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Background. In the absence of bacteriologic confirmation to diagnose tuberculosis (TB) in children, it is suggested that 
treatment should be initiated when sufficient clinical evidence of disease is available. However, it is unclear what clinical 
evidence is sufficient to make this decision. To identify children who would benefit from rapid initiation of TB treatment, we 
developed 2 clinical prediction tools.

Methods. We conducted a secondary analysis of a prospective intensified TB patient–finding intervention conducted in 
Pakistan in 2014–2016. TB disease was determined through either bacteriologic confirmation or a clinical diagnosis. We derived 
2 tools: 1 uses classification and regression tree (CART) analysis to develop decision trees, while the second uses multivariable 
logistic regression to calculate a risk score.

Results. Of the 5162 and 5074 children included in the CART and prediction score, respectively, 1417 (27.5%) and 1365 (26.9%) 
were eligible for TB treatment. CART identified abnormal chest radiographs and family history of TB as the most important 
predictors (area under the receiver operating characteristic curve [AUC], 0.949). The final prediction score model included age 
group (0–4, 5–9, 10–14), weight <5th percentile, cough, fever, weight loss, chest radiograph suggestive of TB disease, and family 
history of TB; the identified best cutoff score was 9 (AUC, 0.985%).

Conclusions. Use of clinical evidence was sufficient to accurately identify children who would benefit from treatment initiation. 
Our tools performed well compared with existing algorithms, though these results need to be externally validated before 
operationalization.
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One million children (0–14 years) are estimated to develop tu
berculosis (TB) disease annually [1, 2]. Only between 30% and 
60% of children age <15 years are diagnosed and reported 
though; the rest are missed by the health system [3]. About one- 
quarter of a million children die from TB annually, and 96% of 
those deaths occur in children who never received treatment [4].

Children often experience delays in diagnosis or misdiagno
sis due to nonspecific symptoms [5] and having paucibacillary 
TB, limiting the sensitivity of conventional tests [6]. Children 
are also often unable to produce sputum, precluding any 

potential microbiological confirmation through sputum-based 
tests [6]. In the absence of a globally accessible, accurate diag
nostic test for TB in children, diagnosis remains largely based 
on a combination of clinical symptoms, medical history, and 
radiologic evidence. Improving diagnostic strategies for pediat
ric TB is a priority; identifying and treating children who would 
benefit from rapid initiation of TB treatment can be life-saving.

In the absence of microbiological confirmation of disease, the 
World Health Organization (WHO) and the International 
Union Against Tuberculosis and Lung Disease [7, 8] recommend 
treating children for whom there is sufficient clinical evidence of 
TB disease; however, what clinical evidence is sufficient to initi
ate treatment is unclear. Practical, data-driven treatment deci
sion algorithms could help support more effective and 
uniform treatment decision-making at health facilities [9], im
proving treatment outcomes by shortening the time to treatment 
initiation [10–14].

The WHO recently recommended decentralized models of 
care and use of integrated treatment decision algorithms for di
agnosis of pediatric TB [15]. It presented 1 such algorithm for 
children in settings where diagnoses are frequently missed [7]. 
The algorithm first evaluates for signs that may require urgent 
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management and referral to higher care, then stratifies based on 
risk of TB-associated mortality. Finally, it uses a score-based al
gorithm to identify features, and combinations of features, 
from the clinical evaluation and chest radiography to identify 
children who should be initiated on TB treatment. However, 
this algorithm has not been validated, and there is a need for 
evidence of feasibility and implementation research evaluation 
as several of the signs and symptoms are not routinely collected 
during programmatic care in places with high burdens of 
TB, including duration of fever, lethargy, hemoptysis, tachycar
dia, and tachypnoea. Additionally, often individual chest radio
graph features are not recorded as the radiograph is just 
categorized as suggestive or not suggestive of disease, with well- 
known challenges associated with chest radiograph quality and 
interpretation. In programs where these data are not recorded, 
it would be difficult for a child to obtain a score high enough to 
triage for treatment initiation.

Thus, in a setting in Pakistan where these data were not col
lected, we aimed to identify children who would benefit from 
rapid initiation of TB treatment by deriving 2 clinical predic
tion tools using only routinely collected data locally.

METHODS

Study Population

Pakistan, with a population of 221 million (2020), has a high TB 
burden, accounting for 6% of the global TB burden, with a 
TB incidence of 259 per 100 000 population. In 2020, 48% of 
TB cases went undetected, and children age 0–14 years made 
up 14% of reported TB cases [16]. We conducted a secondary 
analysis of a prospective intensified TB patient–finding inter
vention conducted in Pakistan in 2014–2016 [17].

