f (uS)+i∆Γ(uS) =
nP

Aeff

1
2nπ2Zq

2
uS
〈F(t) exp(iωt)〉time (71)

The derivation of Equation (71) makes use of the two-timing approximation [137]. As
in Equation (69), stress was replaced by the transverse force acting onto the contact, F(t),
normalized to area. F(t) is assumed to be periodic with the frequency of excitation, but
not necessarily time-harmonic. If F(t) is time-harmonic, Equation (71) reduces to Equation
(70). In the calculation of F(t) from the force-displacement relation, it is assumed that
the motion of the substrate is close to time-harmonic (of the form cos(ωt)). This type
of displacement control (rather than force control or mixed control) is inherent to the
small-load approximation.

Relations similar to Equation (71) are exploited in scanning force microscopy [138].
In that context, the function F(z) (with z the distance between the tip and the surface) can
be explicitly reconstructed from the resonance properties of the cantilever as a function
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z. Such an explicit reconstruction of a force-displacement relation is not possible for
partial slip. Partial slip is hysteretic; hysteresis violates the conditions needed for the
explicit reconstruction.

Again, the force-displacement relation cannot be explicitly derived from ∆ f̃ (uS) but
certain models can be formulated and can be used to predict the functions ∆f (uS) and
∆Γ(uS), which can be checked against experiment. Figure 28 sketches three such mod-
els. For the viscoelastic contact (Figure 28A), ∆f and ∆Γ are independent of amplitude.
Figure 28B shows the prediction from the Cattaneo-Mindlin model for partial slip [131].
(There are other models of partial slip, one of them described in [139].) Figure 28C depicts
the transition to gross slip [140]. When gross slip sets in, ∆Γ decreases at large amplitudes
and ∆f levels off to a small value.
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Figure 28. The top panels show friction loops for three different contacts. ∆Γ is strictly proportional
to the area inside the loop, divided by u2

S. ∆f is nearly proportional to the maximum force divided by
the maximum displacement (blue dots). The left-hand side (A) shows the linear viscoelastic contact.
∆f and ∆Γ are constant. For partial slip (B) the ellipse-shaped loop turns into a lens-shaped loop. The
area inside the loop increases with amplitude as u3

S and ∆Γ increases with amplitude, in consequence.
The sketch in (B) is based on a quantitative model. The right-hand side (C) sketches the transition to
gross slip. The diagram is motivated by experimental results [141], not by a quantitative model. ∆Γ
decreases at large amplitude because the friction force in steady sliding weakly depends on velocity.
Dividing by u2

S causes ∆Γ to decrease with uS.

The following discussion is concerned with partial slip (Figure 28B). In order to
calculate ∆f and ∆Γ from Equation (71), the function F(t) must be derived from the functions
F→(uN,uS,ω) and F←(uN,uS,ω) as predicted by the Cattaneo-Mindlin model. (For their
algebraic form, see, for instance, [132].) The parameter uN is the displacement normalized
to the peak displacement, uS. The subscripts→ and← denote increasing and decreasing
uN. Because these two forces are different, the force-displacement relation forms a loop.

The calculation leads to [141]:

∆ f (uS,ω) = α
∫ 1
−1(F→(uN, uS,ω)+F← (uN, uS,ω)) uN√

1−u2
N

duN

∆Γ(uS,ω) = α
∫ 1
−1(F→(uN, uS,ω) −F← (uN, uS,ω)) duN

α = nP
Aeff
· 1

2nπ2Zq
· 1

uS
· 1
π

(72)

The term uN

(
1− u2

N

)1/2
in line 1 can be viewed as statistical weight. ∆f is pro-

portional to a weighted average of |F→ + F←|, where the weight function has a sharp
peak at the turning point. Following this argument, ∆f is roughly proportional to the
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force-displacement ratio at maximum displacement (blue dots in the top row in Figure 28).
Following line 2, ∆Γ is proportional to the area inside the friction loop, divided by u2

S (One
divides by u2

S because duN in Equation (72) is equal to d(u/uS).) The latter result is exact,
there are no approximations involved.

For partial slip following Cattaneo and Mindlin, the calculation leads to [141]:

∆ f (uS) ≈ nP
2nπ2 AeffZq

κP
′
(

1− 1
3
κP
′

µFN
uS

)
∆Γ(uS) ≈ nP

2nπ2 AeffZq
κP
′′
(

1 + 4
9π

κP
′

µFN
uS

) (73)

κ̃P is the contact stiffness in the low-amplitude limit. FN is the normal force. The model’s
one free parameter is µ (the “friction coefficient”), which is the ratio of the critical tangential
stress for sliding to the normal stress. µ should not be naively identified with the friction
coefficient in macroscopic sliding. It turns out, though, that µ is of order unity, similar to
the conventional friction coefficient [119].

Equation (73) was found to apply in some experiments [141,142]. Others rather show
a quadratic dependence, which actually was predicted by another model of partial slip,
put forward by Savkoor [139]. Still other experiments (mostly on granular media) show an
increase of ∆ f with uS, which can be explained with shear stiffening.

There is a caveat: Equation (73) results from an integration over the friction loop.
All models making use of Equation (71) involve such an integration. The shape of the
friction loop cannot be inferred from the dependence of ∆f and ∆Γ on amplitude. Also, the
force-displacement relation leading to Equation (73) was derived assuming a quasistatic
situation. The dynamics at MHz frequencies might be different. Even a response, which is
linear on the sub-µs time scale and therefore leads to an elliptical friction loop (Figure 28A),
can produce an amplitude dependence of ∆f and ∆Γ if the width and angle of the ellipse
depend on amplitude.

5.3. Structured Samples, Numerical Calculations

Many samples of interest in soft matter physics have some in-plane structure (Figure 29).
This includes proteins [143], dendrimers [144], biological cells [145], and colloidal parti-
cles [146,147]. Adsorbed vesicles, which may or may not rupture and flatten out into
supported lipid bilayers (SLBs), have been studied in much detail [148–150].
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Figure 29. Top: Typical objects to be modeled numerically are adsorbed particles of various kinds
(proteins, micelles, vesicles, not drawn to scale). Bottom: Results from a finite element method (FEM)
simulation in 2D. Left: tangential velocity. Right: normal velocity. The truncated cylinder is rigid. The
simulation outputs the periodic stress at the resonator surface (not shown), which can be converted
to ∆ f̃ with Equation (25).

Predicting shifts in frequency and bandwidth induced by such samples from the
structure and the viscoelastic parameters requires a numerical model. As long as the area
average in Equation (25) can be applied, the shifts in frequency and bandwidth can be



Sensors 2021, 21, 3490 41 of 79

computed numerically. The input to the small-load approximation is the area-averaged
amplitude of the periodic stress at the resonator surface. The stress field at the surface can
be extracted from a solution of the equations of continuum viscoelasticity.

The medium obeys the Stokes equation expressed in the frequency domain, which is:

iωv̂(r) = v̂(r)∇2v̂(r)− 1
ρ
∇ p̂(r) (74)

where ṽ = η̃/ρ is the kinematic viscosity. The pressure, p̂, follows from the modulus of
compression, K̃, and the divergence of the velocity field as:

p̂(r) =
−K̃(r)

i ω
(∇ · v̂(r)) (75)

The density was assumed as constant in Equation (74), but may also depend on
position. The complex dynamic viscosity, η̃(r), can take any value. Elastic objects have
η′′ � η′. Rigid objects are represented as objects with large |η̃|· or, equivalently, with small
η̃−1. Such objects are hardly deformed by the shear stress. For rigid objects, the question of
viscous or elastic response does not occur, because it does not matter whether a negligible
deformation occurs in-phase or out-of-phase to the stress. This argument reiterates the
previous statement that the nontrivial samples to the QCM are the soft samples.

The Stokes equation is a linearization of the Navier-Stokes equation. The Reynolds
number is assumed to be so small that the nonlinear term (ρ(v̂ · ∇)v̂) in the Navier-Stokes
equation can be neglected. Actually, effects of finite Reynolds number can be seen in QCM
experiments at high amplitude. Because these effects are weak, they can be modeled, based
on the algorithms described below. Call the solution to the linear problem v̂(0). The non-
linear term then generates a Bernoulli pressure of the form ρ

(
v̂(0) · ∇

)
v(0). This pressure

vanishes for pure shear flow because it contains the dot-product of the velocity and its gra-
dients. It does not vanish for structured samples. It occurs atω = 0 (steady streaming) and
at 2ω (2nd harmonic generation) because of the relation cos2(ωt) = 1/2(1 + cos(2ωt)).
The Bernoulli pressure drives a weak 2nd-order flow, which can be computed from v̂(0).

Figure 30 sketches a simulation volume. It is a few tens of nanometers wide and
contains a few adsorbed particles (if this is the problem of interest). Periodic boundary
conditions (“b.c.”) apply at the side walls. A Dirichlet boundary condition applies at the bot-
tom (v̂(z = 0) = (v̂S, 0, 0)) The boundary condition at the top should be an impedance
boundary condition (also: “Robin boundary condition” [151]), meaning that the ratio of
the velocity gradient to the velocity should be such that the stress-velocity ratio inside the
boundary is equal to the wave impedance outside the boundary.
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There is ongoing research turning these concepts into practical and efficient algorithms.
Computational techniques applicable to this problem include the finite element method
(FEM) [152,153], the finite volume method (FVM) [154], and the Lattice-Boltzmann method
(LBM) [155,156].

If the sample is much thinner than the wavelength of sound, it may look to the QCM
like a film. The QCM then does not actually recognize the structure. One may infer an
apparent mass, m̃app, and an apparent compliance (Japp

′, Japp
′′) from plots of ∆f /n and

∆Γ/n versus n (as in Figure 21). The problem to the experimentalist is to interpret these
parameters. For instance, the apparent mass is different from the true mass because a
certain amount of liquid, which is trapped in the space between the particles, takes part in
the resonator’s motion [157–159]. Likewise, the apparent compliance has a contribution
from the flow of the liquid around the particles.

The numerical simulation calculates ∆f and ∆Γ from a known structure. The task to
the experimentalist usually is the reverse problem, namely inferring the structure from
experimentally determined values {∆f /n, ∆Γ/n} is another. The reverse problem is under-
determined, in general. The formalism can only run backwards, if the structure is known
to a significant extent with few free parameters, so that the experimental values of {∆f /n,
∆Γ/n} can be exploited to determine these parameters. Such a situation is (for example)
encountered, when rigid spheres of known size adsorb to the QCM surface, following
random sequential adsorption [144]. If coverage can be estimated independently, the only
free parameter of this problem is the stiffness of the sphere-plate contacts. Arguably, contact
stiffness involves a total of four free parameters, which are the real and the imaginary parts
of the shear stiffness, κ̃Sh, and the bending stiffness, κ̃b (related to translation and rotation
of the sphere). For spheres in air, the problem is amenable to an analytical treatment
(Section 6.2). In liquids, hydrodynamic comes into play. For this problem, a calibration
curve relating contact stiffness to the sets of {∆f /n, ∆Γ/n} can be obtained from simulation.
These calibration curves can be used to analyze experiments. A related problem is the
fractional trapped mass as a function of coverage. The trapped mass may also be estimated
from calibration curves obtained with simulations on structures, which are well-defined,
on the one hand, but still reasonably close to experiment, on the other.

5.4. Roughness

Roughness in QCM experiments is always a reason to worry. Gold surfaces prepared
by physical vapor deposition (PVD) have an rms roughness of about 1 nm. Spin-cast
polymer films usually are considered as smooth. One might model roughness effects
numerically as in Section 5.3, but there is a wide range of possible geometries.

We limit the discussion to small-scale, shallow roughness as modelled analytically
in [160,161]. The vertical scale of roughness is assumed to be smaller than the lateral scale,
which is realistic for gold surfaces prepared by PVD. The lateral scale is assumed to be
smaller than δ, which again often is realistic. The model has two free parameters, which
are the vertical scale, hr, and the lateral scale, lr. One might also use the vertical scale, hr,
and the aspect ratio, hr/lr. The aspect ratio is assumed to be smaller than unity (“shallow
roughness”).

