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The mitis group of streptococci (MGS) is a member of the healthy human microbiome in
the oral cavity and upper respiratory tract. Troublingly, some MGS are able to escape this
niche and cause infective endocarditis, a severe and devastating disease. Genome-scale
models have been shown to be valuable in investigating metabolism of bacteria. Here we
present the first genome-scale model, iCJ415, for Streptococcus oralis SK141. We
validated the model using gene essentiality and amino acid auxotrophy data from closely
related species. iCJ415 has 71-76% accuracy in predicting gene essentiality and 85%
accuracy in predicting amino acid auxotrophy. Further, the phenotype of S. oralis was
tested using the Biolog Phenotype microarrays, giving iCJ415 a 82% accuracy in
predicting carbon sources. iCJ415 can be used to explore the metabolic differences
within the MGS, and to explore the complicated metabolic interactions between different
species in the human oral cavity.

Keywords: Streptococcus oralis, mitis group of streptococci, genome-scale reconstruction, constraint-based
modeling, Biolog phenotypic profiling
INTRODUCTION

The mitis group of streptococci (MGS) consists of 20 different species, all gram positive cocci
arranged as pairs or in chains (Spellerberg and Brandt, 2008). MGS is a part of the lactic acid
bacteria, which along with the human pathogenic genera Streptococcus, Enterococcus, and
Aerococcus is composed of a wide variety of bacteria important for the food industry (Wu
et al., 2017).

Most species in the MGS are considered commensal inhabitants of the oral cavity. These bacteria
exist in a complex metabolic relationship with other oral streptococci, as well as other species
residing in the oral cavity. These interactions are thought to have an influence on the development
of certain oral diseases in humans, e.g., caries (Kreth et al., 2009; Nascimento et al., 2009; Abranches
et al., 2018). Sometimes these MGS are able to escape their oral niche and cause an infection of the
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heart valves, infective endocarditis (IE), a severe disease with a
high mortality even with proper treatment. Of all the IE causing
species in the MGS, Streptococcus oralis is the most common
(Rasmussen et al., 2016).

Genome-scale models (GEMs) of metabolism have proven to
be valuable in investigating the metabolism in a single bacterial
strain (McCloskey et al., 2013). GEMs have been used to
compare metabolism between different strains of the same
species and between different species (Monk et al., 2013; Ong
et al., 2014; Bosi et al., 2016; Monk et al., 2017; Norsigian et al.,
2018). When a GEM is used to compare different strains, it is
possible to compare the metabolic capabilities with known
phenotypic or virulence characteristics, enabling us to identify
the metabolic capabilities that either enhance the virulence of a
strain or is necessary for a species to be pathogenic (Monk et al.,
2013). This provides an unprecedented opportunity to
investigate complex mechanisms behind pathogenesis.

Given the implications of Lactococcus, Lactobacillus, and
Streptococcus for the food industry, GEMs have been created
and published (Oliveira et al., 2005; Teusink et al., 2006; Pastink
et al., 2009; Thiele and Palsson, 2010). However, only two GEMs
for human pathogenic streptococci have been published so far.
One is for Streptococcus pyogenes, a distant relative of the MGS
with a very different disease spectrum (Jensen and Kilian, 2012;
Levering et al., 2016). The other published GEM is for a closer
relative, Streptococcus pneumoniae (Dias et al., 2019). Although
phylogenetically closely related, S. oralis and S. pneumoniae have
several differences. S. pneumoniae is a part of the throat
microbiome, while S. oralis is commensal in the oral
microbiome. Furthermore, S. pneumoniae is a common cause
of pneumonia, otitis media and meningitis. These diseases are
only very rarely caused by S. oralis.

In this article we present the first GEM for a S. oralis strain,
named iCJ415. This GEM is based on the genome sequence of S.
oralis SK141 combined with experimental data using the Biolog
phenotypic array or retrieved in published literature. The model
is validated with experimental data obtained using either S. oralis
SK141 or other closely related species in the MGS. This model is
intended as a starting point for exploring the complicated
metabolic interactions between different bacterial species in the
human oral microbiome and for exploring the differences
between pathogenic and non-pathogenic bacteria being a part
of the human microbiome.
MATERIALS AND METHODS