TB Screening Program

Between October 2014 and March 2016, an intensified TB pa
tient–finding program was implemented by the Indus Hospital 
and Health Network in 4 participating public sector health fa
cilities in the rural setting of Jamshoro District, Pakistan [17]. 
This program involved health workers systematically screening 
all children presenting to the general, pediatric, and chest out
patient departments at the participating facilities. No inpatient 
screening was carried out. The systematic screen included 
health workers asking children and/or their caregivers whether 
they had a cough for 2 or more weeks, recent contact with 
someone with TB (last 2 years), glandular swelling, or presence 
of any of the following symptoms: fever for 2 or more weeks, 
night sweats, or inappropriate weight loss (failure to thrive). 
A child who responded yes to having a cough, contact with 
someone with TB, glandular swelling, and/or had 2 or more 
other symptoms present was presumed to have TB and referred 
to a medical officer for further evaluation. Children received a 
full clinical evaluation, which included a chest radiograph, 

complete blood count, and erythrocyte sedimentation rate, 
and, if indicated and if they could produce sputum, 
GeneXpert MTB/RIF assay (Cepheid, Sunnyvale, CA, USA). 
Additional testing, including ultrasound, computed tomogra
phy, and fine-needle aspiration/biopsy, was also completed if 
clinically indicated. Chest radiographs were read by the treating 
physician and recorded as suggestive of TB or not suggestive of 
TB. A clinician diagnosed children with TB if they had a posi
tive GeneXpert MTB/RIF result or based on a combination of 
clinical and radiologic evidence. Children diagnosed with TB 
were referred for appropriate treatment, per local guidelines 
[18]. A total of 105 338 children age 0–14 years were screened 
for TB, and, of these, 5880 (5.6%) children screened positive 
and were presumed to have TB disease [17].

Outcome Variable Definition

The outcome of interest is any diagnosis of TB disease, render
ing an individual eligible for TB treatment. As described above, 
a TB diagnosis may be made based on clinical/radiologic evi
dence or bacteriologic confirmation of disease.

Exposure Variable Definitions

Characteristics collected from participants included demograph
ics, medical history, and clinical presentation. Demographic in
formation included sex, age, and weight-for-age percentile, 
which was calculated using the WHO’s growth charts for chil
dren age ≤2 years and the US Centers for Disease Control and 
Prevention’s growth charts for children age >2 years [19]. We 
categorized children based on whether their weight-for-age 
was higher than the 5th percentile or not. Children were also cat
egorized by age group: 0–4, 5–9, and 10–14 years old. Medical 
history included reporting contact with TB disease in the past 
2 years and whether there was a Bacille Calmette-Guerin 
(BCG) vaccine scar present. Clinical presentation included re
porting the presence of cough, cough duration, fever, weight 
loss, chest radiograph results (suggestive of TB or not), and chest, 
abdominal, and lymph node examination results (suggestive of 
TB or not).

Statistical Analysis

We report the frequency and percentage of characteristics of all 
children who were presumed to have TB and who subsequently 
completed an evaluation for TB disease. We also report and 
compare the characteristics of children who were and were 
not diagnosed with TB using chi-square tests.

We developed 2 clinical prediction tools using different an
alytic approaches that have complementary strengths and lim
itations: classification and regression tree (CART) analysis and 
logistic regression. CART is a nonparametric method that uses 
recursive partitioning to search through all potential predictors 
and their cutoff values to identify those whose associated 
threshold level is most important to predicting the outcome 
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variable [20, 21]. CART presents results in the form of a 
simple-to-use decision tree that can be easily implemented in 
clinical settings [20]. In contrast, logistic regression has well- 
characterized methods for testing model assumptions to ensure 
validity of the resulting model. However, ascertaining relation
ships between the outcome and continuous predictor variables 
is difficult unless meaningful thresholds for categorizing pre
dictors are determined a priori. The development of a predic
tion score, using regression output, can also be a simple way 
for clinicians to detect whether an individual is predicted to 
have the outcome of interest.

All children presumed to have TB disease, based on the 
symptom screen, and with a full evaluation for TB disease— 
defined as having a chest radiograph, Xpert MTB/RIF assay 
on sputum, abdominal ultrasound, or histopathology test 
performed and being assessed by a TB medical officer—were 
included in both analyses.