There is an interesting experimental statement in the literature, which is that the
bandwidth is less affected by small-scale roughness than the frequency [162]. This finding
is corroborated by the analytical treatment of shallow roughness following [161]. These
authors Fourier-decompose the height profiles into sinusoidal corrugation waves with
wave vector q. They solve the hydrodynamics problem for the different Fourier components,
separately, and calculate ∆f and ∆Γ. The total frequency shift follows from integration
over all wave vectors, where the weight function is the square of the respective amplitude.
A Gaussian distribution is assumed, the center of which is much larger than the inverse
penetration depth (“small-scale roughness”). The following equations are obtained:
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∆ f
f0

= 1
πZq

√
ωρη

2

(
1 + 3

√
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hr
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(
hr
δ

)2
)

∆Γ
f0

= 1
πZq

√
ωρη

2

(
1 + 2

(
hr
δ

)2
) (76)

Equation (76) can be reorganized as:

∆ f + i∆Γ
f0

=
i

πZq

√
iωρη

[
1 − 2i

(
hr

δ

)2
]

1
πZq

ωρhr
3
√
π

2
hr

lr
(77)

The term in square brackets modifies the Gordon-Kanazawa term and it does so in
proportion to h2

r . This term affects both frequency and bandwidth. The second term only
affects the frequency shift. It can be thought of as a Sauerbrey-like term, covering trapped
mass. In principle, this terms scale as h2

r , as well. However, if the aspect ratio is constant,
one factor of hr is absorbed in the aspect ratio (given as hr/lr), which leaves the other hr as
a linear term. Roughness is often created in a way, which leaves the aspect ratio constant.
The amount of trapped mass then depends linearly on the cluster size. The authors of [162]
did experiments of that kind. Because effects in bandwidth are proportional to h2

r , they are
hardly seen at small roughness.

6. Coupled Resonances
6.1. The Sphere with Moderate Mass

One example of a coupled resonance (the film resonance) was already discussed
in Section 4.5.4. Here, we start from another example, which is the sphere attached to
the resonator. (Particle adsorption to a QCM was discussed as early as 1971 in [163].)
Contrasting to Section 5.1, the sphere has moderate size. It is neither clamped in space
by inertia (elastic loading), nor is it a nanoparticle in the sense, that it would be rigidly
attached to the resonator and constitute a Sauerbrey load.

Figure 31 shows a lumped-element circuit. The link between the particle and the
resonator is depicted as a spring with stiffness κCR. A dashpot with drag coefficient ξCR
was placed in parallel to the spring, accounting for dissipative processes. The subscript
CR denotes the coupled resonance. Written that way, the circuit suggests that the spring
constant and the drag coefficient were independent of frequency. They may well depend
on frequency. The spring constant may also be written as a frequency-dependent complex
parameter κ̃CR(ω) = κCR

′(ω) + iκCR
′′(ω). κ̃CR(ω) then is a response function similar to

G̃(ω). κ̃CR(ω) has different units, though (force/displacement rather than stress/strain).
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Figure 31. A lumped-element representation of a load giving rise to a coupled resonance. This
mechanical circuit implicitly invokes the small-load approximation insofar, as the resonator has been
drawn as a plate. It might also have been drawn as two large spheres, coupled to each other by
another spring (Figure 1B). Had it been drawn as in Figure 1B, the solution to the full set of dynamical
equations would have predicted anticrossing (as for the film resonance, Section 4.5.4). Anticrossing is
not further discussed in the following. Coupled resonances caused by particles will usually be too
broad to let anticrossing be visible.

The elements in Figure 31 represent mechanical impedances, which are ratios of force
to velocity (rather than stress to velocity). Mechanical impedances and the electrome-
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chanical analogy [164] are discussed in Box 3. In mechanics, the total impedance of two
elements arranged in parallel is the sum of the two individual impedances, following the
“mechanical Kirchhoff rules”. Application of these rules to the circuit in Figure 31 leads to:

F̂
v̂S

=

[
1

iωmCR
+

1
κCR
iω + iξCR

]−1
=

[
1

iωmCR
+

1
κ̃CR
iω

]−1

=

[
1

iωmCR
+

iω
κ̃CR

]−1

=
iωmCRκ̃CR

κ̃CR −ω2mCR
= iωmCR

ω̃2
CR

ω̃2
CR −ω2

(78)

where F̂ is the transverse force exerted by the sphere onto the resonator surface. Inserting
Equation (78) into Equation (25) leads to:

∆ f + i∆Γ
f0

= − nP

Aeff

ωmCR

πZq

[
ω̃2

CR

ω̃2
CR −ω2

]
(79)

where nP is the number of particles.
A side remark: One might be tempted to write ω̃2

CR −ω2 as (ω̃CR +ω)(ωCR −ω)
and (ω̃CR +ω) ≈ 2ω̃CR as in the mathematics leading to Equation (7). This is problematic
because the coupled resonance is not usually a narrow resonance. For the same reason,
polar diagrams of the complex frequency shift as in Figure 33 usually show spirals (as
opposed to circles, Figure 3B).

Equation (79) contains the Sauerbrey case and the elastic-load case in the limits of
ω � ωCR

′ andω � ωCR
′, respectively (Figure 32). Whenω � ωCR

′, the right-hand
side in Equation (79) is about −nPωmCR/(A effπZq

)
, which is equivalent to the Sauerbrey

equation. Whenω � ωCR
′, the right-hand side becomes nP/

(
AeffπZq

)
(κ̃R/ω), which is

the elastic load limit (Equation (69)).
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Figure 32. The frequency shift induced by a coupled resonance, following Equation (79). At low and
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limits is −∆f /n ≈ const and +∆f ·n ≈ const. In a range next to the Sauerbrey regime, the softness of
the contact can be inferred from a non-trivial the overtone dependence of ∆f /n + i∆Γ/n.

There actually is a frequency range, in which the response is close to Sauerbrey-like,
but in which the dynamics of the sphere is still seen as a small deviation from Sauerbrey
behavior (compare to Figure 16 and Section 4.5.3). If ω is less but not much less than
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ωCR
′ ∆ f̃ /n deviates from Sauerbrey-type behavior. This becomes evident when expanding

Equation (79) to 3rd order inω as:

∆ f + i∆Γ
f0

= − nP

Aeff

ωmCR

πZq

[
1 +

ω2

ω̃2
CR

]
= − nP

Aeff

ωmCR

πZq

[
1 +ω2 mCR

κ̃CR

]
(80)

The parameters mCR and κ̃CR will need interpretation because the motion of the
particle combines translation and rotation. mCR and κ̃CR are a modal mass and a modal
stiffness. Section 6.2 elaborates on that problem.

The deviations from Sauerbrey behavior are proportional to the softness of the contact
(the inverse contact stiffness). In this regard, Equation (80) is the analog to Equation (45),
where the latter equation describes a soft film, rather than a soft link to a particle.

When the frequency of the coupled resonance is in the range covered by the QCM,
∆f crosses from negative to positive [165,166]. An example is shown in Figure 33, adapted
from [167]. The resonators were in contact with silica spheres with a radius of 2.5 µm.
The spheres were attracted to the surface by gravity and by van-der-Waals forces. Both
the spheres and the resonator surface carried negative charge, resulting in an electrostatic
repulsion, which competes with the attractive forces. Variation of ion strength as indicated
in the legend tuned this repulsive force [168]. Adding salt has two consequences. Firstly,
the frequency of zero crossing increases. This can be understood as the consequence
of increased contact stiffness, which in turn is the consequence of reduced electrostatic
repulsion. Also, the radius of the semi-circle (more precisely, the semi-spiral) decreases. A
closer look at Equation (79) shows that this radius is proportional to the ratio κCR

′/ξCR.
Why electrostatic screening decreases this ratio is nontrivial.
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Figure 33. Shifts of frequency and bandwidth caused by the deposition of micron-sized silica spheres.
The polar diagram on the right displays spirals, characteristic for the coupled resonance. The ion
strength as indicated in the legend tunes the stiffness of the contact, where large ion strength leads to
stiff contacts. Adapted from [167].
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Box 3. The electromechanical analogy.

Differing from electricity, mechanical impedances are additive when two elements are arranged in
parallel. Inverse impedances are additive, when the elements are arranged in series. These are the
mechanical Kirchhoff rules. In electricity, the reverse rules apply. Current (the analog of velocity) is
additive, when two resistors are placed in parallel. For dashpots arranged in parallel, the forces
(the analogs of voltage) are additive.

Electrical Mechanical
Voltage U Force F
Current I Velocity v

Resistor
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6.2. Influence of Rotation on the Frequency Shift

Incorporating rotation into the formalism is worth the effort. Similar work was
reported by Tarnapolsky et al. in [169]. Differing from the text below, these authors were
concerned with large spheres (bacteria) in a liquid environment. The text below addresses
small spheres (ωCR

′ & ω) and avoids hydrodynamics by sticking to a dry environment.
The sphere has two degrees of freedom, which are translation (with velocity ûP) and

rotation about the sphere center (with rate Ω̂). Inertia is balanced against the force and the
torque exerted by the contact, F̂C and M̂C, by the relations:

iωmPûP = F̂CiωmP
2
5

R2Ω̂ = M̂C (81)

The inertial terms are iωmPûP for translation and iωmP(2/5)R2Ω̂ for rotation. The
subscript P denotes the particle. mP(2/5)R2 is the moment of inertia of a solid sphere rotat-
ing about its center. The transverse restoring force exerted by the contact is F̂C = − κ̃Sh/
(iω)

((
ûP−RΩ̂

)
ûS
)
. κ̃Sh is the shear stiffness of the contact. Following Mindlin theory, κ̃Sh

is given as 2G̃∗rC where G̃∗ is an effective modulus and rC is the contact radius. The term(
ûP − RΩ̂

)
− ûS is the difference between the velocity of the sphere and the velocity of the

substrate at the point of contact (Figure 34).
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sphere center.

The torque has two components. The first component is F̂CR. The second component
follows from the contact’s bending stiffness. Following [169], we write the torque as
M̂C = −κ̃b/(iω)R2Ω̂, where κ̃b is the bending stiffness. Defined this way, κ̃b has the
same units as κ̃Sh. Defined this way, κ̃b is not a ratio of torque to angle (as elsewhere, the
ratio of torque to angle here is κ̃bR2). Following Dominik and Tielens [170], the bending
stiffness is:

κ̃b = 2κ̃Sh
r2

C
R2 (82)

With these relations, the force and the torque are:

F̂C = − κ̃Sh
iω
((

ûP − RΩ̂
)
− ûS

)
M̂C = − 2κ̃Shr2

C
iω Ω̂− κ̃ShR

iω
((

ûP − RΩ̂
)
− ûS

) (83)

Inserting Equation (83) into (81) and reorganizing terms, the following equation
system results: (

iωmP + κ̃Sh
iω

)
ûP +

(
− κ̃Sh

iω R
)

Ω̂ = κ̃Sh
iω ûS(

κ̃ShR
iω

)
ûP +

(
iωmP

2
5 R2 +

2κ̃Shr2
C

iω − κ̃ShR
iω

)
Ω̂ = κ̃ShR

iω ûS
(84)

The terms in brackets in Equation (84) form a matrix, which must be inverted to obtain
the vector (ûP,Ω̂) from the source term (κ̃Sh/(iω)ûS, κ̃ShR/(iω)ûS).