Strains
GEMs are built using an annotated genome sequence combined
with experimental data. We used the strain S. oralis SK141,
isolated from human dental biofilm (Kilian et al., 2014). The
SK141 genome sequence was downloaded from the National
Center for Biotechnology Information (https://www.ncbi.nlm.
nih.gov/, accession number: JPGA00000000.1). The genome
sequence was annotated using the RAST server on default
settings (Aziz et al., 2008).
Frontiers in Genetics | www.frontiersin.org 2
Reconstruction
The reconstruction was made using the protocol made by Thiele
and Palsson (2010). In short, we used the genome annotation to
generate a draft reconstruction using Modelseed (Henry et al.,
2010). This draft reconstruction was intensively manually
curated using the databases BiGG (King et al., 2016), KeGG
(Ogata et al., 1999), and MetaNetx (Ganter et al., 2013). If
possible, reactions were verified with experimental data. If
there was no available S. oralis specific data, we used data from
closely related species (e.g. Streptococcus mitis or S. pneumoniae).
For gapfilling, pathways were visualized using Escher (King et al.,
2015). To identify missing genes, BLASTn homology searches
were done using the NCBI webserver with default settings
(Boratyn et al., 2013). To ensure a standardized nomenclature
and to make comparison between other GEMs easier, all
reactions and metabolites in the model were named with BiGG
IDs if possible. BiGG Models is a knowledge base now
incorporating more than 70 published GEMs (King et al., 2016).

The reconstruction was converted to a mathematical model
and all simulations were done, using Constraint-Based Metabolic
Modeling in Python (COBRApy) version 0.13.4 (Ebrahim
et al., 2013).

Biolog
Biolog experiments were performed using Biolog’s phenotype
microarrays (Biolog, Hayward, CA, USA). All experiments were
carried out according to the phenotype microarray protocol for
S. agalactiae and other Streptococcus species (version: 16-May-
09) provided by the manufacturer with the following exception:
Due to a high degree of background noise in the negative control
well, phenotype microarrays 3 was tested using only 1/10 of the
carbon sources reported.

The Biolog results were analyzed with the “OPM” package in
R, and statistical analysis was done with the “Dunnett-type
comparison: one-against-all” function (Vaas et al., 2013). All
wells with a P-value < 0.05 when compared with the negative
control were considered as having growth.

Biomass Reaction
The biomass reaction should include all essential constituents,
and their fraction, in the biomass composition. Due to the lack of
a detailed biomass composition of S. oralis we used the
macromolecular composition of a Lactobacillus plantarum
previously published (Teusink et al., 2006). We used the
Python package BOFdat (Lachance et al., 2019) to calculate
coefficients for DNA, RNA, proteins, lipids, coenzymes and
ions. BOFdat divides the biomass calculations into different
steps. Step 1 calculates biomass coefficients for DNA, RNA,
proteins, and lipids. For determining coefficients for the
nucleotides in DNA, it calculates the relative abundance of
each nucleotide based on the genome provided. For RNA and
amino acid calculations BOFdat uses transcriptomics and
proteomics data, respectively. BOFdat uses these data to
compare the frequency of RNA and proteins found in these
experimental data to calculate the coefficients for nucleotides and
amino acids present in RNA and proteins. The data used to RNA
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and amino acid calculations were obtained from S. pneumoniae
strain D39 (Aprianto et al., 2018; Sun et al., 2011). To calculate
lipids, BOFdat uses the relative abundance, found in
experimental data, and the molecular weight of these lipids in
the model. We used the lipid composition data from a previously
published Lactococcus lactismodel iAO358 (Oliveira et al., 2005).
BOFdat step 2 adds coenzymes and inorganic ions to the model.

Since Gram positive bacteria, in contrast to Gram negative,
contains a large amount of peptidoglycan, teichoic acid and
lipoteichoic acid, we calculated the coefficients for these
structures using data from a L. plantarum (Teusink et al.,
2006). Further we used data from Xavier et al. to include the
following coenzymes considered essential when constructing a
metabolic model: Nad, nadp, S-Adenosyl-L-methionine, fad,
pyridoxal 5′-phosphate, poenzyme A, tetrahydrofolate,
methyltetrahydrofolate, formyltetrahydrofolate, thiamine
diphosphate, and riboflavin-5-phosphate (Xavier et al., 2017).
The individual contribution of these coenzymes was evenly
distributed among the remaining part of the biomass.

All data used for BOFdat and the calculations for metabolites
not found by BOFdat are summarized in Supplementary
Table S1.
VALIDATION OF ICJ415

Gene Essentiality
No gene essentiality data exists for S. oralis, therefore
comparison between iCJ415 and experimental gene essentiality
data was done using data from the closely related species S.
pneumoniae (Strain TIGR4) (van Opijnen et al., 2009) and
Streptococcus sanguinis (Strain SK36) (Xu et al., 2011).
Orthologous genes were found using NCBI Bidirectional Blast.
COBRApy contains a function, which allows all genes in the
model to be deleted individually, and for each gene deletion
growth is assessed. This function is similar to in vivo experiments
of tn-seq and transposon mutagenesis experiments (van Opijnen
et al., 2009; Kleckner et al., 1977). Since all gene essentiality
experiments were carried out in rich media (e.g. Broth), the
simulations were done with all exchange reactions open.