Approach 1. Classification and Regression Tree Analysis: 
Development of a Decision Tree
All potential predictors described above were considered for in
clusion in the final tree. A CART model identified the most im
portant potential predictor after assessing the relevance of each 
variable in the final model.

We assigned measures of predictive importance using the 
Gini Gain Index to each potential predictor. We split the data 
sets into increasingly homogenous subgroups, adding smaller 
nodes to the tree based on how much each variable improved 
the prediction of the primary node. Maximal trees were gener
ated and then pruned based on relative misclassification costs, 
complexity, and parsimony. Ten-fold cross-validation random
ly split the whole data set into learning and test data sets. We 
then used CART analysis to determine the models’ perfor
mance and predictive accuracy in these test sets and to produce 
a composite performance and accuracy measure, including an 
AUC, for the final tree. To assess the potential for age-specific 
predictors, we ran CART analysis in all children (0–14) and in 
subgroups of children age 0–4, 5–9, and 10–14 years.

Approach 2. Logistic Regression: Development of a Prediction Score
We performed multivariable logistic regression. Predictor var
iables included gender, age group, weight-for-age ≤5th percen
tile, presence of any cough, fever, or weight loss, chest 
radiograph suggestive of TB disease, and a family history of 
TB disease. Only children who had no missing data for these 
potential predictors were included in the final model. The pri
mary means of selecting the final model were the Akaike 
Information Criteria (AIC) and the Bayesian Information 
Criterion (BIC), for which lower values for both indicate better 
fit [22]. We also used the c-statistic to assess model discrimina
tion. The larger the c-statistic, the better the model discrimi
nates [23]. To assess model calibration, we computed the 

Hosmer-Lemeshow statistic [24]. We used bootstrap resam
pling (1000 samples) for internal validation and to obtain a val
ue accounting for model optimism [25, 26].

Log odds values from the final model were normalized by di
viding them by their respective standard error (SE) and round
ing off to the nearest integer. A cumulative risk score for each 
subject was calculated by summing these up. To select the op
timal cutoff for the prediction score, we used a receiver operat
ing characteristics (ROC) curve analysis using the Youden’s 
index, which maximizes the discriminative properties, includ
ing sensitivity and specificity [27]. Using the optimal score cut
off, we assessed the performance of the prediction score to 
diagnose TB and calculate the sensitivity, specificity, positive 
predictive value, and negative predictive value. The WHO rec
ommends a community-based triage test to have a minimum 
sensitivity of >90% and a specificity of >70%, and an optimal 
sensitivity of >95% and a specificity of >80% [28]. To make 
the score simple to implement in a clinical setting, we devel
oped an algorithm reflecting the pathways that would indicate 
a TB diagnosis to inform treatment decision-making.

CART analysis was run using Salford Systems Data Mining 
and Predictive Analytics Software, version 8.0 (Salford 
Systems, San Diego, CA, USA). The prediction score analysis 
was performed using SAS, version 9.4 (SAS Institute, Cary, 
NC, USA).

Ethics Approval

The Institutional Review Board (IRB) of Interactive Research 
and Development, Karachi, Pakistan, reviewed and approved 
the original study protocol (approval number: IRD-IRB-2015– 
04–002). Verbal informed consent was obtained from all child
ren’s guardians as well as from children over the age of 7. The 
subsequent analysis of de-identifiable data was determined to 
be nonhuman subjects research by the IRBs of Harvard 
Medical School (HMS-IRB-20-0479) and Boston University 
Medical Campus (H-43008).

RESULTS

In this secondary analysis, we examined data for the 5162 chil
dren evaluated for pulmonary TB disease. Of these, 1417 
(27.5%) children were diagnosed with TB disease; those chil
dren had significantly different characteristics than the children 
who were not diagnosed with TB (Table 1).

Approach 1. Classification and Regression Tree Analysis: 
Development of a Decision Tree
Of all children age 0–14 years (n = 5162) who were presumed 
to have TB and who were subsequently evaluated for TB, 
1417 (27.5%) were diagnosed with TB and eligible for treat
ment. The most important predictor identified was having 
a chest radiograph suggestive of TB, with 99.2% having TB dis
ease, compared with only 6.1% of children with a normal chest 
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radiograph having TB (Figure 1). Of children with a normal 
chest radiograph, the next best predictor was having a family 
history of TB, with 35.4% having TB disease, compared with 
only 3.2% of those without a family history of TB having TB. 
The overall model AUC was 0.949.