A resonance occurs, when (ûP, Ω̂) is nonzero even in the absence of a source term. The
resonance frequencies are found by setting determinant of the coefficient matrix to zero.
There are two resonance frequencies, because there are two dynamic variables. They are
given as:

ω̃CR,1,2 =
√
κ̃Sh
mP

√
A ± B

A = 7
4 + 5

2
r2

C
R2 B2 = 49

4 + 15 r2
C

R2 + 25 r4
C

R4

√
49
4 + 15 r2

C
R2 + 25 r4

C
R4

(85)

Both modes combine translation and rotation, but one is predominantly translational,
while the other is predominantly rotational. Note that the two resonance frequencies are
not vastly different unless rC � R. A search for two coupled resonances in experimental
QCM data is difficult because the experiment must involve an ensemble of spheres and
because there will be a distribution in the parameters κ̃Sh and rC. The heterogeneous line
broadening caused by the distribution of parameters often lets the two resonances merge.

The above remarks concerned situations, in which the frequency of the resonator is
close to one of the frequencies of the coupled resonances. In general, the particles will be
driven off-resonance. Setting ûS on the right-hand side in Equation (84) to unity fixes ûP
and Ω̂ (to off-resonance values). The force, F̂C, follows from Equation (83). Inserting F̂C
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into the small-load approximation yields ∆f and ∆Γ. Plotting ∆f and ∆Γ versus frequency,
yields two resonances. This graph is not shown here because it looks very similar to Figure
36, which was obtained with a numerical simulation.

In the following, we are concerned with small spheres, which are still large enough
to show some dynamics. These spheres are almost Sauerbrey loads (are almost rigidly
attached to the plate). Similar to Equation (80), we expand ∆ f̃ to 3rd order inω. In Equation
(80), the coefficient toω2 was named mCR/κ̃CR and it was left open, what these parameters
mean. This gap can now be closed. The 3rd order expansion in ω of ∆ f̃ calculated from F̂C
leads to:

∆f + i∆Γ
f0

≈ nP

Aeff

ωmCR

πZq

[
1 + ω2 mP

κ̃Sh

(
1 +

R2

2r2
C

)]
(86)

Clearly, mCR is equal to mP (in this limit). With regard to contact stiffness, Equation
(86) shows that κ̃−1

CR from Equation (80) follows κ̃−1
CR = κ̃−1

Sh + κ̃−1
b (as also noted in [169]).

Figures 35 and 36 illustrate the situation at hand of an FEM simulation. The simu-
lation modeled a cylinder (rather than a sphere) because the simulation occurred in two
dimensions. Also, the environment was a liquid. In agreement with Equation (85), two
coupled resonances are found. For the higher frequency, the axis of rotation is close to the
center of the sphere. For the lower frequency, the sphere rotates about the point of contact.
Such a rotation is equivalent to a superposition of a rotation about the sphere center and
a translation.
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vibration mostly is a rotation about the point of contact. The restoring force mostly 
amounts to a torque. Torques are not seen by the QCM. The QCM only sees transverse 
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Figure 35. Velocity fields as determined with an FEM simulation in two dimensions. A cylinder
attached to a plate gives rise to two coupled resonances. The diameter of the cylinder was 4 µm.
The link to the substrate is 600 nm wide and 100 nm thick. Its shear modulus is 1 GPa. The colors
encode the local tangential velocity. The frequencies are 1 MHz, 4.2 MHz, 54 MHz, and 90 MHz
in panels (A–D), respectively. In panels (A,C), the motion of the sphere is locked to the substrate
and to the bulk, respectively. The sphere forms an inertial load in (A) and an elastic load in (D).
In panels (B,C), the amplitude of motion of the sphere is large. In (B), the sphere rotates about the
contact, in (C) it rotates about its center. Adapted from [171].

Figure 36 shows ∆f and ∆Γ versus frequency as derived from the FEM calculation.
Because this is a simulation, the frequency is not limited to the odd integers of the funda-
mental. One observes two coupled resonances, one stronger than the other.

Figure 36 looks similar to an absorption spectrum form IR spectroscopy, which is no
coincidence [171]. Molecules can vibrate in different ways, just like the sphere on the plate
may combine translation and rotation in different ways. When probed with IR waves,
some vibrational modes (like the carbonyl stretching mode) show prominently in the
spectrum, while others are weaker. Some vibrations are not seen in IR light at all. These
are “forbidden”, meaning that the vibration is not linked to an oscillating dipole. The
vibrations of homonuclear diatomic molecules are forbidden. They are only seen in Raman
spectroscopy. They are not seen in IR spectroscopy because the vibration “does not couple”
to the electromagnetic wave. Some vibrations are “weakly allowed”. They appear to be not
coupled to IR light, at first glance, but there is a loophole. The overtone vibrations in IR
spectroscopy are forbidden in the frame of the harmonic resonator. The selection rule is
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∆v = ±1 (with v the vibration quantum number). Anharmonicity weakens the selection
rule. The overtones are seen, albeit with a small integrated line strength.
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Figure 36. Shifts of frequency in panel (A) and bandwidth in panel (B) as computed with an FEM
simulation for the configuration shown in Figure 35. There are two separate coupled resonances.
These are the consequence of two dynamical variables, which are translation and rotation. Translation
and rotation are always coupled, but there are two special linear combinations of translation and
rotation, which both produce a resonance. Only the transverse force at the point of contact shifts ∆f
and ∆Γ, a torque does not take an influence. The relative importance of the force compared to the
torque is larger for the high-frequency mode. The sphere rotating about the point of contact mostly
exerts a torque. This low-frequency mode therefore appears as less pronounced when probed with
the QCM. Adapted from [171].

The coupled resonance to the left in Figure 36 is weakly allowed in that sense. The
vibration mostly is a rotation about the point of contact. The restoring force mostly amounts
to a torque. Torques are not seen by the QCM. The QCM only sees transverse forces. If
the axis of rotation would intersect the point of contact, exactly, this coupled resonance
would be “forbidden”. The vibration would not couple to the substrate’s transverse motion.
Looking at the mode a little closer (Figure 35B), one finds that the axis of rotation is slightly
displaced from the contact. For that reason, the vibration does exert a small transverse
force and is seen by the QCM, although with a small line strength. (Coupling across the
liquid phase may also play a role.)

6.3. Other Types of Coupled Resonances

This text elaborates in some depth on coupled resonances caused by films and coupled
resonances caused by particles. More generally, a “coupled resonance” can denote any
load, which lets ∆ f̃ be described by Equation (79). Two other noteworthy examples are
the following:

• Standing compressional waves (Section 8.1) give rise to coupled resonances, when
the distance to the opposite cell wall is an integer multiple of half the wavelength.
At these distances, the compressional wave is a standing wave and the damping is
large. This phenomenon can be exploited to check for the magnitude of compressional
wave effects. The experiment is simple. One lets the water level in an open cell slowly
decrease by evaporation overnight. Figure 7 in [172] shows data of this kind. In this
example, the compressional wave effects were much stronger on the fundamental
than at 15 MHz. This is a general rule and one of the reasons, why data from the
fundamental often are discarded from the analysis.

• The vibration of interest may couple to other modes of vibration of the crystal, where
the exact mechanism of coupling is unclear and where even the nature of the other
mode is unclear. These so-called “activity dips”, which sometimes occur when ramp-
ing temperature up or down, can be a problem in time and frequency control [173].
An activity dip lets the bandwidth increase at a certain temperature and lets the
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frequency go through a corresponding antisymmetric pattern. Activity dips are not
discussed further here, even though they are occasionally seen in sensing, mostly
during temperature sweeps.

7. Piezoelectric Stiffening

Piezoelectric stiffening is an advantage in time and frequency control. It is closer to a
problem in sensing. Piezoelectric stiffening also is instructing from a fundamental point
of view.

When a bare piezoelectric plate is sheared, an electrical polarization is created in
addition to the strain. The electrical energy contained in the polarization contributes to
the overall energy of the sheared plate, thereby increasing the plate’s stiffness. When the
crystal surfaces are plated with electrodes and when these electrodes are short-circuited,
the piezoelectrically induced polarization is compensated by a corresponding charge in
the electrodes. Shearing the crystal then becomes easier because no electrical work is
done. The spring constant decreases and so does the resonance frequency because of
ω0 ≈ (κR/mR)

1/2. Situations between those two limits are created by connecting the
electrodes across a capacitor or some other electrical impedance.

The situation is reminiscent of the difference between the two heat capacities of a
gas, Cp and CV. Cp and CV are determined at constant pressure and constant volume,
respectively. Cp is larger than CV because the volume expansion, which occurs when
pressure is kept constant, amounts to a mechanical work. The open-circuit stiffness of the
piezoelectric plate and the stiffness with short-circuited electrodes correspond to boundary
conditions of constant charge (total charge in the bulk and at the surface) and of constant
electrical potential, respectively. If the voltage between the two electrodes is zero, the
creation of charge at the surfaces is not linked to an electrical work.

One can include a voltage-tunable capacitor (a varicap diode) into the circuitry and
tune the resonator’s frequency this way. This device is the voltage-controlled crystal
oscillator (VCXO [52] or VCO). An approximative relation connects the frequency shift to
the external capacitance, Cext, as:

∆ f PE
f
−

∆ f PE,∞

f
=

1
2

C1

C0 + Cext
(87)

C0 is the resonator’s electrical capacitance (the “parallel capacitance”) and C1 is the motional
capacitance (Section 8.4). The subscript PE stands for piezoelectric stiffening, ∞ stands for
infinite Cext. An infinite external capacitance amounts to short-circuit electrodes (constant
potential). Note that Cext = ∞ is not a practical reference state because the current is then
entirely absorbed in Cext and does not cause a vibration of the crystal.

C0 and C1 are related as:

C1

C0
=

8

(nπ)2 k2
t,eff with k2

t,ideal =
e26

εqε0Gq
(88)

kt is the electromechanical coupling coefficient, e26 = 9.65 × 10−2 C/m2 is the piezoelectric
stress coefficient, εq = 4.54 is the dielectric constant, and Gq = 29 × 109 Pa is the shear
modulus. For AT-cut quartz, k2

t is about 0.8%. Piezoelectric coupling is not particularly
strong for quartz. The tuning range of quartz resonators is smaller than the tuning range of
resonators made from competing materials such as langasite [174]. Equation (88) distin-
guishes between an “ideal” coupling coefficient (derived from the material constants) and
an “effective” coupling coefficient (derived C0 and C1). The two are different because the
geometry (electrode shape, energy trapping, . . . ) takes an influence. Inserting numbers
into Equation (87), one finds the pulling range to be around 1 kHz.

In a sensing context, all kinds of stray capacitances (more generally, all kinds of
electrical boundary conditions) enter Cext. For sensing, piezoelectric stiffening mostly is
an annoyance. In particular, the cables must not move while the experiment is running. If
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they do, this will affect the capacitance seen by the crystal. A second problem are electric
fields permeating the sample from the surface of the resonator. One avoids that by making
the front electrode larger than the back electrode and by grounding the front electrode well.
This problem also affects electrode-less resonators [175].

For the sake of formal consistency, we formulate a modified version of Equation
(88), which lets the sample’s electrical impedance look like any other load entering the
small-load approximation. This equation is:

∆ f̃PE

f0
=

i
πZq

[
4e2

26 Aeff

d2
q

]((
iωC0 + Z̃−1

ext

)−1
−
(

iωC0 + Z̃−1
ext,ref

)−1
)

(89)

where Z̃ext is the sample’s electrical impedance. The term in square brackets converts
between an electrical and an acoustic impedance (Section 8.4). The hypothetical reference
state with short-circuited electrodes was replaced by a more realistic reference state with
some external electrical impedance, Z̃ext,ref. For more details see Chapter 5 in [5].

In principle, piezoelectric stiffening might provide for a scheme to measure the sam-
ple’s electrical impedance in addition to its shear-wave impedance. That has turned out to
be difficult [176,177]. In practice, one will usually determine electrical impedances with
electrical equipment (as in electrochemical impedance spectroscopy, EIS, or, more generally,
electrical impedance spectroscopy).