Amino Acid Auxotrophy
Amino acid auxotrophies were found using data from S.
pneumoniae strain D39 (Härtel et al., 2012). To compare
amino acid auxotrophies found in the experimental data and
iCJ415 we opened the exchange reactions corresponding to all
metabolites present in the CDM media used to obtain the
experimental data. When simulating amino acid omissions we
sequentially closed the exchange reactions for the amino acid
omitted and tested for growth of the model.

Carbon and Nitrogen Sources
When testing for carbon sources we found a minimal media in the
literature, which did not support in silico growth of S. oralis without
an added carbon source (Homer et al., 1993; Paixão et al., 2015).We
Frontiers in Genetics | www.frontiersin.org 3
used this media and sequentially opened the exchange reaction for
the carbon sources and tested for growth of iCJ415. Only Biolog
metabolites readily mapped to metabolites in iCJ415 or positive in
the Biolog phenotypic system were included.

Nitrogen sources were tested with the same media used to test
carbon sources. We used glucose (Opened the EX_glc__D_e
exchange reaction) as a carbon source. We sequentially opened
and closed the exchange for all nitrogens sources tested. If the
opening resulted in an increase in Biomass yield, it was
considered a positive result.

All simulations on gene essentiality, amino acid auxotrophy
and carbon and nitrogen sources were done using Flux Balance
Analysis (FBA) while optimizing for the Biomass reaction. For all
metabolites present in the media, the upper and lower bounds
were set to -1000 and 1000 mmol/g/h, respectively. When doing
Biolog validations the exchange reactions for the carbon- and
nitrogen sources tested were also set to -1000 and 1000 mmol/g/
h for lower and upper bounds, respectively. Supplementary
Table S2 shows the media content used in the simulations for
carbon- and nitrogen sources and amino acid auxotrophies.

For all FBA simulations we used a value of 10-8 as a growth/no
growth cutoff.
Biomass Yield
To test the biomass yield and byproduct production, we
compared with previously published experimental data
obtained in the S. pneumoniae strain D39 (Paixão et al., 2015).
The D39 strain was grown in a chemically defined media, using
four different carbon sources, and the byproducts were
measured. These data have been used to validate a recently
published S. pneumoniae GEM, iDS372 (Dias et al., 2019). We
used the same media conditions to simulate growth of iCJ415
(see Supplementary Table S2). To simulate the repression of
genes by the carbon catabolite repressor A (CcpA) present in
MGS, we added additional constraints of the reactions catalyzed
by genes repressed by the CcpA, This was done by testing the flux
through the reactions catalyzed by the genes repressed by the
CcpA using only the constraints imposed by the media. Fluxes
through the reactions were then set to 0% (LACOX) or a
maximum of 10% of the unconstrained value (ACKr, ALCD2x,
PTAr). Due to alleviation of the repression when grown on
galactose ACKr, ALCD2x and PTAr were set to a maximum of
100% of the unconstrained value. For the pfl gene, and associated
reaction, Dias et al. simulated an underexpression by testing the
growth rate and byproduct formation with fluxes from 0-100% of
the unconstrained value. For comparison with iDS371, we tested
only the value of pfl underexpression giving the best match with
experimental data.

These calculations were visualized and calculated using the
Escher FBA webapplication (Rowe et al., 2018).
Memote Test
iCJ415 was tested using memote, which provides a platform to
test the performance of a metabolic model (Lieven et al., 2018).
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RESULTS AND DISCUSSION

The iCJ415 S. oralis metabolic model contains 604 reactions, 504
metabolites, and 415 genes. All reactions and metabolites in iCJ415
are detailed in Supplementary Table S3 and can be found in json
and sbml format in Supplementary Data Sheets 1 and 2. Of those
604 reactions, 475 are included in the BiGG database, 52 are not
included in the BiGG database, and the remaining 76 (excluding the
biomass reaction) are exchange reactions. Figure 1 shows the
characteristics of the reactions included in iCJ415. Of the non-
gene associated reactions, six are spontaneous and four are added as
sink or demand reactions due to lack of available data (e.g., the
reaction “Skgcald”) or due to the need for a non-metabolic
metabolite in the model, e.g., a sink reaction for DNA. Three
reactions were added as gapfilling and 37 reactions were added
based solely on biochemical information retrieved either from the
literature or Biolog experiments, with no information on the
associated gene. We were not able to find the genes responsible
for making unsaturated fatty acids, and we added these based only
on data present in literature. The same was the case for the reaction
“UDPACGALRIBGALUDPAATGALS,” which produces one of
the last reactions in the teichoic acid synthesis. The gene
responsible for this reaction was not found, but we added the
reaction based on experimental data (Denapaite et al., 2012). These
non-gene associated reactions are placed in a separate sheet in
Supplementary Table S3.