The age-specific analyses included 2192 children with 714 
(32.6%) having TB disease (0–4 years), 1825 children with 411 
(22.5%) having TB (5–9 years), and 1145 children with 292 
(25.5%) having TB (10–14 years). Having a chest radiograph 
suggestive of TB disease was the most important predictor in 
all 3 age group models, with 99.5%, 98.1%, and 100% of children 
in the 0–4, 5–9, and 10–14 age groups, respectively, with this re
sult being diagnosed with TB disease and referred for treatment 
(Figures 2, 3, 4). In children with a normal chest radiograph, the 
next most important predictor was having a family history of TB 
for all models, with 36.7%, 31.8%, and 39.0% of children in the 0– 
4, 5–9, and 10–14 age groups being referred for TB treatment. 
Additionally, both the 0–4 and 10–14 age models had a third im
portant predictor; in children with a normal chest radiograph 
and no family history of TB, having no cough or cough <2 weeks 
led to 73% and 64%, respectively, being referred for treatment 
initiation. Important to note is that 84.6% (0–4 model) and 
55.5% (10–14 model) of those who fell into that category had 
EPTB. The overall model AUCs were 0.960, 0.967, and 0.950 
for the 0–4, 5–9, and 10–14 age models, respectively.

For the sensitivity analysis, we repeated the overall analysis 
stratified by type of TB diagnosis. For children with PTB, the 
most important predictor was chest radiograph suggestive of 
TB, followed by presence of cough (Supplementary Figure 1). 
For children diagnosed with EPTB, the most important predic
tor was family history of TB, followed by absence of cough and 
weight ≤6.5 kg (Supplementary Figure 2).

Approach 2. Logistic Regression: Development of a Prediction Score
Of the 5162 children presumed to have TB who were subse
quently evaluated for disease, 88 did not have potential predic
tor variables available, so they were excluded from analysis. Of 
the 5074 children included in the analysis, 1365 (26.9%) had TB 
disease, of whom only 38 (2.8%) had bacteriologic confirmation 
of disease. Our final model selected included covariates for age 
group, weight <5th percentile, cough, fever, weight loss, chest 
radiograph suggestive of TB disease, and family history. This 
model had an area under the curve of 0.985. Model optimism 
was estimated to be 0.06%.

Table 2 summarizes the coefficients for the final logistic regres
sion model and corresponding calculated prediction scores. The 
highest score was for having a chest radiograph suggestive of TB 
disease (+17 points), followed by having a family history of TB dis
ease (+9 points) and weight <5th percentile (+8 points). Weight 
loss resulted in +4 points in the 10–14-year age group; having 

Table 1. Baseline Characteristics of 5162 Children Screened and Evaluated for Pulmonary TB

Characteristic
Total Children, No. (%) 

n = 5162
Children Diagnosed With TB, No. (%) 

n = 1417
Children Not Diagnosed With TB, No. (%) 

n = 3745 P Value

Demographics

Female 2222 (43.1) 618 (43.6) 1604 (42.8) .61

Age group 0–4 y 2198 (42.6) 714 (50.4) 1484 (39.6) <.001

5–9 y 1819 (35.2) 411 (29.0) 1408 (37.6)

10–14 y 1145 (22.2) 292 (20.6) 853 (22.8)

Symptoms and clinical presentation

Weight ≤5th percentile 1589 (30.8) 1170 (82.6) 419 (11.2) <.001

Any cough present (n = 5142) 1740 (33.8) 1249 (89.2) 491 (13.1) <.001

Cough duration 
(n = 4998)

No cough 3402 (68.1) 151 (11.9) 3251 (87.3) <.001

<2 wk 214 (4.3) 97 (7.6) 117 (3.1)

2–3 wk 501 (10.0) 338 (26.5) 163 (4.4)

>3 wk 881 (17.6) 688 (54.0) 193 (5.2)

Fever present (n = 5153) 4064 (78.9) 1198 (84.6) 2866 (76.7) <.001

Weight loss present (n = 5133) 3378 (65.8) 1069 (75.7) 2309 (62.1) <.001

Chest radiograph suggestive 
of TB (n = 5129)

1168 (22.8) 1159 (83.7) 9 (0.2) <.001

Chest examination suggestive 
of TB (n = 1816)

1458 (80.3) 1117 (86.1) 341 (65.8) <.001

Abdominal examination 
suggestive of TB (n = 1816)