8. Beyond the Parallel-Plate Model
8.1. Energy Trapping, Compressional Waves

The limitations of the laterally infinite parallel plate as a model for the QCM come in
two forms. Firstly, the edges take an influence on the mode of vibration for AT-cut quartz.
Secondly and more importantly, the practical resonators do not actually have parallel
surfaces, at least in acoustic terms (Figure 37). In order to mount the resonator between
O-rings with little damping, the resonator’s vibration amplitude at the edge must be as
small as possible. That is achieved by making the resonator slightly thicker in the center
than at the edge [178,179]. The mechanism is called energy trapping. The resonator may be
viewed as an acoustic lens. The concave surfaces focus the acoustic energy to the center.
The situation has been analyzed with analytical theory in considerable depth [180,181].

Resonators designed for use on the fundamental indeed have concave surfaces. The
resonators used in sensing mostly achieve energy trapping with keyhole-shaped electrodes.
Often the back electrode is smaller and thicker than the front electrode, so that the back
electrode defines the amplitude distribution. If convex surfaces are employed, the am-
plitude distribution is similar to a Gaussian (circular or elliptical) [182]. With key-hole
electrodes, there is small-scale variability (bottom in Figure 37). The displacement pattern
can be visualized in a few different ways, none of them being simple [172,183–185]. These
images reveal rather complex patterns with a considerable amount of irregularity [186,187].
In particular, the patterns may deviate from what symmetry would dictate in the absence
of crystal defects.

Energy trapping has two important consequences, which are an increased resonance
frequency and flexural contributions to the mode of vibration.

Why would energy trapping increase the frequency? The apparent stiffness of a
vibrating body depends not only on the material’s elastic modulus but also on the steepness
of the gradients in displacement. For instance, the effective spring constant of the parallel
plate is given as:

κR =
AeffGq

dq

(nπ)2

2
=

(nπ)2

2
κq,stat (90)

High overtones have a large effective spring constant because the shear gradients
are strong. The more deformation is contained in a mode, the higher is the energy in the
elastic deformation.
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Figure 37. Energy trapping allows to mount resonators at the edge with little damping. When
the resonator is thicker in the center than at the edge, the shear vibration is confined to the center.
Ideally, the amplitude distribution is smooth (top). Experiments often evidence small-scale vari-
ability (bottom, [172,186]). u2(r) is the weight function to be applied in area averaging following
Equation (26).

Increased energy trapping increases the steepness of the in-plane gradients, thereby
increasing frequency. This effect is noticed when comparing the resonance frequencies of
the different overtones. These do not occur at the exact integer multiples of the fundamental
because of energy trapping (and, also, because of piezoelectric stiffening, but the latter
influence is smaller) [188]. The influence, which energy trapping takes on the resonance
frequency, is problematic when a sample contacts the resonator at the center, only, because
the sample then improves the energy trapping, thereby increasing frequency (Figure 38).
This effect is superimposed onto the sample’s load impedance (see the discussion below
Equation (34)).

Sensors 2021, 21, x FOR PEER REVIEW 54 of 83 
 

 

Why would energy trapping increase the frequency? The apparent stiffness of a vi-
brating body depends not only on the material’s elastic modulus but also on the steepness 
of the gradients in displacement. For instance, the effective spring constant of the parallel 
plate is given as: 

High overtones have a large effective spring constant because the shear gradients are 
strong. The more deformation is contained in a mode, the higher is the energy in the elastic 
deformation.  

Increased energy trapping increases the steepness of the in-plane gradients, thereby 
increasing frequency. This effect is noticed when comparing the resonance frequencies of 
the different overtones. These do not occur at the exact integer multiples of the fundamen-
tal because of energy trapping (and, also, because of piezoelectric stiffening, but the latter 
influence is smaller) [188]. The influence, which energy trapping takes on the resonance 
frequency, is problematic when a sample contacts the resonator at the center, only, be-
cause the sample then improves the energy trapping, thereby increasing frequency (Fig-
ure 38). This effect is superimposed onto the sample’s load impedance (see the discussion 
below Equation (34)). 

A second consequence of energy trapping are flexural contributions to the displace-
ment pattern. Because the amplitude of shear varies between the center and the edge, the 
resonator bends (Figure 39A–C). On the high overtones, bending is reduced for the rea-
sons discussed in [172]. Because bending is particularly strong on the fundamental, data 
from the fundamental often are discarded from the analysis. Bending is reduced in a liq-
uid environment because the liquid itself is compressed in the regions with in-plane gra-
dients of the transverse displacement. It exerts a pressure onto the plate, reducing the 
flexural displacement (green in Figure 39B).  

 
Figure 38. Application of a load to the center of the plate, only (as shown in panel (B)), improves 
energy trapping, thereby increasing the resonance frequency with respect to the unloaded resona-
tor in panel (shown in (A)). 

 

transverse 
amplitudeA

B
increased
amplitude
gradient

thick back-electrode

20 40

1 kHz

∆Γ

 

 

 

 ∆
f, 

∆Γ

Temperature [°C]

∆f

κR = 
AeffGq

dq

(nπ)2

2  = 
(nπ)2

2 κq,stat   (90) 

D C 

Figure 38. Application of a load to the center of the plate, only (as shown in panel (B)), improves
energy trapping, thereby increasing the resonance frequency with respect to the unloaded resonator
in panel (shown in (A)).

A second consequence of energy trapping are flexural contributions to the displace-
ment pattern. Because the amplitude of shear varies between the center and the edge, the
resonator bends (Figure 39A–C). On the high overtones, bending is reduced for the reasons
discussed in [172]. Because bending is particularly strong on the fundamental, data from
the fundamental often are discarded from the analysis. Bending is reduced in a liquid
environment because the liquid itself is compressed in the regions with in-plane gradients
of the transverse displacement. It exerts a pressure onto the plate, reducing the flexural
displacement (green in Figure 39B).
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Figure 39. (A,B) When a parallel plate experiences a hypothetical pure thickness-shear deformation with in-plane gradients,
volume is not conserved at those places, where the in-plane gradient is large. The pure thickness-shear mode therefore is
not realized: The plate bends. In liquids, the bending is reduced because the liquid is compressed as well. (C) A map of the
vertical displacement as determined with laser doppler velocimetry (LDV). Adapted from [172]. (D) ∆f and ∆Γ determined
in a temperature ramp. The opposite wall of the liquid cell was parallel to the resonator surface, which generated standing
compressional waves with λ depending on temperature. Adapted from [189].

Flexural motion launches compressional waves and standing compressional waves
can cause coupled resonances. Figure 39D shows an example (from [189], see also [190,191]).
The crystal and the wall of the liquid cell opposite to the crystal form a cavity for compres-
sional ultrasound. The cavity resonates when the distance between the two surfaces is
equal to nλcomp/2 with n an integer. The wavelength and the dimensions of the cell vary
with temperature, which causes the nightmare shown in Figure 39D. In order to not let that
happen, one may design the cell such that the resonator surface is inclined relative to the
opposite wall. That does not remove the compressional waves, it only avoids the coupled
resonances. This recommendation was actually formulated as early as 1987 by Eggers and
Funk in the same paper, in which they propose to analyze QCM data in terms of the shift
of the complex resonance frequency [33]. Eggers and Funk placed a “spoiler” (an irregular
piece of Teflon) in front of the crystal in order to deflect the compressional waves. When
working with open cells, one may place a paper clip onto the air-water interface (held there
by surface tension). Few researchers have reported on temperature sweeps employing
liquid cells. It is always difficult to say why certain experiments were not done or not
reported, but one may guess that compressional waves were a problem.

Effects of compressional-waves can never be eliminated in measurements of viscosity
because one compares frequencies measured in air to frequencies measured in liquid. With
regard to adsorption experiments in liquid, one can hope that the effects of compressional
waves remain constant during experiment and therefore disappear from the frequency shift.

A historical note: Soft matter was studied with acoustic resonators in the 1930s to
1950s, already. The frequencies mostly were in the kHz range. Torsional resonators and
reflection devices [75] were used, mostly. Thickness-shear resonators were available at that
time as clocks. Mason and McSkimin did use these when they expanded their frequency
range to beyond 1 MHz, but they used them in an indirect way. In 1949 they glued AT-cut
crystals to the ends of cylindrical rods of fused quartz. The crystals were excited by a radio
pulse, thereby launching a transverse acoustic wave. The wave travelled down the cylinder,
was reflected at the other end (at the interface to the liquid under study, see the remarks
around Equation (37)) and returned to the crystal, which transduced the reflected wave’s
shear stress to a voltage. The liquid’s viscosity was inferred from the reflected amplitude.
In the introduction, the authors discuss using the plates as such: “Consideration was given to
the use of a thickness vibrating shear crystal of the AT or BT type, but it was found that the shear
motion was too closely coupled to other modes of motion, such as flexure modes, to give reliable
results. Hence another method had to be used.” In hindsight, these problems turned out to be
less severe than the authors had believed.

With some diligence, crystals not employing energy trapping can be mounted such
that they are only weakly damped by the O-rings. Such crystals have electrodes covering
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the entire area rather than key-hole electrodes. However, such resonators immersed in
liquids still display compressional-wave effects. This is evidenced with open cells, the
water level of which slowly decreases due to evaporation [172]. Coupled resonances as
shown in Figure 39D are still seen. Evidently, the edges of the resonator alone give rise
flexure modes because of the anisotropy of the elastic constants.

Experiments in the dry can occur even with no electrodes at all. An electrodeless
resonator blank can be placed on a rough metal surface. The other electrode can be placed
above the resonator, leaving an air gap. The rough surface supports the blank across small
asperities, which hardly dampen the resonance [81]. The problem with this arrangement
is that the resonance frequency depends on the width of the air gap. The upper electrode
must be mounted rigidly. Once this problem is solved, the experiment is rather clean and
well-defined.

8.2. Anharmonic Sidebands

Anharmonic sidebands are solutions to the acoustic boundary value problem, which
contain nodal planes perpendicular to the surface. Figure 40 shows examples. The maps of
the displacement amplitude were produced by Sauerbrey, based on a somewhat intricate
optical method [192]. Anharmonic sidebands have been exploited for sensing [193], but
the examples are scarce. The important modes for sensing do not have nodal planes
perpendicular to the plate surface. They might be called n-00-modes, where n is the
number of nodal planes parallel to the surface and the two other indices count the number
of radial and elliptical nodal planes.
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Figure 40. Vibrational patterns of the 1-00-mode (“1”) and a few anharmonic sidebands. The top

shows
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∣∣∣ versus frequency. The mode shape was determined with a variant of optical reflectometry.
Adapted from [183].

Anharmonic sidebands are a problem if they overlap with the n-00-modes. They
then couple to these modes with detrimental consequences. By and large, the 13-00-mode,
shown in Figure 41 is useless for sensing. A resonance curve can certainly be fitted to the
admittance trace, but ∆f and ∆Γ as derived from these fits are bound to vary erratically in
experiment. Overlap with anharmonic sidebands is much less of a problem in air than in
liquid because of the smaller bandwidth. In air, overtone orders up to 19 can be evaluated.
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Figure 41. If the anharmonic sidebands are not well separated from the n-00-mode, there will
be coupling. The frequency and the bandwidth of the n-00-mode then vary unsystematically in
experiment. In (A), the anharmonic side bands are well separated from the 3-00-mode. The 13-00-
mode shown in (B) is of little use for sensing.

8.3. Towards 3D-Modelling: The Small-Load Approximation in Tensor Form

The following section borrows from quantum mechanics. In quantum mechanics, a
small perturbation (for instance caused by a magnetic field or by neighboring molecules) is
sometimes superimposed onto a stronger, unperturbed Hamiltonian. If the perturbation is
small, the Schrödinger equation does not have to be solved again from scratch. One starts
from the solution to the unperturbed Schrödinger equation and computes small corrections
to the orbitals and energies. Importantly, the 1st-order shift in energy does not require
knowledge of the 1st-order shifts of the corresponding orbital. It can be computed from
the unperturbed orbital.