Biomass Reaction
Using the software BOFdat we constructed a biomass reaction
using genomic, transcriptomic, proteomic and lipidomic data
from either S. oralis SK141 or closely related species. When
comparing with another GEM from a closely related species, S.
pneumoniae, iDS372, the biomass reactions have many
similarities, though there are differences. In contrast to iDS372
we decided not to include polyamines into the Biomass reaction
of iCJ415, despite polyamines has been shown to be import in
nasopharyngeal carriage, and virulence of S. pneumoniae. This is
because S. oralis does not colonize the nasopharynx and is
usually not considered a pneumonia-causing agent like
S. pneumoniae (Shah et al., 2011). The biomass reaction of
Frontiers in Genetics | www.frontiersin.org 4
iCJ415 is also similar to that of a S. pyogenes GEM (Levering
et al., 2016). However, S. pyogenes, contains a capsule while S.
oralis SK141 does not. Therefore we did not include a capsule in
the biomass reaction of S. oralis SK141 (Levering et al., 2016).

Verification of iCJ415 Using Experimental
Essentiality Data
Gene essentiality analysis is an important measure for validating
the model, especially when considering new possible
antimicrobial drug targets. We predicted a list of genes that are
essential for growth using COBRApy to do a single gene
knockout simulation in iCJ415. By using data from the closely
related bacteria S. sanguinis and S. pneumoniae, Bidirectional
Blast Hits found 356 and 375 orthologous genes in S. oralis
SK141, respectively. The gene essentiality predictions in iCJ415
matched the S. sanguinis and S. pneumoniae gene essentiality
datasets in 76% and 71% of the cases, respectively (See Figure 2,
Supplementary Table S4).

When comparing the gene essentiality datasets from S.
sanguinis and S. pneumoniae, 336 of the genes in iCJ415 were
found in both essentiality datasets and 79 were found in only
one, or in none of the datasets. Discrepancy between the two
essentiality datasets were observed with 62 genes. These
discrepancies can partly be explained by how the experimental
data were obtained. The S. pneumoniae essentiality data were
from a tn-seq experiment and the S. sanguinis data were from
gene knockout mutants.

Since we are using two gene essentiality dataset from two
closely related bacteria, we only look at those genes where the
experimental gene essentiality data agrees. Genes are termed
“concordant,” when both gene essentiality datasets and iCJ415
results are the same and “discordant” when the gene essentiality
datasets are the same, but they are different from gene essentiality
predictions in iCJ415. The terms discordant and concordant are
also used in Supplementary Table S4 to describe the two
situations. Table 1 shows all the concordant and discordant
genes categorized on pathway. Most pathways are almost equally
represented in the concordant and discordant group, though
amino acid metabolism has a higher representation in the
discordant group and transport has a higher representation in
FIGURE 1 | (A) Summary of reaction characteristics in iCJ415. (B) Reactions in iCJ415 sorted by pathway. Exchange reactions are left out. The reaction pathways
are merged together according based on pathways and according to https://www.kegg.jp/kegg/pathway.html. *Based on experimental data, either found in
literature or found in Biolog experiments.
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the concordant group. It is worth noticing that both
peptidoglycan and terpenoid backbone synthesis are highly
represented in the concordant group. They are both simple
synthetic pathways with only one gene responsible for each
reaction, and the end product is essential for growth of the
bacteria. This is in opposition to the amino acid metabolism
where several reactions can lead to the same product.

There are 61 genes where there are discordant results. In 36 of
those genes, iCJ415 shows essentiality while the essentiality
Frontiers in Genetics | www.frontiersin.org 5
datasets show non-essentiality. An explanation is that not
much S. oralis specific data is available, which causes a lack of
alternative genes or pathways in the model. This leads to genes
being essential in silico, while they are not essential in vitro. This
is the case with all but one of the amino acid genes
(SK141_RS08355) categorized as discordant.

In the remaining 25 genes where there are discordant results,
iCJ415 shows genes to be non-essential, while the essentiality data
shows the genes to be essential. This can be explained in part by the
use of rich medium in both gene essentiality datasets. Both of these
studies use a broth-based, non-defined media, where it is not
possible to get the exact composition of the different metabolites.
When we simulate gene deletions in rich media we open all
exchange reactions in the model, which corresponds to an
experimental setup where all metabolites are present in the
growth media. But if a metabolite is absent from the experimental
growth media, a gene could be deemed essential, however the gene
would not be essential if the metabolite was present.

The two gene essentiality studies use either Todd Hewitt or
BHI media for the experiments (van Opijnen et al., 2009; Xu et al.,
2011). Both of these media contain ingredients such as digests
of beef-heart, neopeptones, brain, or gelatin. These ingredients
make the exact composition of the media unknown, and they will
probably differ between batches and manufacturer. Despite the
unspecific media conditions, both Todd Hewitt and BHI have
added glucose as a carbon source, which probably make it the
primary carbon source available (Atlas and Snyder, 2019).
Therefore we tried to do the gene essentiality calculations for all
discordant genes from Supplementary Table S4, leaving out
all carbon sources except glucose. See Table 2 for discordant
genes that are non-essential in iCJ415, but essential in the
experimental essentiality data. Furthermore, Table 2 shows
differences in essentiality and growth rate when grown in full
TABLE 1 | Concordant and discordant genes in iCJ415 categorized according
to subsystem.