161 (8.9) 134 (10.3) 27 (5.2) <.001

Lymph node examination 
suggestive of TB (n = 1816)

160 (8.8) 141 (10.9) 19 (3.7) <.001

BCG scars (n = 1755) 1037 (59.1) 796 (63.8) 241 (47.4) <.001

Family history

Family history of TB 1432 (27.7) 1187 (83.8) 245 (6.5) <.001

Abbreviations: BCG, Bacille Calmette-Guerin vaccine; TB, tuberculosis.
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cough or fever resulted in +2 points each. Being in the 5–9-year 
age group led to a negative score of −3 points. The median cumu
lative risk score (interquartile range) was 3 (2–8). Using Youden’s 
J, we identified the optimal cutoff for diagnosis of TB disease to be 

9 points. This resulted in a sensitivity of 98.2% (95% CI, 97.3%– 
98.8%), specificity of 89.2% (95% CI, 88.1%–90.1%), positive 
predictive value of 76.9% (95% CI, 75.2%–78.5%), and negative 
predictive value of 99.3% (95% CI, 98.9%–99.5%).

Figure 1. Decision tree to predict need for TB treatment in children age 0–14 years presumed to have TB (n = 5162). Abbreviation: TB, tuberculosis.

Figure 2. Decision tree to predict need for TB treatment in children age 0–4 years presumed to have TB (n = 2192). Abbreviation: TB, tuberculosis.
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Figure 5 illustrates all clinical pathways to achieving the op
timal predictive score threshold of 9.

For the sensitivity analysis, we calculated risk scores sepa
rately by type of TB diagnosis. Supplementary Tables 1 and 2
summarize the coefficients for the logistic regression model 

and corresponding calculated prediction scores for PTB and 
EPTB diagnosis compared with no TB, respectively. For chil
dren with PTB, the highest score was for having a chest radio
graph suggestive of TB disease (+20 points). The optimal cutoff 
for diagnosis of PTB was 12 points, resulting in sensitivity of 

Figure 3. Decision tree to predict need for TB treatment in children age 5–9 years presumed to have TB (n = 1825). Abbreviation: TB, tuberculosis.

Figure 4. Decision tree to predict need for TB treatment in children age 10–14 years presumed to have TB (n = 1145). Abbreviation: TB, tuberculosis.
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96.7% (95% CI, 95.5%–97.6%) and specificity of 99.8% (95% CI, 
99.5%–99.9%). For children with EPTB, the highest score was 
for family history of TB (+12 points). The optimal cutoff for di
agnosis of EPTB was 8 points, resulting in sensitivity of 95.8% 
(95% CI, 92.1%–98.0%) and specificity of 86.8% (95% CI, 
85.6%–87.8%).

DISCUSSION

Our results suggest that children presenting to health facilities 
who have a TB-related symptom or recent contact with an in
dividual with TB can be assessed using a chest radiograph and 

family history of TB disease to initiate TB treatment. Both de
rived models identified these 2 characteristics as being most im
portant to identifying children who would benefit from early 
treatment initiation, with high accuracy.

With limited ability to obtain microbiological confirmation 
of disease in children and >75% of TB in children being intra
thoracic, chest radiograph is an important part of the pediatric 
TB diagnostic algorithm [5, 6, 29–31]. Interpretation of chest 
radiographs in children are complicated due to a broad disease 
spectrum and great variability in radiologic patterns by 
age, HIV status, and other comorbidities [6, 32–36]. 
Although chest radiographs are locally classified as “suggestive” 
or “not suggestive” of TB, which can lead to suboptimal sensi
tivity and specificity [37, 38], chest radiograph was the most im
portant predictor of benefiting from TB treatment initiation. 
Incorporation of specific chest radiograph features, if available, 
may lead to improved discriminatory properties.

Cough duration was identified as an important predictor in 
the 0–4- and 10–14-year CART models. However, the findings 
were in the opposite direction, as would be expected. In partic
ular, the subgroup that had a normal chest radiograph, no fam
ily history of TB, and no cough or reported cough for <2 weeks 
had a high proportion requiring TB treatment initiation (73% 
and 64%). Upon further evaluation, it was identified that the 
majority of this group were actually diagnosed with extrapul
monary TB disease. This suggests that individuals who report 
a TB-related symptom or recent contact with an individual 

Table 2. Coefficients From Final Logistic Regression Model and 
Corresponding Risk Score for Selected Variables for Predicting TB 
Disease Diagnosis

Variable
Coefficient 
(From Logit)

Standard 
Error

Coefficient/ 
Standard Error

Risk 
Score

Age group: 5–9 y −0.367 0.120 −3.06 −3

Age group: 10–14 y 0.296 0.125 2.37 +2

Weight <5th percentile 0.842 0.110 7.66 +8

Cough 0.254 0.132 1.93 +2

Fever 0.215 0.127 1.70 +2

Weight loss 0.471 0.108 4.37 +4

Chest radiograph 
suggestive of TB

3.095 0.179 17.3 +17

Family history 0.924 0.099 9.33 +9

Abbreviation: TB, tuberculosis.