Let the total Hamiltonian consist of an unperturbed operator, H0, and a small pertur-
bation, H1:

H = H0 + H1 (91)

Let the solution to the unperturbed Hamiltonian, ψ(0), be unique (no degeneracy).
Perturbation theory predicts the 1st-order correction of the energy eigenvalue, E(1), as

E(1) =

∫
Volume ψ

(0)∗H1ψ
(0)dV∫

Volume ψ
(0)∗ψ(0)dV

(92)

The superscript (0) denotes the solution to the unperturbed Hamiltonian. “∗” denotes
complex conjugation. If the wave function is normalized, the denominator is unity (and is
not actually needed). It was included for the sake of generality. (The 0th-order solution
will be non-normalized further down.) Again, the 1st-order correction to the energy can be
computed from the unperturbed wave function.

In the acoustics problem, the Hamilton operator is replaced by theω2-operator,ω2.
Standing elastic waves in the unloaded crystal follow the relation:

(
ω2
)(0)

û(0)
i = ω2 û(0)

i =
1
ρq

∑
j

dσ̂(0)ij

drj
=

1
ρq

∑
jkl

d
drj

(
cijkl

1
2

(
dû(0)

l
drk

+
dû(0)

k
drl

))
(93)

The indices i, j, k, and l run over x, y, and z. As before, superscript (0) denotes the
solution to the unperturbed problem. Equation (93) is an eigensystem, similar to the time-
independent Schrödinger equation. The wave function is replaced by the displacement
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field, û (a vector, rather than a scalar). σ̂(0)ij /drj is the force density. σ̂ij is the stress tensor,
given as:

σ̂ij = ∑
kl

cijkl ε̂kl = ∑
kl

cijkl
1
2

(
dûl
drk

+
dûk
drl

)
(94)

where ε̂kl is the deformation tensor and cijkl is the stiffness tensor. Because Equation (94)
holds generally, the superscript (0) was omitted.

The stiffness tensor of the unperturbed problem must be real (no internal friction)
because perturbation theory requires the unperturbed operator to be self-adjoint. An
unperturbed operator including dissipation would violate self-adjointness. Self-adjointness
is not required, however, for the perturbation operator. Internal dissipation can therefore
be included in the formalism as a perturbation. This perturbation is separate from the
perturbation by the sample (Equation (95)). Because the unperturbed operator is real, the

eigenvalue to the unperturbed problem, −
(
ω2)(0), and the 0th-order displacement field,

^
u
(0)

, are real, as well. A similar situation was encountered below Equation (21), when Zq,
cq, and fref were expressed as real parameters.

When a sample exerts a periodic stress onto the surface, this stress amounts to a
perturbation. The eigensystem with surface traction included is:(

−ω̃2
)

tot
ûi =

((
ω2)

0 +
(
ω2)

1

)
ûi

= 1
ρq

∑
jkl

(
d

drj

(
cijkl

1
2

(
dûl
drk

+ dûk
drl

))
+ njZ̃L,ijkiωûkδ(r− S)

) (95)

The i in iω is the imaginary unit (not an index). δ(r− S) is the Dirac δ-function, where
S is a position on the resonator surface. nj are the components of the surface normal. The

eigenvalue,
(
−ω̃2

)
tot

, is complex because Z̃L,ijk is complex. Z̃L,ijk is the load impedance in
tensor form, defined by:

− σ̂S,ij = ∑
k

Z̃L,ijk v̂S,k = ∑
k

Z̃L,ijkiωûS,k . (96)

As in Equation (20), there is a minus sign in front of the stress because the stress is
exerted into the direction of –z.

The displacement field in Equation (95),
^
u 6= ^

u
(0)

, is the solution to the total ω2-

operator. One might write
^
u ≈ ^

u
(0)

+
^
u
(1)

with
^
u
(1)

the 1st-order correction, but the
1st-order correction to the displacement field does not concern us any further. We are only
interested in the shift of the eigenvalue. The eigenvalue is approximated as the sum of a
0th-order and a 1st-order term:(

−ω̃2
)

tot
≈
(
−ω2

)(0)
+
(
−ω̃2

)(1)
. (97)

Following perturbation theory, the 1st-order term can be computed from the 0th-order

displacement field
^
u
(0)

as:

(
ω̃2
)(1)

≈ iω
ρq

∑ijk
∫

Volume û(0)
S,i njZ̃L,ijk û(0)

S,kδ(r−S)d3r

∑i
∫

Volume û(0)
i û(0)

i d3r

= iω
ρq

∑ijk
∫

Surface û(0)
S,i njZ̃L,ijk û(0)

S,kd2rS

∑i
∫

Volume û(0)
i û(0)

i d3r

= iω
ρq

∫
Surface

(
^
u
(0)

S ⊗n

)
: Z̃L·

^
u
(0)

S d2rS

∫
Volume

^
u
(0)
·^u

(0)
d3r

(98)
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The denominator is needed because
^
u
(0)

is not normalized. (It is not even dimension-
less.) In the numerator, the volume integral has turned into a surface integral because of

the δ-function. Complex conjugation as in Equation (92) is not needed because
^
u
(0)

is real.
In line 3, the center-dot is the vector product (contraction over one index, “dot product”).
“:” denotes contraction over two indices and “⊗” is the outer product.

This concludes the perturbation calculation. We are left with the task to compute ∆ f̃

from
(
ω̃2
)(1)

and
(
ω2)(0). This calculation proceeds as:

2π∆ f̃ =

√
(ω2)

(0) +
(
ω̃2
)(1)
−ω(0)

= ω(0)

√1 +

(
ω̃2
)(1)

(ω2)
(0) − 1

 ≈ ω(0)

1 + 1
2

(
ω̃2
)(1)

(ω2)
(0) − 1

 = 1
2

(
ω̃2
)(1)

ω(0)

(99)

Taylor expansion ((1 + ε)1/2 ≈ 1 + ε/2 for ε� 1) was applied. Combining Equation (99)
with Equation (98) and usingω ≈ ω(0) leads to:

∆ f + i∆Γ ≈ i
4πρq

∑ijk
∫

Surface û(0)
S,i njZ̃L,ijkû(0)

S,kd2rS

∑i
∫

Volume û(0)
i û(0)

i d3r
(100)

This is the small-load approximation in tensor form. It was first written down in slightly
different form by Pechhold in [194].

We briefly convince ourselves that Equation (100) reduces to Equation (25) for the
parallel plate. For the parallel plate, the displacement occurs along x and is of the form
ûS cos

(
kqz
)
. The integral in the denominator turns into û2

S Aeffdq/2. The only nonzero
component of Z̃L,ijk is Z̃L,xzx, called Z̃L in Equation (25). The surface normal is along z. The
displacement in the numerator is ûS. For the parallel plate, Equation (100) turns into:

∆ f + i∆Γ ≈ i
4πρq

û2
S Aeff

〈
Z̃L

〉
û2

S Aeffdq/2
(101)

With ρqdq = mq = Zq/(2f0) this relation is equivalent to Equation (25):
Limitations of the formalism are:

• Piezoelectric stiffening is not included. That can be done (in tensor form). It is simply
a matter of not letting oneself be intimidated by large equation systems.

• Some perturbations may actually be large perturbations. Among these are the com-
pressional waves, because the plate’s stiffness under bending (not shear) may be too
small to let the normal pressure exerted by compressional waves be a small perturba-
tion [127].

• The above mathematics covers the 1st-order perturbation, only. 3rd-order perturbation
is sometimes needed (Box 2).

• Calculating the vibration pattern of the unloaded crystal with electrodes is a challenge.
If such a calculation is not feasible, the mode of vibration can still be determined
experimentally with laser Doppler vibrometry (LDV, Figure 39C).

Among the benefits linked to Equation (100) are:

• Equation (100) is general. It also applies to other resonators (such as torsional res-
onators [60,61,65] or nanoresonators [195]).

• It clarifies, why the statistical weight in area averaging in Equation (26) is the square
of the local amplitude of oscillation.

• It explains why the Sauerbrey relation is slightly incorrect on the low overtones,
even for rigid films in dry environments. The problem is linked to the modal mass
(Section 8.6).
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• It allows to quantitatively estimate the effects of increased energy trapping discussed
around Figure 38. In particular, it explains why the freezing of a liquid drop on the
resonator surface (water, hexadecane, . . . ) lets the resonance frequency increase [196].

The limitations acknowledged: Equation (100) is the starting point for full-fledged
3D-modelling.

8.4. The 4-Element Circuit and the Electromechanical Analogy

An equivalent circuit (also “lumped-element circuit”) contains discrete elements,
networked together in some way. This involves two separate approximations. Firstly,
the real-world device may or may not consist of discrete elements. Printed circuit boards
(PCBs) often contain discrete elements, linked by conductive tracks with small resistance.
Even then, stray capacitances (often needed for a faithful representation with an equivalent
circuit) have no corresponding elements on the PCB. In real-word acoustics and mechanics,
discrete elements are rare. Two masses linked together with a spring are an example
(Figure 1B). The bell is a counter example (Figure 1C). A second approximation concerns
discrete elements in the real world, which are represented with two impedances in the
equivalent circuit. A real-world inductor has some ohmic resistance and is therefore
depicted as an inductor in series with an ohmic resistor. In mechanics, a contact often
dissipates energy and is therefore depicted as a spring in parallel to a dashpot (Figure 31).

Figure 42A shows an electrical equivalent circuit of a quartz resonator (or some other
piezoelectrically driven resonator). When drawn without the load (in red on the right-hand
side), this is the Butterworth-van-Dyke circuit (BvD circuit, also: “4-element circuit”).
The upper branch (the motional branch) contains an inductance, a capacitance, and a
resistance. This circuit exploits the electromechanical analogy, which maps the mass, the
spring, and the dashpot onto the inductance, the capacitance, and the resistance. The
motional branch can be modeled with electrical impedances because piezoelectricity acts
as an impedance converter. While the discrete impedances certainly are an idealization,
Figure 42A reproduces the resonator’s overall impedance close to the resonances well.
Note that the values of L1, R1, and C1 differ between overtones.
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of the 4-element circuit actually contains 5 elements because the load (∆R + i∆X) was included. (B) A
version of the circuit, where the motional branch is drawn with mechanical elements.

There is a more general circuit (the Mason circuit [92]), which covers the entire fre-
quency range (on-resonance and off-resonance, all overtones, parallel-plate model). In
the Mason circuit, the impedances of the elements are not just inductances, resistances,
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or capacitances. For instance, one of them is iAeffZq tan
(

k̃qdq/2
)

. The Mason circuit also
covers piezoelectric stiffening. (The 4-element circuit from Figure 42A does not.) Models of
the QCM loaded with planar films can entirely be based on the Mason circuit [54,197]. The
Mason circuit is interesting in a few ways, but working one’s way from the diagram to the
frequency shift is laborious [198].

The capacitance at the bottom in Figure 42 is a genuinely electrical element. It is the
“parallel capacitance”, formed by the electrodes on both sides of the plate. C0 is larger
than C1 by about a factor of 1000 (Equation (88)). When the (electrical) Kirchhoff rules are
applied to Figure 42A, an electrical admittance as shown in Figure 3 results.

It is instructive to also draw the corresponding mechanical circuit. A mechanical
circuit of that kind was already shown in the introduction (Figure 1). The mechanical
circuit contains a spring, a mass, and a dashpot. These mechanical impedances (such
as iωmR for the mass and κR/(iω) for the spring) have dimensions of force to velocity.
The acoustic impedances, on the other hand, are ratios of stress to velocity. Within the
parallel-plate model, one converts between the two by multiplication with the area, Aeff.
(The 4-element circuit is not necessarily outside the parallel-plate model. It is general.)

Figure 42B makes the mechanical nature of the elements in the upper branch explicit.
Importantly, the elements must be arranged in parallel (see Box 3). Following the mechani-
cal Kirchhoff rules, impedances are additive, when the elements are arranged in parallel,
while inverse impedances are additive, when the elements are arranged in series.