Concordant (c) Discordant

Subsystem (b) genes,
no

genes, %
(a)

genes,
no

genes, %
(a)

Amino acid metabolism 37 17 23 37
Carbohydrate metabolism 37 17 12 20
Lipid metabolism 13 6 4 7
Metabolism of cofactors and
vitamins

13 6 6 10

Nucleotide metabolism 40 19 11 18
Peptidoglycan biosynthesis 8 4 0 0
Terpenoid backbone synthesis 7 3 1 2
Transport 50 23 4 7
Other 7 3 0 0
Total 212 61
(a) Calculated as the proportion concordant/discordant genes as a total of concordant/
discordant genes.
(b) Subsystem designation are derived from Supplementary Table S3 but are merged
together into groups according to the BiGG website (https://www.kegg.jp/kegg/pathway.
html).
(c) Discordant refers to genes where experimental data show agreement but is different
from iCJ415 predictions. Concordant refers to genes where experimental data shows
agreement and is similar to iCJ415 predictions.
FIGURE 2 | Gene essentiality comparison between iCJ415 and experimental data. (A) When iCJ415 is compared with S. sanguinis SK36 there is a 76% (272/356)
concordance in gene essentiality. (B) When comparing iCJ415 with S. pneumoniae TIGR4 tn seq data there is a 71% (266/375) concordance. Gene orthologs in S.
sanguinis SK36 and S. pneumoniae TIGR4 were found using bidirectional blast.
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media, compared with glucose as the sole carbon source.
The growth calculations are percent of growth when gene is
not knocked out.

When using glucose as a sole carbon source, seven
“discordant” genes become essential; six of those are part of
the carbon metabolism. These genes are becoming essential due
to the lack of essential metabolite synthesis when only glucose is
used as a carbon source, e.g. teichoic acid cannot be produced
when the gene SK141_RS03865 is knocked out due to the
inability of the model to synthesize ribulose 5-phosphate.
When retesting all genes that were “concordant” in the full
media, only one of the 169 genes were essential when testing with
glucose as the sole carbon source. Furthermore, only 10 gene
deletions had a lower growth rate when glucose was the only
Frontiers in Genetics | www.frontiersin.org 6
carbon source, and no deletion gave more than a 20% reduction
in growth rate.

When publishing iDS372, the authors did gene essentiality
testing in iDS372 and compared with essentiality data in the
Online Gene Essentiality Database using a chemically defined
media, despite the experimental essentiality data was generated
in a complex media (Chen et al., 2012; Dias et al., 2019). We
tested the gene essentiality of iDS372 by opening all exchanges
(Simulating rich media conditions) and did gene knockout using
COBRApy. Thirteen genes, which showed concordance between
iCJ415 and the experimental data, did not show concordance in
iDS372. Thirty-three genes that showed discordance between
iCJ415 and experimental data showed concordance in iDS372.
These differences can be explained, by that none of the
TABLE 2 | Discordant genes that shows non-essentiality in iCJ415 in-silico, while they were shown to be essential in both experimental datasets.

System Gene Reactions Growth,
full media

(a)

Growth,
glucose

(b)

Comment

Amino acid
metabolism

SK141_RS08355 GF6PTA 100,00 0,00 There are several reactions which can produce gam6p, including N-Acetyl-D-
glucosamine/D-Glucosamine PTS transporters, if it is present in the media.

Carbohydrate
metabolism

SK141_RS00135 PRPPS 100,00 100,00 5-Phospho-alpha-D-ribose 1-diphosphate can also be produced in the reaction
UPPRT.

SK141_RS00605 GALUi 99,74 0,00 When galactose is present in the media, UDP-glucose can be produced
without SK141_RS00605, making SK141_RS00605 non-essential.

SK141_RS00635 PGI 84,82 74,59 Fructose 6-phosphate can be produced using the pentose phosphate
pathway, though less efficient than through PGI.

SK141_RS00905 GAPD 58,69 55,00 As with PGK, there are an alternative route for 3-Phospho-D-glycerate
production.

SK141_RS01515 PGK 58,69 55,00 there is an alternative route from Glyceraldehyde 3-phosphate to 3-Phospho-D-
glycerate via the reactions G3POR

SK141_RS01855 TPI 58,68 0,00 When grown in glucose only, there is a lack of Phosphoenolpyruvate to use in
the transporter when the gene is knocked out.