Figure 5. Tuberculosis treatment decision algorithm for children based on optimal predictive score. Abbreviation: TB, tuberculosis.
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with TB, but who lack a TB-suggestive chest radiograph, family 
history, and cough, still warrant a further clinical/diagnostic 
workup to assess for TB disease.

The developed prediction tools are unique compared with 
other existing algorithms. The derived tools are specific to chil
dren in Pakistan, where there is a low HIV prevalence and lim
ited to no resources available to routinely induce sputum or use 
gastric aspirate to obtain a sample for bacteriologic confirma
tion of TB. This is in contrast to 2 clinical prediction tools de
veloped in South Africa. One only focused on HIV-infected 
children and had an AUC of 0.870 [39], while the other focused 
on HIV-uninfected children and had an AUC of 0.750 [40]. 
This population had resources available to perform gastric as
pirate or sputum induction, and 43% of children had bacterio
logic confirmation of TB disease, compared with only 3% of 
children in this cohort from Pakistan [41]. A third algorithm 
of children in Peru was conducted only in children who were 
exposed at home to TB and reported lower AUCs ranging 
from 0.660 to 0.693 [42]. The current tools had far superior ac
curacy, with AUCs of ≥0.950.

The integrated treatment decision algorithm presented by 
the WHO [15] is limited to children <10 years old with pulmo
nary TB. Our tools are for children <15 years old presenting 
to a health facility with any form of TB. We also focus heavily 
on clinical examination findings, symptoms, and medical histo
ry that are routinely collected during programmatic care. 
Numerous signs and symptoms included in the WHO algo
rithm are not systematically collected in the Pakistan clinical 
setting, including duration of fever, presence of lethargy, he
moptysis, tachycardia, and tachypnea, as well as individual 
chest radiograph features. The addition of systematic collection 
and recording of such data to the current program will take 
time, money, and training of health care personnel; thus the ad
dition of clinical tools using only existing programmatic data 
can be integrated into care more rapidly. In settings that lack 
a strong health care infrastructure and have limited resources 
along with a high burden of TB, such an algorithm can help im
prove diagnosis of childhood TB. However, this algorithm will 
need to be validated externally before use.

Our study has some limitations. First, incorporation bias 
is an issue in this study; because only 3% of children in this 
population had bacteriologic confirmation of disease, the 
remainder of children were diagnosed based on clinical and ra
diological evidence. The same variables that are used to diag
nose children with TB are being used to predict the outcome, 
and additional confirmatory diagnostic tests could not be per
formed. Thus, of all potential characteristics used to clinically 
diagnose children with TB, we aim to identify the most impor
tant ones that will capture the majority of individuals who 
would benefit from rapid initiation of treatment. Second, these 
prediction tools are not developed for all-comers to a health fa
cility, as all children included to derive these tools underwent a 

systematic verbal screening where they reported either the 
presence of a TB-related symptom or recent contact with an in
dividual with TB. Third, pediatric TB doctors will need to be 
able to interpret the TB-associated findings of chest radio
graphs to use this algorithm. Lastly, before operationalization 
of the developed algorithm, it is essential to externally validate 
the tools.

CONCLUSIONS

Optimizing clinical approaches to TB treatment decision- 
making is important to improve treatment access for children. 
However, the urgent need to increase TB detection and treat
ment access must be balanced against the consequences of 
overdiagnosis and unnecessary treatment. While the develop
ment of the WHO algorithm is of great use, as it currently 
stands, some important features required to apply it are not 
routinely collected in high–TB burden settings, and there 
may be a delay in updating programmatic care settings to col
lect these additional data, which will require balancing addi
tional time, training, effort, and financial resources. These 
locally tailored clinical prediction tools and accompanying op
erationalized algorithm, which take into account actual data 
collected by programs, could be of great use in the interim.
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