A side remark: Not everyone draws mechanical elements as in Figure 42B. If drawn as
in Figure 43 on the right-hand side, the electrical Kirchhoff rules apply. The difficulty here
is to always remember that the elements in this circuit are arranged differently from the
elements in the real world. That would not problem in the context of Figure 42B because
the discrete elements do not exist in the real world. It would be a problem in Figure 31.
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Figure 43. Electrical engineers sometimes draw mechanical equivalent circuits, such that the electrical
Kirchhoff rules apply [52]. This is not the convention followed in Figure 42.

The values of the circuit elements in Figure 42B are:

mR =
Aeffmq

2
, κR =

AeffGq

dq

(nπ)2

2
, ξR =

√
κRmRtan δq (102)

Within the parallel-plate model, δq is the plate’s loss angle, Gq
′′/Gq

′. For practical
resonators, the energy dissipated in the electrodes also contributes to ξR.

Figure 42B represents piezoelectric coupling as a transformer. A key parameter of a
transformer is the turns ratio, φ = n2/n1. n1 and n2 are the numbers of turns. Voltage, U,
and current, I, are transformed as:

U2 =
n2

n1
U1, I2 =

n1

n2
I1 (103)

Following Equation (103), an impedance on one side of the transformer takes a differ-
ent value when seen from the other side. The converted impedance is:

Z2 =
n2

2
n2

1
Z1 = φ

2Z1 (104)
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The transformer in Figure 42B is an impedance converter in this sense. It converts between
an electrical and a mechanical impedance (Z̃mech = φ2Z̃el, with φ = e26 Aeff/dq).

The following equations derive the small-load approximation from Figure 42B. In the
absence of a load, the resonance condition is

iωmR +
κR

iω
+ ξR = 0 (105)

Neglecting the dashpot, the resonance frequency is

ω0 =

√
κR

mR
=

√√√√AeffGq(nπ)
2/
(
2dq
)(

Aeffmq
)
/2

=
nπ
dq

√
Gq

ρq
= nπ

cq

dq
(106)

In the presence of the load, the resonance condition is

iωmR +
κR

iω
+ξR+AeffZ̃L = 0 (107)

Before solving this equation forω, we turn it into a more familiar form, which is:

ω2 + ω

(
−
(

iξR

mR
+

iAeffZ̃L

mR

))
+

(
κR

mR

)
= 0 (108)

Again neglecting the dashpot, the shifted resonance frequency is:

ω̃0,L =
iAeffZ̃L

2mR
±

√√√√( iAeffZ̃L

2mR

)2

+
κR

mR
≈ iAeffZ̃L

2mR
+

√
κR

mR
(109)

In the second step, the meaningful solution (out of the two solutions of the quadratic
equation in ω) was selected. The quadratic term under the root was neglected because the

load impedance is small. With mq = ρqdq and Zq =
(
ρqGq

)1/2
, Equation (109) turns into:

∆ω
ω0

=
ω0,L − ω0

ω0
=

iAeffZ̃L

2mR

√
mR

κR
= i

AeffZ̃L

2mR

dq

cqnπ
=

iZ̃L

nπ
1

2
(
Zeffmq/2

) dq

cq
=

1
n

i
πZq

Z̃L . (110)

This is the small-load approximation.

8.5. Amplitude of Oscillation, Effective Area

The effective turns ratio, φ, of the transformer in Figure 42B leads to a relation between
the current into the electrodes and the velocity at the resonator surface. On resonance, the
velocity, v̂S, and the current, Î, are related as [199]:

v̂S = iωûS =
1

2φ
Î ≈

dq

2e26 Aeff

Ûext

Z̃tot
(111)

A factor of 1/2 enters because the current is proportional to the difference in velocity
between the front and the back (which is 2v̂S). The relation between the current into
the electrodes, Î, and the nominal external voltage, Ûext, may be nontrivial. Further
complicating the situation, vector network analyzers often control the power (in units of
dBm), rather than voltage or current. With 5 MHz resonators on the fundamental, an area
of Aeff = 10 mm2, a voltage of 100 mV, and a motional resistance of R1 = 500 Ω (typical for
experiments in liquids), an amplitude of oscillation of 0.1 nm results. The shear angle is
ûS/δ, which is below 10−3. A more detailed calculation of the amplitude would have to
account for energy trapping. The current through the motional branch may also be affected
by the analyzer’s output resistance and by the current through the parallel capacitance, C0.
For that reason, “≈” was written on the right-hand side in Equation (111).
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If the resonator is under voltage control, one may also remember the relation:

ûS ≈
4

(nπ)2 d26Q Ûext = 1.25
pm
V

Q
n2 Ûext (112)

d26 = 3.1 × 10−12 m/V is the piezoelectric strain coefficient of AT-cut quartz. Equation (112)
was confirmed experimentally in [200].

The transformer’s effective turns ratio, φ = e26 Aeff/dq, also leads to an equation for
the plate’s effective area, which is:

Aeff ≈
nπ

32 · Zqd2
26 f 2

0

1
QR1

(113)

For the proof see Section 7.4 in [5]. The same approximations as in Equation (111)
apply.

8.6. Modal Mass, Sauerbrey Equation for Plates with Energy Trapping

Flexural admixtures not only affect measurements in liquids (because of compressional
waves), but also measurements of the mass of a film in the dry. Start from the classical
formula for the resonance frequency of a harmonic oscillator, ω0 ≈ (κR/mR)

1/2. This
formula holds for discrete objects. Applied to elastic bodies vibrating in some vibration
mode, equivalent parameters must be defined. The definition of κR is unessential here.
Write the total mass as mR + Aeffm f with mR the “modal mass” and m f the film’s mass per
unit area. Assuming Aeffm f � mR and applying the Taylor expansions (1 + ε)1/2 ≈ 1 + ε/2
and (1 + ε)–1 ≈ 1 – ε leads to:

∆ f = ∆ω
2π = 1

2π

(√
κR

mR+Aeffmf
−
√
κR
mR

)
= 1

2π

√
κR
mR

(
1√

1+Aeffmf/mR
− 1
)

≈ 1
2π

√
κR
mR

(
1

1+Aeffmf/(2m R)
− 1
)

≈ 1
2π

√
κR
mR

(1− Aeffmf/(2m R)− 1) = − f ref

(
Aeffmf
2mR

)
(114)

At first glance, Equation (114) appears to differ by a factor of 1/2 from the Sauerbrey
result, which is:

∆ f
fref

= −
m f

mq
= −

Aeffm f

Aeffmq
(115)

mq is the mass per unit area of the resonator plate. The comparison shows that mR is
only half the mass of the resonator plate, Aeffmq. This is so because a plate in thickness-
shear motion contains nodal planes. The kinetic energy is 1/2Aeffmq

〈
v2

S
〉

t,V. Averaging
occurs over time, t, and volume, V. Volume averaging produces a factor of 1/2 because〈
cos2(x)

〉
= 1/2, which implies mR = Aeffmq/2.

Importantly, this factor of 1/2 turns into some other numerical factor when flexural
modes are present because the flexural motion does not vanish at the nodal planes of the
shear motion. The modal mass increases and –∆f /n decreases in consequence. This effect
slightly modifies the Sauerbrey equation.

Figure 44 shows an experimental example. The sample was a polymer film in air.
Because this film is viscoelastic, −∆f /n decreases in proportion to n2 at large n (see
Equation (46)). From the slope, one can infer J f

′. If interpreted with Equation (45), the
positive slope would indicate negative shear compliance, but Equation (46) solves that
problem. Regardless of the slope: The low overtones must be excluded from this analysis,
because the respective vibration modes have an increased modal mass.
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perturbing the motion of the tip), there is a strong influence [202]. However, experi-
ments of this kind can also be done with any other actuator. Nanoscale dynamical-
mechanical studies based on an AFM tip in contact with a vibrating substrate are
commonplace ([203] and others).

• In-situ combination with dielectric spectroscopy [204–207] or electrical cell-substrate
impedance spectroscopy (ECIS [208]) is possible. A difficulty arises, when the sample 
requires an oxidic substrate, such as SiOx, because the commercially available SiOx

coatings may be too thick. The electric field then does not reach to the sample. More
technically, the coating’s capacitance, CSiOx, is so small, that its impedance dominates
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The above argument started from ω0 ≈ (κR/mR)
1/2. The argument can also start

from the tensor form of the small-load approximation. The denominator in Equation (100)
is proportional to the modal mass.

9. Combined Instruments

Because the QCM is simple, it can be easily combined with other instruments. For in-
stance, it is quite trivial to push a QCM sensor against the prism of an ATR-IR spectrometer
and obtain an IR spectrum from the sample on the resonator with monolayer sensitivity
(ex-situ, evidently). One can rather easily do AFM, XPS, and Raman spectroscopy on a
QCM, either in-situ or ex-situ. The examples are numerous. Two problems are worth
a mention:

• When combining a QCM with an AFM [201], the QCM does not usually respond to
the contact with the AFM tip because the contact is too small. That can be understood
from Equation (70) together from the Mindlin result for the transverse contact stiffness,
which is κP = 2G* rC with G* an effective modulus and rC the contact radius [117] (see
Section 5). Inserting values (G* ≈ 10 GPa, rC ≈ 5 nm) leads to a frequency shift below
0.1 Hz (at 5 MHz). An AFM tip tapping onto the resonator amounts to a nanoscopic
object perturbing the motion of a macroscopic object. It does so, in principle, but the
effects usually disappear in the noise. In the reverse direction (the QCM perturbing the
motion of the tip), there is a strong influence [202]. However, experiments of this kind
can also be done with any other actuator. Nanoscale dynamical-mechanical studies
based on an AFM tip in contact with a vibrating substrate are commonplace ([203]
and others).

• In-situ combination with dielectric spectroscopy [204–207] or electrical cell-substrate
impedance spectroscopy (ECIS [208]) is possible. A difficulty arises, when the sample
requires an oxidic substrate, such as SiOx, because the commercially available SiOx
coatings may be too thick. The electric field then does not reach to the sample. More
technically, the coating’s capacitance, CSiOx, is so small, that its impedance dominates
the sample’s overall electrical impedance. The properties of the sample are then
masked by the term 1/(iωCSiOx). Thin dielectric coatings are needed.

The text proceeds with two particularly well studied combinations, which are the
electrochemical QCM and the combination with optical reflectometry.
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9.1. The Electrochemical QCM (EQCM)

Among the combinations with other techniques, the combination with electrochem-
istry is most advanced. For early works see [16–19,209]. More recent reviews are provided
in [210–212].

Electrogravimetry can be rather complicated and we do not elaborate on the details.
Matters are transparent as long as one sticks to electrodeposition [213] or electroetch-
ing [214] with layer thicknesses of many nanometers. The QCM then operates in the
gravimetric regime. The charge passed through the electrode surface may be converted to
a mass, using Faraday’s law [103,215]. If this mass equals the mass as inferred from the
Sauerbrey equation, the “current efficiency” is unity. If this current efficiency is less than
unity, one suspects side reactions or soft layers. For soft layers, the bandwidth and the
overtone dependence of −∆f /n can be analyzed to derive the layer’s viscoelastic constants
(Equation (52), [104]). If the current efficiency is larger than unity, roughness may be a
reason [216].

Unfortunately, there are numerous sources of artifacts at the low end of the QCM’s
sensitivity range. Among these are the viscoelasticity of the double layer [48,217], nanobub-
bles [218], slip [219], roughness [216], piezoelectric stiffening [176,220], and static stress,
which bends the plate [53].

The difficulties admitted, there is additional information available for interpretation.
Firstly, there is the electrical current as a function of time (or the voltage, in case the ex-
periment occurs under current control). If the experiment occurs outside the gravimetric
range, charge and frequency shift are not simply related by Faraday’s law, but they should
still be related in some other way. Also, kinetics comes to help. The fast QCM discussed
in Section 3.5 resolves the kinetics with a time resolution down to 100 µs. The response
times determined this way give clues to the nature of the processes involved. Finally, the
frequency resolution can be improved by running the experiment repetitively and accumu-
lating data. If a certain process occurs in response to a change in electrode potential on the
time scale of, for instance, one second, accumulation overnight improves the resolution
in frequency by a factor of about (40000)1/2 (by N1/2 with N the number repeats). The
frequency resolution readily drops to below 1 mHz. A caveat: For the conventional QCM,
dirt, scratches, or even small bubbles are not necessarily detrimental because the QCM
averages over the entire active area (~10 mm2). A minute response (of a few mHz) to a
jump in electrode potential, however, may entirely result from such local heterogeneities.