SK141_RS01965 FBA2, FBA3, FBA 84,95 0,00 As with TPI there is lack of Phosphoenolpyruvate
SK141_RS03865 G6PDH2r 100,00 0,00 When only grown on glucose, teichoic acid cannot be produced due to a lack

of D-Ribulose 5-phosphate.
SK141_RS05000 PYK 85,69 58,55 There are other, not as effective, sources of pyruvate in the model.
SK141_RS05005 PFK_2, PFK,

PFK_3
84,95 0,00 When grown on multiple carbon sources D-Fructose 1,6-bisphosphate can be

produced using several carbohydrates.
SK141_RS07980 GND 100,00 0,00 When growing on glucose the only way to produce teichoic acid is through the

GND reaction.
Metabolism of
cofactors and
vitamins

SK141_RS06615 ACPS1 100,00 100,00 In a steady state this gene is not needed, since ACP is not included in the
biomass reaction.

SK141_RS06335 FOLR2, DHFR 100,00 100,00 S. Oralis SK 141 has two genes annotated for these reactions, making them
non-essential

SK141_RS06020 NADS1 100,00 100,00 S. Oralis SK141 has an alternative Nicotinamide adenine dinucleotide
producing reaction, NMNAT.

SK141_RS01060 THFGLUS, DHFS 100,00 100,00 S. Oralis SK 141 has two genes annotated for these reactions, making them
one non-essential

Nucleotide
metabolism

SK141_RS04680 RNDR2, RNDR3,
RNDR4, RNDR1

100,00 100,00 S. Oralis SK141 contains another gene annotated capable of producing
deoxynucleotides (SK141_RS08300)SK141_RS04685 100,00 100,00

SK141_RS04880 ATPS4r 99,80 99,91 This gene is not used for ATP synthesis in Streptococcus, but is probablys
primarily used for keeping the internal h+ homeostasis(c).SK141_RS04885 99,80 99,91

SK141_RS04890 99,80 99,91
SK141_RS04895 99,80 99,91
SK141_RS04900 99,80 99,91
SK141_RS04905 99,80 99,91
SK141_RS04910 99,80 99,91
(a) Growth when all exchange reactions are set to the upper and lower bound default values of 1,000 and -1,000. Growth are calculated as percent of value when gene is knocked out,
compared with no gene knock-out.
(b) Growth when all carbon source exchange reactions, except glucose, are closed. All other exchange reactions, and glucose, are set to upper and lower values of -1,000 and 1,000,
respectively.
(c) See PMID 30930283.
March 2020 | Volume 11 | Article 116

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Jensen et al. iCJ410 S. oralis metabolic reconstruction
essentiality datasets is from a S. oralis. Further, S. oralis has one
of the smallest genomes in the MGS, having a genome size of 1.9
mio basepairs (Rasmussen et al., 2016). In contrast, both S.
pneumoniae and S. sanguinis have larger genome sizes of around
2.1 and 2.4 mio basepairs, respectively, giving a relative larger
amount of genes (Tettelin et al., 2001; Rasmussen et al., 2016).
This can lead to alternative pathways, or multiple genes
catalyzing the same reaction. The latter is the case in at least
nine of the genes showing discordance in iCJ415 but
concordance in iDS372.

These results indicate that most gene deletions in iCJ415, give
the expected result, but there are still discrepancy between iCJ415
and the experimental data. However, much of the difference can
be explained by how the essentiality data were obtained and the
use of different species.

The essential genes found in iCJ415, can be used to find
potential drug targets. Especially when iCJ415 can be applied to a
larger set of strains, essential genes found in all strains could be
possible drug targets. To further validate iCJ415, species-specific
data would be helpful, preferably obtained in a chemically
defined medium.
Experimental Verification of Carbon-
and Nitrogen Utilization in iCJ415
To investigate S. oralis SK141 growth on different Carbon- and
nitrogen sources we used the Biolog microarray system. For
model simulations we used a minimal media found in the
literature (Homer et al., 1993; Paixão et al., 2015). All
metabolites mapped to iCJ415 or found to be positive in the
Biolog system were tested for growth in iCJ415 (see Figure 3,
Supplementary Table S4). The Biolog results for S. oralis SK141
can be found in Supplementary Data Sheet S3.
Frontiers in Genetics | www.frontiersin.org 7
The Biolog microarray system tests 190 different carbon
sources. Of those 190 carbon sources, 44 where either mapped
to iCJ415 or were positive in the Biolog microarray system.
Though, dextrin and pectin were positive in the Biolog
microarray system, they were not included due to the
heterogeneity of the two carbon sources.

Knowledge about the differences in carbon source utilization
within the MGS is limited. The published data is mainly about S.
pneumoniae (Leonard and Lalk 2018; Marion et al., 2012).
Therefore it is interesting to compare the differences between
S. oralis and S. pneumoniae. Though, phylogenetically closely
related, S. oralis and S. pneumoniae are part of two different
microbiomes in the human body, the oral cavity and upper
respiratory airways respectively. Furthermore, their spectrum of
disease is very different. S. pneumoniae being the etiologic agent
of pneumonia, meningitis and otitis media, while S. oralis being
etiologic agent of endocarditis. Of the 43 carbon sources mapped
to iCJ415, eight (18%) were not able to promote growth in
iCJ415. Four of them had transport reactions in iCJ415 but were
still not able to use the metabolites as carbon sources (glycerol,
dihydroxyacetone, deoxyribose, and tagatose). The remaining
four metabolites were not present in the model and we could not
find any information on the transport or metabolism in the
genome annotation or in the literature (propionic acid, 5-keto-
D-gluconic acid, oxalomalic acid, sorbic acid).

These metabolic associated genes are increasingly considered
crucial to the pathogenesis since they determine in which
ecological niche an organism can grow, both during
asymptomatic carriage and in disease (Shelburne et al., 2008).
Therefore, the variety of the carbon sources a strain is capable of
utilizing is thought to be important for the pathogenesis, and can
be valuable for understanding which pathogenetic traits are
important for specific bacteria under certain conditions. When
FIGURE 3 | Comparison between iCJ415 and experimental data. (A) Comparison between carbon utilization in iCJ415 and data obtained using S. oralis SK141
and the Biolog phenotypic array. There is an 84% (36/43) concordance between iCJ415 and Biolog phenotypic array using different carbon sources. (B) Amino acid
auxotrophy comparison between iCJ415 and experimental data obtained using S. pneumoniae D39. There is an 85% (17/20) concordance between iCJ415 and the
experimental data.
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S. oralis and S. pneumoniae resides in two different ecological
niches, different nutritional sources are available. While the oral
cavity contains multiple different carbon sources, partly
degraded by oral enzymes, pharynx has a low content of
readily available carbon sources (Shelburne et al., 2008; Philips
et al., 2003). When comparing genome annotations for S.
pneumoniae R6 and S. oralis SK141 this is reflected by the
content of transport systems specific for breakdown products
of human tissue. S. pneumoniae R6 contains a transporter for
hyaluronate, which is not present in S. oralis SK141, and together
with lyases this transporter can make part of the human
extracellular matrix available as carbon sources (Marion et al.,
2012). S. pneumoniae mutants deficient of these lyases are
attenuated in their ability to colonization and infection making
them important virulence factors (Manco et al., 2006;
King, 2010).

The S. pneumoniae and S. pyogenes GEMs previously
published all contains several carbohydrate transporters, but
the hyaluronate transporter was not included in any of them.
The GEM for S. pneumoniae R6, iDS372, contains transporters
for nine carbon sources also present in iCJ415. While iDS371 can
grow on six of these carbon sources, iCJ415 can grow on 8.
Neither of the models can use glycerol as a carbon despite having
a transporter. In contrast to iCJ415, iDS372 cannot grow on
either stachyose or raffinose, which is due to lack of a raffinose
degrading reaction (Stachyose is degraded to raffinose). Raffinose
utilization by S. pneumoniae has been shown to be an
independent predictor for disease spectrum (Minhas et al., 2019).

Though, Biolog data showed that S. oralis SK141 was able to
use some nitrogen sources which could be mapped to iCJ415 (D-
glucosamine, N-acetyl-D-glucosamine, and N-acetyl-D-
mannosamine), we were not able to distinguish single nitrogen
capabilities in iCJ415 with the used in silicomedia, revealing that
there are still knowledge gaps in iCJ415.

iCJ415 reflects that S. oralis is able to grow on multiple carbon
sources, but the transport and metabolism of some of these
metabolites are unknown or only poorly understood.

Verification of Amino Acid Auxotrophies
in iCJ415 Using Experimental
S. pneumoniae Data
To evaluate iCJ415 we compared amino acid auxotrophies in
iCJ415 with experimental data. By omitting each one of the 20
amino acids in a synthetic chemically defined medium, Härtel et
al., found the amino acid auxotrophies for S. pneumoniae D39.
We opened the exchange reactions for all the amino acids in
iCJ415 and all the metabolites present in the media used by
Härtel et al. To test amino acid auxotrophy we consecutively
closed each of the amino acid exchange reactions in iCJ415
(Figure 3, Supplementary Table S4). Three amino acids had
discrepant results between experimental data and iCJ415.

Isoleucine, valine, and leucine are not auxotrophic in iCJ415 but
show auxotrophy in the experimental omission data. In iCJ415 all
three amino acids can be synthesized from pyruvate and threonine.
Frontiers in Genetics | www.frontiersin.org 8
All the reactions in these pathways are added based solely on the
genome annotations. According to Härtel et al., the genes for the
synthesis of the three amino acids are also present in S. pneumoniae
D39, but are apparently not active under the conditions tested.
Whether the same applies for S. oralis SK141 is not known.