The Paris group has exploited the combination of electrochemical impedance spec-
troscopy (EIS) with the QCM in numerous papers [103] and others. They call the technique
“AC electrogravimetry”. The electrode potential is modulated sinusoidally. The QCM is
driven by an oscillator circuit, the output of which is fed into a frequency-to-voltage converter.
The respective voltage oscillates with the modulation frequency. It is displayed together with
the electrical current, often in the same diagram, often showing similar features.

The molecular details of electrochemistry can be enormously complex. The EQCM
(similar to EIS) only measures integral quantities (such as mass transfer, area-averaged
softness, and area-averaged roughness) and their kinetics. It can still aid the structural
investigations (examples in [221,222]) and provide for constraints to the models.

9.2. Combination with Optical Reflectometry

With regard to label-free biosensing, SPR spectroscopy [15] outperforms the QCM
insofar, as SPR has a lower limit of detection and smaller baseline drifts. Irrespective of
the competition, there are interesting conceptual similarities between the QCM and optical
reflectometry. Also, there are benefits in the combination of the two [93,151,223].

Similar to the QCM, SPR spectroscopy exploits a shift of a resonance condition, where
the frequency is replaced by the kx-vector of the surface plasmon. The analogy is illustrated
in Figure 45.
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Figure 45. Both the QCM and SPR spectroscopy exploit the shift of a resonance condition. The peak
in the conductance curve is the analog of a dip in the reflectance curve. The resonance frequency
is replaced by the coupling angle (that is, the angle of incidence with minimum reflectance). The
coupling angle is related to the plasmon’s kx-vector. The shift in the coupling angle is proportional to
the adsorbed amount.

If the adsorbed layer is thinner than the decay depth of the plasmon, δopt, (which
happens to be similar to the decay depth of the shear wave of the QCM), the shift in kx is
proportional to the 1st invariant of the refractive index profile, J1, given as [224]:

J1 =
∫ ∞

−∞

(
n2

sub − n2
r (z)

)(
n2

r (z)− n2
bulk

)
n2

r (z)
dz (116)

Subscripts sub and bulk denote the substrate and the bulk liquid, respectively. nr is the
refractive index. n2

r is equal to the dielectric constant at optical frequencies, ε. While ε and
n2

r are complex, in principle, they are treated as real parameters, here. In SPR spectroscopy,
the substrate is a metal (often gold), which has a large, negative ε. The term n2

sub − n2
r (z)

may be approximated as n2
sub − n2

bulk (equal to εsub − εbulk) and be pulled out of the
integral. Neglecting prefactors, the shift in kx induced by the adsorbate obeys [225]:

∆kx ∝
2π
λ

∫ ∞

0

[
n2

r (z) n2
bulk

n2
r (z)

]
dz (117)

Both ∆f + i∆Γ (in QCM experiments, Equation (58)) and ∆kx (in SPR spectroscopy,
Equation (117)) depend on an integral of a response function. Algebraically, the response
functions are similar. Differing from SPR spectroscopy, the response function to be used for
the QCM saturates to unity. This happens whenever the viscosity in the layer is much larger
than the viscosity of the bulk. The contrast function in optics, on the contrary, is mostly
proportional to concentration, because the refractive index increment, dnr/dc, is small.
The SPR response is roughly proportional to the adsorbed amount, while the QCM probes
the distance to the surface, at which the contrast function finally falls out of saturation
(dac in Figure 46). When the layer expands, the SPR response changes by a small amount
because the increase in thickness is compensated by a decrease in concentration. The QCM
mostly notices an increase in acoustic thickness. These remarks apply to all variants of
optical reflectometry. Because SPR and QCM see the adsorbed amount and the thickness,
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respectively, the degree of swelling may be inferred from the combination of SPR and QCM
(more generally, from the combination of optical reflectometry with shear-wave acoustic
reflectometry).
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the integral of the contrast function is roughly proportional to the adsorbed amount. In the case
of the QCM, the viscosity of an adsorbate layer easily exceeds the viscosity of the bulk by a factor
of 10 or more. The contrast function saturates to unity and the integral of the contrast function is
about proportional the acoustic thickness, dac. dac is the distance, at which the sample’s viscosity has
decreased to about twice the viscosity of the bulk.

SPR can be combined with the QCM in-situ, but that requires grating coupling on the
surface of a resonator crystal, which is expensive [226,227]. Ellipsometry is an option [151]
and others, but ellipsometry can be challenging in the details, especially when the beam
passes through windows. Given that the electrodes often consist of gold, variants of optical
reflectometry can be employed, which are simpler than full-fledged ellipsometry [228,229].
If it shall be SPR on the side of optical reflectometry, it can be Love wave sensors on the
side of shear-wave acoustics [230]. Love wave sensors are a variant of the surface acoustic
wave devices [231,232]. For reasons in the details, these are more easily combined with
SPR than the QCM. The remarks above on saturation of the contrast function apply to Love
waves and to shear waves as excited by the QCM in essentially same way [233].

A last remark: The comparison between data acquired with optical reflectometry and
with shear-wave acoustic reflectometry can be based on separate experiments with separate
instruments, as long as the sample preparation is sufficiently reproducible [234].
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Appendix A. Summary of Essential Equations

Small-load approximation ∆ f̃
f0

= i
πZq

Z̃L = i
πZq

〈−σ̂S〉area
v̂S

Gordon-Kanazawa equation,
semi-infinite viscoelastic medium
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Sauerbrey equation, rigid sample ∆ f̃
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Viscoelastic film in air ∆ f̃
f0

= −1
πZq

Z̃f tan
(

k̃fdf

)
Thin film in air ∆ f̃

f0
= −ωmf

πZq

[
1 + (nπ)2

3

(
J̃f
ρf

Z2
q − 1

)(
mf
mq

)2
]

Viscoelastic film in liquid ∆ f̃
f0

=
−Z̃ f
πZq

Z̃f tan(k̃fdf)−iZ̃bulk

Z̃f+iZ̃bulk tan(k̃fdf)

Thin film in liquid
∆ f̃
f0
≈ −ωmf

πZq

[
1− nJ̃f(ω)2πi 1

ρf
f0ρbulkηbulk

]
∆Γ
−∆ f ≈ Jf

′ωηbulk

Thin adsorbate in liquid ∆ f̃
f0

= −ω
πZq

ρbulk
∫ ∞

0

[
ρ(z)
ρbulk
− ηbulk
η̃(z)

]
dz

Point contacts ∆ f̃ = 1
n

nP
Aeff

1
2π2Zq

κ̃P

Time averaging, large amplitudes, nonlinear response ∆ f̃
f0

= i
πZq

2〈−σ̂S(t) exp (iωt)〉area,time
v̂S

Small-load approximation in tensor form ∆ f̃ ≈ i
4πρq

∑ijk
∫

Surface û(0)
S,i (rS)nj Z̃L,ijk(rS)û

(0)
S,k(rS) d2rS

∑i
∫

Volume û(0)
i (r) û(0)

i (r)d3r

Piezoelectric stiffening ∆ f̃PE
f0

= i
πZq

[
4e2

26 Aeff
d2

q

]((
iωC0 + Z̃−1

ext

)−1
−
(

iωC0 + Z̃−1
ext,ref

)−1
)

Appendix B. Glossary of Variables and Relations

Variable Definition

~ Tilde: a complex parameter

ˆ Hat: a complex amplitude

Aeff Effective area of the resonator Aeff = nπ
32Zqd2

26 f 2
0

Gmax
Q (A1)

C0
Resonator’s electrical capacitance
(parallel capacitance) C0 =

εqε0 Aelectrode
dq

(A2)

C1 Motional capacitance
C1 = 8φ2

nπAeffZq

1
2πn f 0

with φ = Aeffd26
dq

C1 =
8k2

t,eff

(nπ)2 C0 with k2
t,eff ≈ 0.8%

(A3)

D Dissipation factor D = 1
Q = 2Γ

fres
(A4)
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Variable Definition

G̃ Shear modulus
G̃ = G′ + iG′′ = 1/ J̃ = (J′ − i J′′)−1 = iωη̃

G̃ =
∣∣∣G∣∣∣(cos(δL) + i sin(δL))

tan(δL) = G′′/G′ = J′′/J′
(A5)

Gq Shear modulus of AT-cut quartz Gq ≈ 29 × 109 Pa

J̃ Shear compliance J̃ = 1/G̃ =
(

J′ − iJ′′
)

(A6)

L1 Motional inductance L1 = 1
4φ2 Aeff

mq
2 φ = Aeffe26

dq
(A7)

Q Quality factor Q =
fres
2Γ (A8)

R1
Motional resistance,
the inverse of Gmax (Equation (13))

Z̃ Shear-wave impedance Z̃ = ρc̃ =
√
ρG̃ =

√
iωρη̃ = iη̃k̃

ω
(A9)

Z̃L Load impedance Z̃L = −σ̂S
v̂S

(A10)

Zq Shear-wave impedance of AT-cut quartz Zq = 8.8 × 106 kg m−2 s−1

c̃f, cq, c̃bulk Speed of shear sound c̃ =
√

G̃/ρ

d26
Piezoelectric strain coefficient of AT-cut
quartz

d26 = 3.1 × 10−12 m/V

e26
Piezoelectric stress coefficient of AT-cut
quartz

e26 = d26Gq = 9.65 × 10−2 C/m2

d f , dq Thickness of film and resonator

k̃ f , kq, k̃bulk
Wave vector in the film, the resonator
plate, and the bulk k̃bulk = ω

c̃bulk
=
√
ωρbulk
iηbulk

=
√
−2i 1

δ = (1− i)
√
ωρbulk
2ηbulk

(A11)

kt
Electromechanical coupling
coefficient

k2
t,ideal = e26

εqε0Gq

k2
t,eff = C1

C0

(nπ)2

8

(A12)

fcen
A frequency in the center of the QCM’s
frequency range (Section 4.7)

fref Resonance frequency in reference state

fres Resonance frequency fres = n f 0

f0 Fundamental frequency f0 =
Zq

2mq

mf , mq
Mass per unit area of the film and the
resonator plate mq = ρqdq =

Zqλ
2 = 1

2
Zqcq

f0
=

Zq
2 f 0

(A13)

mR Effective mass of a resonator parallel plate : mR =
Aeffmq

2 (A14)

n Overtone order

nP
Number of particles in contact with the
resonator

nr Refractive index

u, û
uS, ûS

Displacement,
amplitude of displacement (ˆ)
subscript S: at the surface

û = v̂
iω v̂S =

dq
2e26 Aeff

Î (A15)

v, v̂, vS, v̂S Velocity, amplitude of velocity (ˆ) v̂ = iωû (A16)
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Variable Definition

β′, β′′

γ′, γ′′
Power law exponents,
Section 4.7

J f
′( f ) ≈ J f

′( fcen)
(

f
fcen

)β′
G f
′( f ) ≈ G f

′( fcen)
(

f
fcen

)γ′
J f
′′( f ) ≈ J f

′′( fcen)
(

f
fcen

)β′′
G f
′′( f ) ≈ G f

′′( fcen)
(

f
fcen

)γ′′
(A17)

η̃ Viscosity η̃ = G̃
iω = η′ − iη′′ (A18)

Γ
Imaginary part of resonance
frequency, half-band half width

∆R + i∆X
Load impedance in electrical units
(in older publications) ∆R + i∆X = Aeff

4φ2 Z̃L = −i π
16

Z3
q

Aeffe2
26ε2

q f 3
0
(∆ f + i∆Γ) (A19)

εq Dielectric constant of AT-cut quartz εq = 4.54

κR Effective spring constant κR =
AeffGq

dq

(nπ)2

2 = (nπ)2

2 κq,stat (A20)

ρq Density of α-quartz ρq = 2.65 × 103 kg/m3

σ, σ̂, σS, σ̂S Tangential stress, amplitude thereof

ξR Effective drag coefficient

Appendix C. Python Code

Appendix C.1. Calculation of ∆f + i∆Γ Resulting from a Continuous Viscoelastic Profile

The code in Box A1 prescribes a function G̃(z) and the derivative dG̃(z)/dz (calculated
analytically). The density is assumed as constant. The code solves the wave equation
(Equation (64)), normalizes the solution to unit velocity at the surface, and evaluates the
ratio of stress to strain at the surface (Equation (63)).

Two comments:

• The algorithm solve_ivp from scipy requires the 2nd-order differential equation from
Equation (64) to be turned into a system of two 1st-order equations. This is achieved
by defining the function û′(z) = dû(z)/dz. The 1st-order equations are:

d
dz

û = û′
d
dz

û′ = − ρω
2

G̃
û − 1

G̃
dG̃
dz

û′ (A21)

• One choses an “initial” condition at large z and integrates backwards. In this way, it
is ensured that the solution decays to zero as z→∞. The initial condition consists of
values for the velocity and the velocity gradient. The velocity can take any value. It
later cancels during normalization. The velocity gradient is the velocity multiplied by
ik̃0 where k̃0 = (iωρ/η)1/2 is the wave number in the bulk liquid.

Appendix C.2. Calculation of ∆f + i∆Γ for a Film in Air, Starting from the Lu-Lewis Equation

The Python code in Box A2. computes ∆f + i∆Γ from the Lu-Lewis equation (Equation
(40)). dfc_LuLewis might be recomputed numerous times and used as a model for fitting.
The free parameters are ρf (rho_f), Gf

′ (Gprime_f), tan(δf) (tandel_f), and df (thickness_f).

Appendix C.3. Fit of a Box Profile to Experimental Data

The code in Box A3 reads in data from a file. The file is assumed to contain overtone-
normalized frequency shifts and dissipation factors. Adjustments may be needed with
regard to data format. The algorithm fits Equation (49) to the data. It accounts for viscoelas-
tic dispersion. Following the remarks around Figure 24, β′′ is fixed. The free parameters
are df (d_f), |J| (J_abs), tan(δL) (loss_tan), and β′ (PL_exp_p).
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Box A1. Calculation of ∆f + i∆Γ resulting from a continuous viscoelastic profile.

import numpy as np
from scipy.integrate import solve_ivp
z_max = 1500e-9; z_infl = 300e-9; width = 100e-9;
eta_Liq = 1e-3; rho = 1e3; Gp_surf = 1e5; Gpp_surf = 1e4;
f0 = 5e6; om = 2 * np.pi * f0; Zq = 8.8e6; ik0 = 1j * (1 + 1j)/252e-9
def G(z_rev): # "rev" because the z-scale is reversed
z = z_max - z_rev
Gp = Gp_surf * 1./2.*(1. - np.tanh((z-z_infl)/width))
Gpp = Gpp_surf * 1./2.*(1. - np.tanh((z-z_infl)/width))+om*eta_Liq
return Gp + 1j * Gpp
def G_deriv_rev(z_rev):
z = z_max - z_rev
Gpderiv_rev = Gp_surf *1./2.*(-1./np.cosh((z-z_infl)/width)/width)
Gppderiv_rev = Gpp_surf*1./2.*(-1./np.cosh((z-z_infl)/width)/width)
return -(Gpderiv_rev + 1j*Gppderiv_rev) # “-” : z-scale is reversed
def second_deriv_of_u(z_rev, u_uprime): # u_uprime : veloc., deriv.
u, uprime = u_uprime
return [uprime,\
-rho*om**2/G(z_rev)*u-G_deriv_rev(z_rev)/G(z_rev)*uprime]
GridPoints = np.arange(0,z_max,10e-9)
u_ini = [1+0*1j,ik0] #ini vals, solution is later normalized to 1
sol = solve_ivp(second_deriv_of_u, [0, z_max],u_ini,t_eval= GridPoints)
u = sol.y / sol.y[0,-1] # normalize, so that velocity at surface is 1
ZL = G(z_max)*u[1,-1] / (1j * om * u[0,-1])
dfc = f0 * 1j /(np.pi * Zq) * ZL
print(’Df: {:.3f} Hz DG: {:.3f} Hz’.format(dfc.real,dfc.imag))

Box A2. Calculation of ∆f + i∆Γ for a film in air, starting from the Lu-Lewis equation.

import numpy as np; from scipy import optimize
def Calc_dfc_SLA(rho_f,Gprime_f,tandel_f,thickness_f):
G_f = Gprime_f * (1 + 1j * tandel_f); Z_f = (rho_f * G_f)**0.5;
c_f = (G_f/rho_f)**0.5; k_f = omegaref / c_f;
ZL = 1j * Z_f * np.tan(k_f*thickness_f)
dfc_SLA = f0 * 1j / (np.pi*Zq) * ZL;
return dfc_SLA
def Calc_dfc_LuLewis (rho_f,Gprime_f,tandelf,thickness_f):
G_f = Gprime_f * (1 + 1j * tandel_f); Z_f = (rho_f * G_f)**0.5;
c_f = (G_f/rho_f)**0.5;
def fun(x):
dfcL = x[0] + 1j*x[1]
k_f = (omegaref + 2*np.pi*dfcL.real) / c_f;
ZL = 1j * Z_f * np.tan(k_f*thickness_f)
rhs_m_lhs = -1j*Zq*np.tan(np.pi*dfcL/f0) - ZL
return rhs_m_lhs.real,rhs_m_lhs.imag
dfc_SLA = Calc_dfc_SLA(rho_f,Gprime_f,tandel_f,thickness_f)
sol = optimize.root(fun, [dfc_SLA.real,dfc_SLA.imag])
dfc_LuLewis = sol.x[0] + 1j* sol.x[1]
return dfc_LuLewis
f0 = 5e6; n = 1; fref = n*f0; omegaref = 2*np.pi*fref; Zq = 8.8e6;
rho_f = 1e3; thickness_f = 100e-9; Gprime_f = 1e7; tandel_f = 0.3;
dfc_LuLewis = Calc_dfc_LuLewis(rho_f,Gprime_f,tandel_f,thickness_f)
print(’Df = ’ + str(np.round(dfc_LuLewis.real,3)))
print(’DG = ’ + str(np.round(dfc_LuLewis.imag,9)))
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Box A3. Fit of a box profile to experimental data.

GuessPars = [3e-9,1e-6,0.7,-0.5] #[thickness, |J|,tan(del),PL exp J’]
PL_exp_pp = -0.5; #Power law exponent for J” better be fixed
Correct_for_Drift = ‘yes’; filename =‘test.txt’
def read_dfcs():
f = open(filename,’r’); lines = f.readlines(); f.close();
times = np.zeros(len(lines)-1);
dfc_expt_in=np.zeros((len(lines)-1,len(ovt_ord_in)),dtype=complex);
for i in range(len(lines)-1):
columns = lines[i+1].split();
times[i] = np.float(columns [0].replace(‘,’,’.’));
for i_ovt in range (len(ovt_ord_in)):
dfc_expt_in[i,i_ovt]=\

np.float(columns[2 *i_ovt+1]) * ovt_ord_in[i_ovt]+\
1j*2.5*np.float(columns[2*i_ovt+2]) * ovt_ord_in[i_ovt];
if Correct_for_Drift == ‘yes’ :
for j in range(1, len(times)) :
for i_ovt in range(len(ovt_ord_in)) :
dfc_expt_in[j,i_ovt] -= (1. + i_ovt)/len(ovt_ord_in)*\
(dfc_expt_in[j,i_ovt] - dfc_expt_in[j-1,i_ovt])
dfc_expt = dfc_expt_in[:,1:-1] # omit 5 MHz, ignore 55 MHz
return times,dfc_expt
def Calc_dfc_from_Box_Profile(ovt_order, Pars):
d_f = Pars[0]; J_abs = Pars[1];
loss_tan = Pars[2]; PL_exp_p = Pars[3];
f = ovt_order * f_fund; om = 2 * np.pi * f;
J_f = J_abs * np.cos(loss_tan) * (f/f_Jref)**PL_exp_p + \
-1j * J_abs * np.sin(loss_tan) * (f/f_Jref)**PL_exp_pp
c_f = 1/(rho * J_f)**0.5; k_f = om/c_f; Z_f = rho * c_f
Z_Liq = (1j * om * rho * eta_Liq)**0.5
dfc_tot = f_fund * 1j/(np.pi*Zq) * (1j * Z_f) * \
(Z_f * np.tan(k_f * d_f) - 1j * Z_Liq)/\
(Z_f + 1j * Z_Liq * np.tan(k_f * d_f))
dfc = dfc_tot - f_fund * 1j/(np.pi*Zq) * Z_Liq
return dfc
def fit_model(X_arr, Y_arr):
y_real=np.hstack((np.real(Y_arr),np.imag(Y_arr)))#Compl. fit func.
def func(Pars):
ymodel = Calc_dfc_from_Box_Profile(X_arr,Pars)
ymodel_real = np.hstack((np.real(ymodel), np.imag(ymodel)))
return y_real - ymodel_real
FitPars, ier = leastsq(func, GuessPars)
Y_fit = Calc_dfc_from_Box_Profile(X_arr,FitPars)
dev_sqr = np.sum(np.abs(Y_arr - Y_fit)**2)
return FitPars,Y_fit,dev_sqr
def Analyze ():
times,dfc_expt = read_dfcs();
dfc_fit=np.zeros*np.zeros((len(times),len(ovt_ord)),dtype=complex);
d_f_fit = np.nan * np.zeros(len(times))
J_abs_fit = np.nan * np.zeros(len(times))
dev_sqr_fit = np.nan * np.zeros(len(times))
loss_tan_fit = np.nan * np.zeros(len(times))
PL_exp_p_fit = np.nan * np.zeros(len(times))
for i in range(len(times)):
FitPars,Y_fit,dev_sqr=fit_model(ovt_ord,dfc_expt[i])
d_f_fit[i] = FitPars[0];
J_abs_fit[i] = FitPars[1]
loss_tan_fit[i] = FitPars[2];
PL_exp_p_fit[i] = FitPars[3]
dev_sqr_fit[i] = dev_sqr;
dfc_fit[i] = Y_fit;
import numpy as np; from scipy.optimize import leastsq
eta_Liq = 1e-3; rho = 1e3; f_fund = 5e6; f_Jref = 30e6; Zq = 8.8e6;
ovt_ord_in = np.array([1.,3.,5.,7.,9.,11.,13]) # data from 5-65 MHz
ovt_ord = ovt_ord_in[1:-1]# ignore the 5-MHz and 55-MHz overtone
Analyze();
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Appendix D. Justification of a Complex k̃q in the Lu-Lewis Equation

The original form of the Lu-Lewis equation was based on a real-valued wave vector
in the resonator, kq. In order to account for lossy samples, kq was turned in to an effective
complex k̃q in Equation (20). The imaginary part is not linked to the resonator’s intrinsic
losses. If the sample is lossy, the displacement at z = dq is of the form:

û(d q , t) = ûS cos
(
kq
′dq
)

exp(iω̃rest)

= ûS cos
(
kq
′dq
)
(1 + iφ) exp

(
iωres

′t
)

= ûS
(
cos
(
kq
′dq
)
+ i cos h

(
kq
′′dq
))

exp
(
iωres

′t
)

= ûS cos
(

k̃qdq

)
exp

(
iωres

′t
) (A22)

A phase contained in the complex resonance frequency ω̃res was lumped into kq. The
phase is caused by the lossy sample. Again, k̃q is an effective wave number, introduced
to keep the algebra simple. Because the apparent kq

′′ is small, the errors can be tolerated.
(One is not forced to do that. The calculation also runs along with complex ω̃res.)
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