Like the ability to grow on different carbon sources, amino
acid auxotrophies can be an important pathogenetic trait. The
ability to grow in the absence of a specific amino acid has been
shown to be important for which metabolic niche a bacterium
can cause disease. This can be important when a commensal
bacteria, like S. oralis, causes disease. If the bacterium is
auxotrophic for an amino acid not present in the environment,
it cannot grow, and hence not cause disease. To exemplify this, it
has been shown that the human commensal Haemophilus
influenza, is more likely to have a histidin synthesizing
machinery when isolated from the middle ear in otitis media
patients, than when isolated from the throat in healthy humans
(Juliao et al., 2007).

Validating Growth Rate of iCJ415 Using S.
pneumoniae Data
For validating Biomass yield and byproduct formation of iCJ415
we used previously published experimental growth data from S.
pneumoniae D39 (Paixão et al., 2015). The catabolite control
protein A (CcpA) is used in many bacteria, including
streptococci, to organize the carbohydrate catabolism for
obtaining maximal growth. These data have previously been
used to validate a Streptococcus pneumoniae R6 GEM, iDS372
(Dias et al., 2019). To simulate the impact of the carbon
catabolite repressor on the genes in the model, fluxes in
reactions catalyzed by repressed genes were set to a maximum
flux defined by the flux in the unconstrained media, see materials
and methods.

Table 3 shows the results from iCJ415, the results from iDS372
and experimentally obtained data from S. pneumoniae D39. The
experimental data was obtained when grown in glucose, galactose,
N-acetyl-D-glucosamine, and mannose. When compared with
iDS372, iCJ415 has a lower growth rate than iDS372 except when
N-acetyl-D-glucosamine is used as a carbon source. Especially when
using glucose as a carbon source, the growth rate is only 0.44 h-1 in
iCJ415, with growth rates in iDS372 and in the experimental of 0.85
and 0.82 h-1 respectively. When grown on glucose the 0% activity of
pfl causes severe growth retardation in iCJ415, but only a small
increase to 1% pfl activity causes an increase in growth rate to 0.76
h-1. The reason for decrease in growth rate is due to lack of formate
production when the pfl gene is knocked out. Formate is used for
the synthesis of folates in the reaction “FTHLFI.” This reveals
differences in the synthesis of folates, which in part can be
explained by a folate transporter in iDS372. A folate transporter
has earlier been identified in Streptococcus mutans, but we could not
find any evidence for the folate transporter being present in the
annotation of S. oralis or S. pneumoniae and it has been postulated
earlier that such a transporter is not present in S. pneumoniae
(Eudes et al., 2008; Burghout et al., 2013). Due to the lack of
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evidence, we choose not to include a formate transporter in
the model.

Interestingly, iCJ415, like iDS372, has a much higher rate of
acetate production, than the experimental data, when N-acetyl-
D-glucosamine is used as a carbon source. The high acetate
production I iCJ415 is explained by a production of acetate in the
breakdown of N-acetyl-D-glucosamine 6-phosphate. This
anomaly reveals a knowledge gap in the metabolism of N-
acetyl-glucosamine in S. oralis.
Memote Testing
iCJ415 was tested using the Memote web application with all
exchanges open. iCJ415 scores >99% on all consistency scores
except “unbounded flux in default medium” where it scores 95%
(Lieven et al., 2018).
CONCLUSIONS

The aim of this study was to construct a GEM of a S. oralis, the
first GEM of a bacterium that is a major constituent of the
human oral microbiome and an IE causing bacterium. We used
an annotated genome together with strain, species or genus
specific data obtained from the literature. To get information
in carbon source utilization in S. oralis SK141 we used the Biolog
phenotypic microarray.

When comparing gene essentiality between iCJ415 and
published experimental data, we found concordance in 71–76% of
the genes tested. When testing carbon sources and amino acid
auxotrophies we found concordance with experimental data in 82%
and 85% of metabolites tested, respectively. Especially the carbon
Frontiers in Genetics | www.frontiersin.org 9
source utilization data obtained in this study are valuable. It is,
beside the genomic data, the only strain specific data used.
Furthermore, carbon source utilization capacities are increasingly
being considered as possible virulence factors in bacteria (Leonard
and Lalk 2018; McAllister et al., 2012; Juliao et al., 2007). We found
that S. oralis are able to grow on at least 28 carbon sources, including
commonly known carbohydrates as glucose and galactose, but also
rarely encountered ones like lyxose. iCJ415 were able to grow on 21
of the 28 carbon sources tested. In the remaining seven carbon
sources we did not have enough information to simulate growth on
these carbon sources.

iCJ415 should be used as a starting point for exploring the
complicated metabolic interactions between different strains of
the same species and between different species in the human
mouth. Further it can be used to compare metabolic capabilities
between non-pathogenic and known pathogenic strains, finding
metabolic traits important for virulence.

iCJ415 was tested using memote and scored >99% on all
consistency scores except “unbounded flux in default medium”
where it scores 95%.
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